Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

The Role of Selenium Nanoparticles in Addressing Diabetic Complications: A Comprehensive Study

Author(s): Siddharth Satpathy, Lipsa Leena Panigrahi and Manoranjan Arakha*

Volume 24, Issue 15, 2024

Published on: 29 March, 2024

Page: [1327 - 1342] Pages: 16

DOI: 10.2174/0115680266299494240326083936

Price: $65

conference banner
Abstract

Diabetes, as an emerging epidemic, has put forward a significant spotlight on the evolving population worldwide grounded upon the remarkable affliction of healthcare along with economical conflict. Various studies suggested that, in modern society, lack of maintenance of a healthy life style leads to the occurrence of diabetes as insulin resistant, later having a damaging effect on the pancreatic β-cells, suggesting various complications. Furthermore, diabetes management is controversial owing to different opinions based on the prevention of complications. For this purpose, nanostructured materials (NSM) like selenium nanoparticles (SeNPs) have proved their efficiency in the therapeutic management of such serious diseases. This review offers an in- -depth idea regarding the pathophysiology, diagnosis and various conventional therapeutics of type 1 and type 2 diabetes, shedding light on Diabetic Nephropathy (DN), a case study of type 1 diabetes. Moreover, this review provides an exhaustive study by highlighting the economic and healthcare burdens associated with diabetes along with the controversies associated with conventional therapeutic management and the promising role of NSM like selenium nanoparticles (SeNPs), as a novel weapon for encountering such fatal diseases.

Keywords: Diabetes, Diabetic nephropathy, Selenium nanoparticles, Nano-structured materials, Anti-diabetic effect, novel weapon.

Graphical Abstract
[1]
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27(5), 1047-1053.
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[2]
Oberoi, S.; Kansra, P. Economic menace of diabetes in India: A systematic review. Int. J. Diabetes Dev. Ctries., 2020, 40(4), 464-475.
[http://dx.doi.org/10.1007/s13410-020-00838-z] [PMID: 32837090]
[3]
Bommer, C.; Sagalova, V.; Heesemann, E.; Manne-Goehler, J.; Atun, R.; Bärnighausen, T.; Davies, J.; Vollmer, S. Global economic burden of diabetes in adults: Projections from 2015 to 2030. Diabetes Care, 2018, 41(5), 963-970.
[http://dx.doi.org/10.2337/dc17-1962] [PMID: 29475843]
[4]
Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract., 2017, 128, 40-50.
[http://dx.doi.org/10.1016/j.diabres.2017.03.024] [PMID: 28437734]
[5]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[6]
Williams, R.; Karuranga, S.; Malanda, B.; Saeedi, P.; Basit, A.; Besançon, S.; Bommer, C.; Esteghamati, A.; Ogurtsova, K.; Zhang, P.; Colagiuri, S. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract., 2020, 162, 108072.
[http://dx.doi.org/10.1016/j.diabres.2020.108072] [PMID: 32061820]
[7]
Ye, J.; Wu, Y.; Yang, S.; Zhu, D.; Chen, F.; Chen, J.; Ji, X.; Hou, K. The global, regional and national burden of type 2 diabetes mellitus in the past, present and future: A systematic analysis of the Global Burden of Disease Study 2019. Front. Endocrinol. (Lausanne), 2023, 14, 1192629.
[http://dx.doi.org/10.3389/fendo.2023.1192629] [PMID: 37522116]
[8]
Woldu, M.; Lenjisa, J. Nanoparticles and the new era in diabetes management. Int. J. Basic Clin. Pharmacol., 2014, 3(2), 277-284.
[http://dx.doi.org/10.5455/2319-2003.ijbcp20140405]
[9]
Janbon, M. Accidents hypoglycémiques graves par un sulfamidothiodiazol (le VK 57 ou 2254 RP). Montpellier Med., 1942, 441(2), 21-22.
[10]
Saha, P. Evolution of tolbutamide in the treatment of diabetes mellitus. Diabetes, 2020, 2(10)
[11]
Konno, S. A possible hypoglycaemic effect of maitake mushroom on Type 2 diabetic patients. Diabet Med., 2001, 18(12), 1010.
[http://dx.doi.org/10.1046/j.1464-5491.2001.00532-5.x]
[12]
Abbasi, Z.; Jelodar, G.; Geramizadeh, B. Prevention of diabetic complications by walnut leaf extract via changing aldose reductase activity: An experiment in diabetic rat tissue. J Diabetes Res., 2020, 2020, 8982676.
[http://dx.doi.org/10.1155/2020/8982676]
[13]
Hong, L.; Xun, M.; Wutong, W. Anti-diabetic effect of an α-glucan from fruit body of maitake (Grifola frondosa) on KK-Ay mice. J. Pharm. Pharmacol., 2010, 59(4), 575-582.
[http://dx.doi.org/10.1211/jpp.59.4.0013] [PMID: 17430642]
[14]
Lund, A.; Knop, F.K.; Vilsbøll, T. Glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes: Differences and similarities. Eur. J. Intern. Med., 2014, 25(5), 407-414.
[http://dx.doi.org/10.1016/j.ejim.2014.03.005] [PMID: 24694879]
[15]
Abbas, G.; Al-Harrasi, A.; Hussain, H. Alpha-glucosidase Enzyme Inhibitors from Natural Products.Discovery and Development of Antidiabetic Agents from Natural Products; Elsevier: Amsterdam, 2016, pp. 251-268.
[16]
Liu, Z.; Ma, S. Recent advances in synthetic α-glucosidase inhibitors. ChemMedChem, 2017, 12(11), 819-829.
[http://dx.doi.org/10.1002/cmdc.201700216] [PMID: 28498640]
[17]
Shori, A.B. Screening of antidiabetic and antioxidant activities of medicinal plants. J. Integr. Med., 2015, 13(5), 297-305.
[http://dx.doi.org/10.1016/S2095-4964(15)60193-5] [PMID: 26343100]
[18]
Xu, X.; Xu, H.; Shang, Y.; Zhu, R.; Hong, X.; Song, Z.; Yang, Z. Development of the general chapters of the Chinese Pharmacopoeia 2020 edition: A review. J. Pharm. Anal., 2021, 11(4), 398-404.
[http://dx.doi.org/10.1016/j.jpha.2021.05.001] [PMID: 34513116]
[19]
Kaatabi, H.; Bamosa, A.O.; Badar, A.; Al-Elq, A.; Abou-Hozaifa, B.; Lebda, F.; Al-Khadra, A.; Al-Almaie, S. Nigella sativa improves glycemic control and ameliorates oxidative stress in patients with type 2 diabetes mellitus: Placebo controlled participant blinded clinical trial. PLoS One, 2015, 10(2), e0113486.
[http://dx.doi.org/10.1371/journal.pone.0113486] [PMID: 25706772]
[20]
Balbaa, M. Nigella sativa relieves the altered insulin receptor signaling in streptozotocin-induced diabetic rats fed with a high-fat diet. Oxid Med Cell Longev., 2016, 2016, 2492107.
[21]
Islam, M.S.; Choi, H.; Loots, D.T. Effects of dietary onion (Allium cepa L.) in a high-fat diet streptozotocin-induced diabetes rodent model. Ann. Nutr. Metab., 2008, 53(1), 6-12.
[http://dx.doi.org/10.1159/000152868] [PMID: 18772584]
[22]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9(1), 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[23]
Panigrahi, L.L.; Sahoo, B.; Arakha, M. Nanotheranostics and its role in diagnosis, treatment and prevention of COVID-19. Front. Mater. Sci., 2022, 16(2), 220611.
[http://dx.doi.org/10.1007/s11706-022-0611-y] [PMID: 35966717]
[24]
Sahoo, B.; Panigrahi, L.L.; Das, R.P.; Pradhan, A.K.; Arakha, M. Biogenic synthesis of silver nanoparticle from Punica granatum L. and evaluation of its antioxidant, antimicrobial and anti-biofilm activity. J. Inorg. Organomet. Polym. Mater., 2022, 32(11), 4250-4259.
[http://dx.doi.org/10.1007/s10904-022-02441-7]
[25]
Cai, G.; Yu, Z.; Ren, R.; Tang, D. Exciton–plasmon interaction between AuNPs/graphene nanohybrids and CdS quantum dots/TiO2 for photoelectrochemical aptasensing of prostate-specific antigen. ACS Sens., 2018, 3(3), 632-639.
[http://dx.doi.org/10.1021/acssensors.7b00899] [PMID: 29465232]
[26]
Alkaladi, A.; Abdelazim, A.; Afifi, M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int. J. Mol. Sci., 2014, 15(2), 2015-2023.
[http://dx.doi.org/10.3390/ijms15022015] [PMID: 24477262]
[27]
Norouzi Jobie, F.; Ranjbar, M.; Hajizadeh Moghaddam, A.; Kiani, M. Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent. Adv. Powder Technol., 2021, 32(6), 2043-2052.
[http://dx.doi.org/10.1016/j.apt.2021.04.014]
[28]
K, D.; Venugopal, S. Therapeutic potential of selenium nanoparticles. Front. Nanotechnol., 2022, 4, 1042338.
[http://dx.doi.org/10.3389/fnano.2022.1042338]
[29]
Sahoo, B.; Panigrahi, L.L.; Jha, S.; Arakha, M. Polyethylene glycol functionalized zinc oxide nanoparticle with excellent photocatalytic performance and oxidative stress mediated bacterial cell death. Opt. Mater., 2024, 148, 114891.
[http://dx.doi.org/10.1016/j.optmat.2024.114891]
[30]
Leena Panigrahi, L.; Shekhar, S.; Sahoo, B.; Arakha, M. Adsorption of antimicrobial peptide onto chitosan-coated iron oxide nanoparticles fosters oxidative stress triggering bacterial cell death. RSC Adv., 2023, 13(36), 25497-25507.
[http://dx.doi.org/10.1039/D3RA04070D] [PMID: 37636508]
[31]
Sahoo, B.; Rath, S.K.; Champati, B.B.; Panigrahi, L.L.; Pradhan, A.K.; Nayak, S.; Kar, B.R.; Jha, S.; Arakha, M. Photocatalytic activity of biosynthesized silver nanoparticle fosters oxidative stress at nanoparticle interface resulting in antimicrobial and cytotoxic activities. Environ. Toxicol., 2023, 38(7), 1577-1588.
[http://dx.doi.org/10.1002/tox.23787] [PMID: 36988223]
[32]
Minaev, V.; Timoshenkov, S.; Kalugin, V. Structural and phase transformations in condensed selenium. J. Optoelectron. Adv. Mater., 2005, 7(4), 1717.
[33]
Berzelius, J. On selenium crystals and the preparation of selenium. Ann. Phys., 1826, 7, 242-243.
[34]
Sahoo, B.; Leena Panigrahi, L.; Jena, S.; Jha, S.; Arakha, M. Oxidative stress generated due to photocatalytic activity of biosynthesized selenium nanoparticles triggers cytoplasmic leakage leading to bacterial cell death. RSC Adv., 2023, 13(17), 11406-11414.
[http://dx.doi.org/10.1039/D2RA07827A] [PMID: 37063733]
[35]
Burbank, R.D. The crystal structure of α-monoclinic selenium. Acta Crystallogr., 1951, 4(2), 140-148.
[http://dx.doi.org/10.1107/S0365110X5100043X]
[36]
Sivakumar, N.; Narayanasamy, A.; Chinnasamy, C.N.; Jeyadevan, B. Influence of thermal annealing on the dielectric properties and electrical relaxation behaviour in nanostructured CoFe 2 O 4 ferrite. J. Phys. Condens. Matter, 2007, 19(38), 386201.
[http://dx.doi.org/10.1088/0953-8984/19/38/386201]
[37]
Gurgel, A. Size selected synthesis of CoFe 2 O 4 nanoparticles prepared in a chitosan matrix. J. Appl. Phys., 2010, 107, 2.
[38]
Wolcott, A.; Gerion, D.; Visconte, M.; Sun, J.; Schwartzberg, A.; Chen, S.; Zhang, J.Z. Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins. J. Phys. Chem. B, 2006, 110(11), 5779-5789.
[http://dx.doi.org/10.1021/jp057435z] [PMID: 16539525]
[39]
Schwartzberg, A.M.; Olson, T.Y.; Talley, C.E.; Zhang, J.Z. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J. Phys. Chem. B, 2006, 110(40), 19935-19944.
[http://dx.doi.org/10.1021/jp062136a] [PMID: 17020380]
[40]
Chhabria, S.; Desai, K. Selenium nanoparticles and their applications. Encyclopedia of Nanosci. Nanotechnol., 2016, 20, 1-32.
[41]
Zhang, J.S.; Gao, X.Y.; Zhang, L.D.; Bao, Y.P. Biological effects of a nano red elemental selenium. Biofactors, 2001, 15(1), 27-38.
[http://dx.doi.org/10.1002/biof.5520150103] [PMID: 11673642]
[42]
Shahabadi, N.; Zendehcheshm, S.; Khademi, F. Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnol. Rep. (Amst.), 2021, 30, e00615.
[http://dx.doi.org/10.1016/j.btre.2021.e00615] [PMID: 33948440]
[43]
Zhang, J.; Wang, X.; Xu, T. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: Comparison with se-methylselenocysteine in mice. Toxicol. Sci., 2008, 101(1), 22-31.
[http://dx.doi.org/10.1093/toxsci/kfm221] [PMID: 17728283]
[44]
Ramanan, D.; Cadwell, K. Intrinsic defense mechanisms of the intestinal epithelium. Cell Host Microbe, 2016, 19(4), 434-441.
[http://dx.doi.org/10.1016/j.chom.2016.03.003] [PMID: 27049583]
[45]
Souto, E.B.; Souto, S.B.; Campos, J.R.; Severino, P.; Pashirova, T.N.; Zakharova, L.Y.; Silva, A.M.; Durazzo, A.; Lucarini, M.; Izzo, A.A.; Santini, A. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules, 2019, 24(23), 4209.
[http://dx.doi.org/10.3390/molecules24234209] [PMID: 31756981]
[46]
Ahmed, A.A.; Fedail, J.S.; Musa, H.H.; Musa, T.H.; Sifaldin, A.Z. Gum Arabic supplementation improved antioxidant status and alters expression of oxidative stress gene in ovary of mice fed high fat diet. Middle East Fertil. Soc. J., 2016, 21(2), 101-108.
[http://dx.doi.org/10.1016/j.mefs.2015.10.001]
[47]
Zhang, T.; Gao, J.; Jin, Z.Y.; Xu, X.M.; Chen, H.Q. Protective effects of polysaccharides from Lilium lancifolium on streptozotocin-induced diabetic mice. Int. J. Biol. Macromol., 2014, 65, 436-440.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.063] [PMID: 24508917]
[48]
Liu, Y.; Sun, J.; Rao, S.; Su, Y.; Yang, Y. Antihyperglycemic, antihyperlipidemic and antioxidant activities of polysaccharides from Catathelasma ventricosum in streptozotocin-induced diabetic mice. Food Chem. Toxicol., 2013, 57, 39-45.
[http://dx.doi.org/10.1016/j.fct.2013.03.001] [PMID: 23500773]
[49]
Liu, Y.; Zeng, S.; Liu, Y.; Wu, W.; Shen, Y.; Zhang, L.; Li, C.; Chen, H.; Liu, A.; Shen, L.; Hu, B.; Wang, C. Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int. J. Biol. Macromol., 2018, 114, 632-639.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.161] [PMID: 29601883]
[50]
Zhou, J.; Huang, K.; Lei, X.G. Selenium and diabetes—Evidence from animal studies. Free Radic. Biol. Med., 2013, 65, 1548-1556.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.012] [PMID: 23867154]
[51]
Boostani, A.; Sadeghi, A.A.; Mousavi, S.N.; Chamani, M.; Kashan, N. Effects of organic, inorganic, and nano-Se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress. Livest. Sci., 2015, 178, 330-336.
[http://dx.doi.org/10.1016/j.livsci.2015.05.004]
[52]
Safa, S.; Moghaddam, G.; Jozani, R.J.; Daghigh Kia, H.; Janmohammadi, H. Effect of vitamin E and selenium nanoparticles on post-thaw variables and oxidative status of rooster semen. Anim. Reprod. Sci., 2016, 174, 100-106.
[http://dx.doi.org/10.1016/j.anireprosci.2016.09.011] [PMID: 27660014]
[53]
Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia, 2017, 60(9), 1577-1585.
[http://dx.doi.org/10.1007/s00125-017-4342-z] [PMID: 28776086]
[54]
Ahmed, H.H.; Abd El-Maksoud, M.D.; Abdel Moneim, A.E.; Aglan, H.A. Pre-clinical study for the antidiabetic potential of selenium nanoparticles. Biol. Trace Elem. Res., 2017, 177(2), 267-280.
[http://dx.doi.org/10.1007/s12011-016-0876-z] [PMID: 27785741]
[55]
Deng, W.; Xie, Q.; Wang, H.; Ma, Z.; Wu, B.; Zhang, X. Selenium nanoparticles as versatile carriers for oral delivery of insulin: Insight into the synergic antidiabetic effect and mechanism. Nanomedicine, 2017, 13(6), 1965-1974.
[http://dx.doi.org/10.1016/j.nano.2017.05.002] [PMID: 28539272]
[56]
Kumar, G.S.; Kulkarni, A.; Khurana, A.; Kaur, J.; Tikoo, K. Selenium nanoparticles involve HSP-70 and SIRT1 in preventing the progression of type 1 diabetic nephropathy. Chem. Biol. Interact., 2014, 223, 125-133.
[http://dx.doi.org/10.1016/j.cbi.2014.09.017] [PMID: 25301743]
[57]
Varlamova, E.G.; Turovsky, E.A.; Blinova, E.V. Therapeutic potential and main methods of obtaining selenium nanoparticles. Int. J. Mol. Sci., 2021, 22(19), 10808.
[http://dx.doi.org/10.3390/ijms221910808] [PMID: 34639150]
[58]
Al-Quraishy, S.; Dkhil, M.A.; Abdel Moneim, A.E. Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int. J. Nanomedicine, 2015, 10, 6741-6756.
[PMID: 26604749]
[59]
Ikram, M.; Javed, B.; Raja, N.I.; Mashwani, Z.R. Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. Int. J. Nanomedicine, 2021, 16, 249-268.
[http://dx.doi.org/10.2147/IJN.S295053] [PMID: 33469285]
[60]
Krishnan, M.; Ranganathan, K.; Maadhu, P.; Thangavelu, P.; Kundan, S.; Arjunan, N. Leaf extract of Dillenia indica as a source of selenium nanoparticles with larvicidal and antimicrobial potential toward vector mosquitoes and pathogenic microbes. Coatings, 2020, 10(7), 626.
[http://dx.doi.org/10.3390/coatings10070626]
[61]
Sekercioglu, N.; Lovblom, L.E.; Bjornstad, P.; Lovshin, J.A.; Lytvyn, Y.; Boulet, G.; Farooqi, M.A.; Orszag, A.; Lai, V.; Tse, J.; Cham, L.; Keenan, H.A.; Brent, M.H.; Paul, N.; Bril, V.; Perkins, B.A.; Cherney, D.Z.I. Risk factors for diabetic kidney disease in adults with longstanding type 1 diabetes: Results from the Canadian Study of Longevity in Diabetes. Ren. Fail., 2019, 41(1), 427-433.
[http://dx.doi.org/10.1080/0886022X.2019.1614057] [PMID: 31162987]
[62]
Patterson, C.C.; Karuranga, S.; Salpea, P.; Saeedi, P.; Dahlquist, G.; Soltesz, G.; Ogle, G.D. Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract., 2019, 157, 107842.
[http://dx.doi.org/10.1016/j.diabres.2019.107842] [PMID: 31518658]
[63]
Fagot-Campagna, A.; Pettitt, D.J.; Engelgau, M.M.; Burrows, N.R.; Geiss, L.S.; Valdez, R.; Beckles, G.L.A.; Saaddine, J.; Gregg, E.W.; Williamson, D.F.; Venkat Narayan, K.M. Type 2 diabetes among North adolescents: An epidemiologic health perspective. J. Pediatr., 2000, 136(5), 664-672.
[http://dx.doi.org/10.1067/mpd.2000.105141] [PMID: 10802501]
[64]
Karvonen, M.; Viik-Kajander, M.; Moltchanova, E.; Libman, I.; LaPorte, R.; Tuomilehto, J. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care, 2000, 23(10), 1516-1526.
[http://dx.doi.org/10.2337/diacare.23.10.1516] [PMID: 11023146]
[65]
Haller, M.J.; Atkinson, M.A.; Schatz, D. Type 1 diabetes mellitus: Etiology, presentation, and management. Pediatr. Clin. North Am., 2005, 52(6), 1553-1578.
[http://dx.doi.org/10.1016/j.pcl.2005.07.006] [PMID: 16301083]
[66]
DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 diabetes. Lancet, 2018, 391(10138), 2449-2462.
[http://dx.doi.org/10.1016/S0140-6736(18)31320-5] [PMID: 29916386]
[67]
Atkinson, M.A. The pathogenesis and natural history of type 1 diabetes. Cold Spring Harb. Perspect. Med., 2012, 2(11), a007641.
[http://dx.doi.org/10.1101/cshperspect.a007641] [PMID: 23125199]
[68]
Mallone, R.; Eizirik, D.L. Presumption of innocence for beta cells: Why are they vulnerable autoimmune targets in type 1 diabetes? Diabetologia, 2020, 63(10), 1999-2006.
[http://dx.doi.org/10.1007/s00125-020-05176-7] [PMID: 32894310]
[69]
Damond, N. A map of human type 1 diabetes progression by imaging mass cytometry. Cell Metab., 2019, 29(3), 755-768.e5.
[http://dx.doi.org/10.1016/j.cmet.2018.11.014]
[70]
von Herrath, M.; Sanda, S.; Herold, K. Type 1 diabetes as a relapsing–remitting disease? Nat. Rev. Immunol., 2007, 7(12), 988-994.
[http://dx.doi.org/10.1038/nri2192] [PMID: 17982429]
[71]
Burkart, V.; Strassburger, K.; Zivehe, F.; Markgraf, D.; Herder, C.; Müssig, K.; Szendroedi, J.; Schloot, N.; Roden, M. Inverse association of insulin antibody levels with insulin sensitivity in adults with Type 1 diabetes. Diabet. Med., 2018, 35(5), 595-601.
[http://dx.doi.org/10.1111/dme.13608] [PMID: 29460298]
[72]
Jelenik, T.; Séquaris, G.; Kaul, K.; Ouwens, D.M.; Phielix, E.; Kotzka, J.; Knebel, B.; Weiß, J.; Reinbeck, A.L.; Janke, L.; Nowotny, P.; Partke, H.J.; Zhang, D.; Shulman, G.I.; Szendroedi, J.; Roden, M. Tissue-specific differences in the development of insulin resistance in a mouse model for type 1 diabetes. Diabetes, 2014, 63(11), 3856-3867.
[http://dx.doi.org/10.2337/db13-1794] [PMID: 24917575]
[73]
Chen, C.; Cohrs, C.M.; Stertmann, J.; Bozsak, R.; Speier, S. Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol. Metab., 2017, 6(9), 943-957.
[http://dx.doi.org/10.1016/j.molmet.2017.06.019] [PMID: 28951820]
[74]
Oram, R.A.; Sims, E.K.; Evans-Molina, C. Beta cells in type 1 diabetes: Mass and function; sleeping or dead? Diabetologia, 2019, 62(4), 567-577.
[http://dx.doi.org/10.1007/s00125-019-4822-4] [PMID: 30767048]
[75]
Rosenberg, L. in vivo cell transformation: Neogenesis of beta cells from pancreatic ductal cells. Cell Transplant., 1995, 4(4), 371-383.
[PMID: 7582568]
[76]
Mukherjee, N.; Lin, L.; Contreras, C.J.; Templin, A.T. β-Cell death in diabetes: Past discoveries, present understanding, and potential future advances. Metabolites, 2021, 11(11), 796.
[http://dx.doi.org/10.3390/metabo11110796] [PMID: 34822454]
[77]
Rubio-Cabezas, O.; Hattersley, A.T.; Njølstad, P.R.; Mlynarski, W.; Ellard, S.; White, N.; Chi, D.V.; Craig, M.E. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr. Diabetes, 2014, 15(S20)(Suppl. 20), 47-64.
[http://dx.doi.org/10.1111/pedi.12192] [PMID: 25182307]
[78]
Bonifacio, E.; Beyerlein, A.; Hippich, M.; Winkler, C.; Vehik, K.; Weedon, M.N.; Laimighofer, M.; Hattersley, A.T.; Krumsiek, J.; Frohnert, B.I.; Steck, A.K.; Hagopian, W.A.; Krischer, J.P.; Lernmark, Å.; Rewers, M.J.; She, J.X.; Toppari, J.; Akolkar, B.; Oram, R.A.; Rich, S.S.; Ziegler, A.G. Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: A prospective study in children. PLoS Med., 2018, 15(4), e1002548.
[http://dx.doi.org/10.1371/journal.pmed.1002548] [PMID: 29614081]
[79]
Redondo, M.J.; Geyer, S.; Steck, A.K.; Sharp, S.; Wentworth, J.M.; Weedon, M.N.; Antinozzi, P.; Sosenko, J.; Atkinson, M.; Pugliese, A.; Oram, R.A. A type 1 diabetes genetic risk score predicts progression of islet autoimmunity and development of type 1 diabetes in individuals at risk. Diabetes Care, 2018, 41(9), 1887-1894.
[http://dx.doi.org/10.2337/dc18-0087] [PMID: 30002199]
[80]
Patel, K.A.; Oram, R.A.; Flanagan, S.E.; De Franco, E.; Colclough, K.; Shepherd, M.; Ellard, S.; Weedon, M.N.; Hattersley, A.T. Type 1 diabetes genetic risk score: A novel tool to discriminate monogenic and type 1 diabetes. Diabetes, 2016, 65(7), 2094-2099.
[http://dx.doi.org/10.2337/db15-1690] [PMID: 27207547]
[81]
Gale, E.A.M. Latent autoimmune diabetes in adults: A guide for the perplexed. Diabetologia, 2005, 48(11), 2195-2199.
[http://dx.doi.org/10.1007/s00125-005-1954-5] [PMID: 16193287]
[82]
Bach, J-F.; Chatenoud, L. A historical view from thirty eventful years of immunotherapy in autoimmune diabetes.Seminars in immunology; Elsevier: Amsterdam, 2011.
[http://dx.doi.org/10.1016/j.smim.2011.07.009]
[83]
Atkinson, M.A. Evaluating preclinical efficacy. Sci. Transl. Med., 2011, 3(96), 96cm22.
[http://dx.doi.org/10.1126/scitranslmed.3002757]
[84]
Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 diabetes.. Lancet, 2014, 383(9911), 69-82.
[http://dx.doi.org/10.1016/S0140-6736(13)60591-7] [PMID: 23890997]
[85]
Vaarala, O.; Ilonen, J.; Ruohtula, T.; Pesola, J.; Virtanen, S.M.; Härkönen, T.; Koski, M.; Kallioinen, H.; Tossavainen, O.; Poussa, T.; Järvenpää, A.L.; Komulainen, J.; Lounamaa, R.; Åkerblom, H.K.; Knip, M. Removal of bovine insulin from cow’s milk formula and early initiation of beta-cell autoimmunity in the FINDIA pilot study. Arch. Pediatr. Adolesc. Med., 2012, 166(7), 608-614.
[http://dx.doi.org/10.1001/archpediatrics.2011.1559] [PMID: 22393174]
[86]
Gibly, R.F.; Graham, J.G.; Luo, X.; Lowe, W.L., Jr; Hering, B.J.; Shea, L.D. Advancing islet transplantation: From engraftment to the immune response. Diabetologia, 2011, 54(10), 2494-2505.
[http://dx.doi.org/10.1007/s00125-011-2243-0] [PMID: 21830149]
[87]
McCall, A.L.; Farhy, L.S. Treating type 1 diabetes: From strategies for insulin delivery to dual hormonal control. Minerva Endocrinol., 2013, 38(2), 145-163.
[PMID: 23732369]
[88]
Shah, R.; Shah, V.N.; Patel, M.; Maahs, D.M. Insulin delivery methods: Past, present and future. Int. J. Pharm. Investig., 2016, 6(1), 1-9.
[http://dx.doi.org/10.4103/2230-973X.176456] [PMID: 27014614]
[89]
Roep, B.O.; Thomaidou, S.; van Tienhoven, R.; Zaldumbide, A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat. Rev. Endocrinol., 2021, 17(3), 150-161.
[http://dx.doi.org/10.1038/s41574-020-00443-4] [PMID: 33293704]
[90]
Van Buren, P.N.; Toto, R. Hypertension in diabetic nephropathy: Epidemiology, mechanisms, and management. Adv. Chronic Kidney Dis., 2011, 18(1), 28-41.
[http://dx.doi.org/10.1053/j.ackd.2010.10.003] [PMID: 21224028]
[91]
Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic kidney disease: Challenges, progress, and possibilities. Clin. J. Am. Soc. Nephrol., 2017, 12(12), 2032-2045.
[http://dx.doi.org/10.2215/CJN.11491116] [PMID: 28522654]
[92]
Thomas, M.C.; Brownlee, M.; Susztak, K.; Sharma, K.; Jandeleit-Dahm, K.A.M.; Zoungas, S.; Rossing, P.; Groop, P.H.; Cooper, M.E. Diabetic kidney disease. Nat. Rev. Dis. Primers, 2015, 1(1), 15018.
[http://dx.doi.org/10.1038/nrdp.2015.18] [PMID: 27188921]
[93]
Association, A.D. Pharmacologic approaches to glycemic treatment. Diabetes Care, 2017, 40(1), S64-S74.
[http://dx.doi.org/10.2337/dc17-S011] [PMID: 27979895]
[94]
Tuttle, K.R.; Bakris, G.L.; Bilous, R.W.; Chiang, J.L.; de Boer, I.H.; Goldstein-Fuchs, J.; Hirsch, I.B.; Kalantar-Zadeh, K.; Narva, A.S.; Navaneethan, S.D.; Neumiller, J.J.; Patel, U.D.; Ratner, R.E.; Whaley-Connell, A.T.; Molitch, M.E. Diabetic kidney disease: A report from an ADA Consensus Conference. Diabetes Care, 2014, 37(10), 2864-2883.
[http://dx.doi.org/10.2337/dc14-1296] [PMID: 25249672]
[95]
Berger, M.; Mönks, D.; Wanner, C.; Lindner, T.H. Diabetic nephropathy: An inherited disease or just a diabetic complication? Kidney Blood Press. Res., 2003, 26(3), 143-154.
[http://dx.doi.org/10.1159/000071880] [PMID: 12886042]
[96]
Mogensen, C.E.; Christensen, C.K. Predicting diabetic nephropathy in insulin-dependent patients. N. Engl. J. Med., 1984, 311(2), 89-93.
[http://dx.doi.org/10.1056/NEJM198407123110204] [PMID: 6738599]
[97]
Zerbini, G.; Bonfanti, R.; Meschi, F.; Bognetti, E.; Paesano, P.L.; Gianolli, L.; Querques, M.; Maestroni, A.; Calori, G.; Del Maschio, A.; Fazio, F.; Luzi, L.; Chiumello, G. Persistent renal hypertrophy and faster decline of glomerular filtration rate precede the development of microalbuminuria in type 1 diabetes. Diabetes, 2006, 55(9), 2620-2625.
[http://dx.doi.org/10.2337/db06-0592] [PMID: 16936212]
[98]
Ito, Y.; Aten, J.; Bende, R.J.; Oemar, B.S.; Rabelink, T.J.; Weening, J.J.; Goldschmeding, R. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int., 1998, 53(4), 853-861.
[http://dx.doi.org/10.1111/j.1523-1755.1998.00820.x] [PMID: 9551391]
[99]
Nguyen, T.Q.; Tarnow, L.; Andersen, S.; Hovind, P.; Parving, H.H.; Goldschmeding, R.; van Nieuwenhoven, F.A. Urinary connective tissue growth factor excretion correlates with clinical markers of renal disease in a large population of type 1 diabetic patients with diabetic nephropathy. Diabetes Care, 2006, 29(1), 83-88.
[http://dx.doi.org/10.2337/diacare.29.01.06.dc05-1670] [PMID: 16373901]
[100]
Langham, R.G.; Kelly, D.J.; Gow, R.M.; Zhang, Y.; Cordonnier, D.J.; Pinel, N.; Zaoui, P.; Gilbert, R.E. Transforming growth factor-β in human diabetic nephropathy: Effects of ACE inhibition. Diabetes Care, 2006, 29(12), 2670-2675.
[http://dx.doi.org/10.2337/dc06-0911] [PMID: 17130203]
[101]
Kalantarinia, K.; Awad, A.S.; Siragy, H.M. Urinary and renal interstitial concentrations of TNF-α increase prior to the rise in albuminuria in diabetic rats. Kidney Int., 2003, 64(4), 1208-1213.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00237.x] [PMID: 12969138]
[102]
Nakamura, T.; Ushiyama, C.; Suzuki, S.; Hara, M.; Shimada, N.; Ebihara, I.; Koide, H. Urinary excretion of podocytes in patients with diabetic nephropathy. Nephrol. Dial. Transplant., 2000, 15(9), 1379-1383.
[http://dx.doi.org/10.1093/ndt/15.9.1379] [PMID: 10978394]
[103]
Bolignano, D.; Lacquaniti, A.; Coppolino, G.; Donato, V.; Campo, S.; Fazio, M.R.; Nicocia, G.; Buemi, M. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin. J. Am. Soc. Nephrol., 2009, 4(2), 337-344.
[http://dx.doi.org/10.2215/CJN.03530708] [PMID: 19176795]
[104]
Vaidya, V.S.; Niewczas, M.A.; Ficociello, L.H.; Johnson, A.C.; Collings, F.B.; Warram, J.H.; Krolewski, A.S.; Bonventre, J.V. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-β-D-glucosaminidase. Kidney Int., 2011, 79(4), 464-470.
[http://dx.doi.org/10.1038/ki.2010.404] [PMID: 20980978]
[105]
Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med., 1993, 329(14), 977-986.
[http://dx.doi.org/10.1056/NEJM199309303291401] [PMID: 8366922]
[106]
DCCT/EDIC research group. Effects of intensive diabetes treatment on albuminuria in type 1 diabetes: Long-term follow-up of the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications study. Lancet Diabetes Endocrinol., 2014, 2(10), 793-800.
[http://dx.doi.org/10.1016/S2213-8587(14)70155-X] [PMID: 25043685]
[107]
Stratton, I.M.; Adler, A.I.; Neil, H.A.; Matthews, D.R.; Manley, S.E.; Cull, C.A.; Hadden, D.; Turner, R.C.; Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ, 2000, 321(7258), 405-412.
[http://dx.doi.org/10.1136/bmj.321.7258.405] [PMID: 10938048]
[108]
Pugliese, G.; Penno, G.; Natali, A.; Barutta, F.; Di Paolo, S.; Reboldi, G.; Gesualdo, L.; De Nicola, L. Diabetic kidney disease: New clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on “The natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function”. Nutr. Metab. Cardiovasc. Dis., 2019, 29(11), 1127-1150.
[http://dx.doi.org/10.1016/j.numecd.2019.07.017] [PMID: 31586514]
[109]
Balant, L.; Zahnd, G.; Gorgia, A.; Schwarz, R.; Fabre, J. Pharmacokinetics of glipizide in man: Influence of renal insufficiency. Diabetologia, 1973, 9(S1), 331-338.
[http://dx.doi.org/10.1007/BF01218443] [PMID: 4772979]
[110]
Palmer, K.J.; Brogden, R.N. Gliclazide. Drugs, 1993, 46(1), 92-125.
[http://dx.doi.org/10.2165/00003495-199346010-00007] [PMID: 7691511]
[111]
Abdel-Rahman, E.M.; Saadulla, L.; Reeves, W.B.; Awad, A.S. Therapeutic modalities in diabetic nephropathy: Standard and emerging approaches. J. Gen. Intern. Med., 2012, 27(4), 458-468.
[http://dx.doi.org/10.1007/s11606-011-1912-5] [PMID: 22005942]
[112]
Forbes, J.M.; Coughlan, M.T.; Cooper, M.E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 2008, 57(6), 1446-1454.
[http://dx.doi.org/10.2337/db08-0057] [PMID: 18511445]
[113]
Satoh, M.; Fujimoto, S.; Haruna, Y.; Arakawa, S.; Horike, H.; Komai, N.; Sasaki, T.; Tsujioka, K.; Makino, H.; Kashihara, N. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2005, 288(6), F1144-F1152.
[http://dx.doi.org/10.1152/ajprenal.00221.2004] [PMID: 15687247]
[114]
Beisswenger, P.J.; Drummond, K.S.; Nelson, R.G.; Howell, S.K.; Szwergold, B.S.; Mauer, M. Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress. Diabetes, 2005, 54(11), 3274-3281.
[http://dx.doi.org/10.2337/diabetes.54.11.3274] [PMID: 16249455]
[115]
Douillet, C.; Tabib, A.; Bost, M.; Accominotti, M.; Borson-Chazot, F.; Ciavatti, M. Selenium in diabetes: Effects of selenium on nephropathy in type I streptozotocin-induced diabetic rats. J. Trace Elem. Exp. Med., 1999, 12(4), 379-392.
[http://dx.doi.org/10.1002/(SICI)1520-670X(1999)12:4<379::AID-JTRA12>3.0.CO;2-C]
[116]
Reddi, A.S.; Bollineni, J.S. Selenium-deficient diet induces renal oxidative stress and injury via TGF-β1 in normal and diabetic rats. Kidney Int., 2001, 59(4), 1342-1353.
[http://dx.doi.org/10.1046/j.1523-1755.2001.0590041342.x] [PMID: 11260395]
[117]
Rezaei-Kelishadi, M. Effects of selenium nanoparticles on kidney and liver functional disorders in streptozotocin-induced diabetic rats. Physiology and Pharmacology, 2017, 21(2), 155-162.
[118]
Jablonska, E.; Reszka, E.; Gromadzinska, J.; Wieczorek, E.; Krol, M.; Raimondi, S.; Socha, K.; Borawska, M.; Wasowicz, W. The effect of selenium supplementation on glucose homeostasis and the expression of genes related to glucose metabolism. Nutrients, 2016, 8(12), 772.
[http://dx.doi.org/10.3390/nu8120772] [PMID: 27983572]
[119]
Hasanvand, A.; Abbaszadeh, A.; Darabi, S.; Nazari, A.; Gholami, M.; Kharazmkia, A. Evaluation of selenium on kidney function following ischemic injury in rats; protective effects and antioxidant activity. J. Renal Inj. Prev., 2016, 6(2), 93-98.
[http://dx.doi.org/10.15171/jrip.2017.18] [PMID: 28497082]
[120]
Oztürk, Z.; Gurpinar, T.; Vural, K.; Boyacıoglu, S.; Korkmaz, M.; Var, A. Effects of selenium on endothelial dysfunction and metabolic profile in low dose streptozotocin induced diabetic rats fed a high fat diet. Biotech. Histochem., 2015, 90(7), 506-515.
[http://dx.doi.org/10.3109/10520295.2015.1042050] [PMID: 25978137]
[121]
Alhazza, I.M.; Ebaid, H.; Omar, M.S.; Hassan, I.; Habila, M.A.; Al-Tamimi, J.; Sheikh, M. Supplementation with selenium nanoparticles alleviates diabetic nephropathy during pregnancy in the diabetic female rats. Environ. Sci. Pollut. Res. Int., 2022, 29(4), 5517-5525.
[http://dx.doi.org/10.1007/s11356-021-15905-z] [PMID: 34420167]
[122]
Matough, F.A.; Budin, S.B.; Hamid, Z.A.; Alwahaibi, N.; Mohamed, J. The role of oxidative stress and antioxidants in diabetic complications = دور الإجهاد التأكسدي و المواد المضادة للأكسدة في مضاعفات مرض السكري. Sultan Qaboos Univ. Med. J., 2012, 12(1), 5-18.
[http://dx.doi.org/10.12816/0003082] [PMID: 22375253]
[123]
Ahmed, A.M. History of diabetes mellitus. Saudi Med. J., 2002, 23(4), 373-378.
[PMID: 11953758]
[124]
Group, N.D.D., 1979, Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes, 1979, 28(12), 1039-57.
[125]
Shen, S.W.; Reaven, G.M.; Farquhar, J.W. Comparison of impedance to insulin-mediated glucose uptake in normal subjects and in subjects with latent diabetes. J. Clin. Invest., 1970, 49(12), 2151-2160.
[http://dx.doi.org/10.1172/JCI106433] [PMID: 5480843]
[126]
Defronzo, R.; Deibert, D.; Hendler, R.; Felig, P.; Soman, V. Insulin sensitivity and insulin binding to monocytes in maturity-onset diabetes. J. Clin. Invest., 1979, 63(5), 939-946.
[http://dx.doi.org/10.1172/JCI109394] [PMID: 376552]
[127]
Tripathy, D.; Chavez, A.O. Defects in insulin secretion and action in the pathogenesis of type 2 diabetes mellitus. Curr. Diab. Rep., 2010, 10(3), 184-191.
[http://dx.doi.org/10.1007/s11892-010-0115-5] [PMID: 20425581]
[128]
Saad, M.; Pettitt, D.J.; Mott, D.M.; Knowler, W.C.; Nelson, R.G.; Bennett, P. Sequential changes in serum insulin concentration during development of non-insulin-dependent diabetes. Lancet, 1989, 333(8651), 1356-1359.
[http://dx.doi.org/10.1016/S0140-6736(89)92804-3] [PMID: 2567374]
[129]
Lillioja, S.; Mott, D.M.; Howard, B.V.; Bennett, P.H.; Yki-Järvinen, H.; Freymond, D.; Nyomba, B.L.; Zurlo, F.; Swinburn, B.; Bogardus, C. Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in Pima Indians. N. Engl. J. Med., 1988, 318(19), 1217-1225.
[http://dx.doi.org/10.1056/NEJM198805123181901] [PMID: 3283552]
[130]
Warram, J.H.; Martin, B.C.; Krolewski, A.S.; Soeldner, J.S.; Kahn, C.R. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann. Intern. Med., 1990, 113(12), 909-915.
[http://dx.doi.org/10.7326/0003-4819-113-12-909] [PMID: 2240915]
[131]
Martin, B.C.; Warram, J.H.; Krolewski, A.S.; Soeldner, J.S.; Kahn, C.R.; Martin, B.C.; Bergman, R.N. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: Results of a 25-year follow-up study. Lancet, 1992, 340(8825), 925-929.
[http://dx.doi.org/10.1016/0140-6736(92)92814-V] [PMID: 1357346]
[132]
Saad, M.F.; Knowler, W.C.; Pettitt, D.J.; Nelson, R.G.; Mott, D.M.; Bennett, P.H. The natural history of impaired glucose tolerance in the Pima Indians. N. Engl. J. Med., 1988, 319(23), 1500-1506.
[http://dx.doi.org/10.1056/NEJM198812083192302] [PMID: 3054559]
[133]
Lillioja, S.; Mott, D.M.; Spraul, M.; Ferraro, R.; Foley, J.E.; Ravussin, E.; Knowler, W.C.; Bennett, P.H.; Bogardus, C. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N. Engl. J. Med., 1993, 329(27), 1988-1992.
[http://dx.doi.org/10.1056/NEJM199312303292703] [PMID: 8247074]
[134]
Haffner, S.M.; Miettinen, H.; Gaskill, S.P.; Stern, M.P. Decreased insulin secretion and increased insulin resistance are independently related to the 7-year risk of NIDDM in Mexican-Americans. Diabetes, 1995, 44(12), 1386-1391.
[http://dx.doi.org/10.2337/diab.44.12.1386] [PMID: 7589843]
[135]
Sicree, R.A.; Zimmet, P.Z.; King, H.O.M.; Coventry, J.S. Plasma insulin response among Nauruans. Prediction of deterioration in glucose tolerance over 6 yr. Diabetes, 1987, 36(2), 179-186.
[http://dx.doi.org/10.2337/diab.36.2.179] [PMID: 3542644]
[136]
Jallut, D.; Golay, A.; Munger, R.; Frascarolo, P.; Schutz, Y.; Jéquier, E.; Felber, J.P. Impaired glucose tolerance and diabetes in obesity: A 6-year follow-up study of glucose metabolism. Metabolism, 1990, 39(10), 1068-1075.
[http://dx.doi.org/10.1016/0026-0495(90)90168-C] [PMID: 2215253]
[137]
Burhans, M.S.; Hagman, D.K.; Kuzma, J.N.; Schmidt, K.A.; Kratz, M. Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus. Compr. Physiol., 2018, 9(1), 1-58.
[http://dx.doi.org/10.1002/cphy.c170040] [PMID: 30549014]
[138]
DeFronzo, R.A. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med., 1999, 131(4), 281-303.
[http://dx.doi.org/10.7326/0003-4819-131-4-199908170-00008] [PMID: 10454950]
[139]
Parving, H.H.; Gall, M.A.; Skøtt, P.; Jørgensen, H.E.; Løkkegaard, H.; Jørgensen, F.; Nielsen, B.; Larsen, S. Prevalence and causes of albuminuria in non-insulin-dependent diabetic patients. Kidney Int., 1992, 41(4), 758-762.
[http://dx.doi.org/10.1038/ki.1992.118] [PMID: 1513098]
[140]
Dey, L.; Attele, A.S.; Yuan, C-S. Alternative therapies for type 2 diabetes. Altern. Med. Rev., 2002, 7(1), 45-58.
[PMID: 11896745]
[141]
Henry, R.R. Thiazolidinediones. Endocrinol. Metab. Clin. North Am., 1997, 26(3), 553-573.
[http://dx.doi.org/10.1016/S0889-8529(05)70267-X] [PMID: 9314015]
[142]
Yoshioka, T.; Fujita, T.; Kanai, T.; Aizawa, Y.; Kurumada, T.; Hasegawa, K.; Horikoshi, H. Studies on hindered phenols and analogs. 1. Hypolipidemic and hypoglycemic agents with ability to inhibit lipid peroxidation. J. Med. Chem., 1989, 32(2), 421-428.
[http://dx.doi.org/10.1021/jm00122a022] [PMID: 2913302]
[143]
Antonucci, T.; Whitcomb, R.; McLain, R.; Lockwood, D.; Norris, R.M. Impaired glucose tolerance is normalized by treatment with the thiazolidinedione troglitazone. Diabetes Care, 1997, 20(2), 188-193.
[http://dx.doi.org/10.2337/diacare.20.2.188] [PMID: 9118772]
[144]
Nolan, J.J.; Ludvik, B.; Beerdsen, P.; Joyce, M.; Olefsky, J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N. Engl. J. Med., 1994, 331(18), 1188-1193.
[http://dx.doi.org/10.1056/NEJM199411033311803] [PMID: 7935656]
[145]
Wright, A. United Kingdom Prospective Diabetes Study 24: A 6-year, randomized, controlled trial comparing sulfonylurea, insulin, and metformin therapy in patients with newly diagnosed type 2 diabetes that could not be controlled with diet therapy. Ann. Intern. Med., 1998, 128(3), 165-175.
[http://dx.doi.org/10.7326/0003-4819-128-3-199802010-00001] [PMID: 9454524]
[146]
Group, U.P.D.S. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet, 1998, 352(9131), 837-853.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[147]
Group, U.P.D.S. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet, 1998, 352(9131), 854-865.
[http://dx.doi.org/10.1016/S0140-6736(98)07037-8] [PMID: 9742977]
[148]
Sinha, A.; Formica, C.; Tsalamandris, C.; Panagiotopoulos, S.; Hendrich, E.; DeLuise, M.; Seeman, E.; Jerums, G. Effects of insulin on body composition in patients with insulin-dependent and non-insulin-dependent diabetes. Diabet. Med., 1996, 13(1), 40-46.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199601)13:1<40::AID-DIA991>3.0.CO;2-U] [PMID: 8741811]
[149]
Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci., 2020, 21(17), 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[150]
Lipska, K.J.; Bailey, C.J.; Inzucchi, S.E. Use of metformin in the setting of mild-to-moderate renal insufficiency. Diabetes Care, 2011, 34(6), 1431-1437.
[http://dx.doi.org/10.2337/dc10-2361] [PMID: 21617112]
[151]
Jabbour, S.; Ziring, B. Advantages of extended-release metformin in patients with type 2 diabetes mellitus. Postgrad. Med., 2011, 123(1), 15-23.
[http://dx.doi.org/10.3810/pgm.2011.01.2241] [PMID: 21293080]
[152]
Deusenberry, C.M.; Coley, K.C.; Korytkowski, M.T.; Donihi, A.C. Hypoglycemia in hospitalized patients treated with sulfonylureas. Pharmacotherapy, 2012, 32(7), 613-617.
[http://dx.doi.org/10.1002/j.1875-9114.2011.01088.x] [PMID: 22570146]
[153]
Krishnaswami, A.; Ravi-Kumar, S.; Lewis, J.M. Thiazolidinediones: A 2010 Perspective. Perm. J., 2010, 14(3), 64-72.
[http://dx.doi.org/10.7812/TPP/09-052] [PMID: 20844707]
[154]
Josse, R.G.; Chiasson, J.L.; Ryan, E.A.; Lau, D.C.W.; Ross, S.A.; Yale, J.F.; Leiter, L.A.; Maheux, P.; Tessier, D.; Wolever, T.M.S.; Gerstein, H.; Rodger, N.W.; Dornan, J.M.; Murphy, L.J.; Rabasa-Lhoret, R.; Meneilly, G.S. Acarbose in the treatment of elderly patients with type 2 diabetes. Diabetes Res. Clin. Pract., 2003, 59(1), 37-42.
[http://dx.doi.org/10.1016/S0168-8227(02)00176-6] [PMID: 12482640]
[155]
Neri, S.; Signorelli, S.S.; Torrisi, B.; Pulvirenti, D.; Mauceri, B.; Abate, G.; Ignaccolo, L.; Bordonaro, F.; Cilio, D.; Calvagno, S.; Leotta, C. Effects of antioxidant supplementation on postprandial oxidative stress and endothelial dysfunction: A single-blind, 15- day clinical trial in patients with untreated type 2 diabetes, subjects with impaired glucose tolerance, and healthy controls. Clin. Ther., 2005, 27(11), 1764-1773.
[http://dx.doi.org/10.1016/j.clinthera.2005.11.006] [PMID: 16368447]
[156]
Matsuoka, T.; Kajimoto, Y.; Watada, H.; Kaneto, H.; Kishimoto, M.; Umayahara, Y.; Fujitani, Y.; Kamada, T.; Kawamori, R.; Yamasaki, Y. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J. Clin. Invest., 1997, 99(1), 144-150.
[http://dx.doi.org/10.1172/JCI119126] [PMID: 9011569]
[157]
Kaneto, H.; Kajimoto, Y.; Miyagawa, J.; Matsuoka, T.; Fujitani, Y.; Umayahara, Y.; Hanafusa, T.; Matsuzawa, Y.; Yamasaki, Y.; Hori, M. Beneficial effects of antioxidants in diabetes: Possible protection of pancreatic beta-cells against glucose toxicity. Diabetes, 1999, 48(12), 2398-2406.
[http://dx.doi.org/10.2337/diabetes.48.12.2398] [PMID: 10580429]
[158]
Steinbrenner, H.; Duntas, L.H.; Rayman, M.P. The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol., 2022, 50, 102236.
[http://dx.doi.org/10.1016/j.redox.2022.102236] [PMID: 35144052]
[159]
Saito, Y. Selenium transport mechanism via selenoprotein P—Its physiological role and related diseases. Front. Nutr., 2021, 8, 685517.
[http://dx.doi.org/10.3389/fnut.2021.685517] [PMID: 34124127]
[160]
Takayama, H.; Misu, H.; Iwama, H.; Chikamoto, K.; Saito, Y.; Murao, K.; Teraguchi, A.; Lan, F.; Kikuchi, A.; Saito, R.; Tajima, N.; Shirasaki, T.; Matsugo, S.; Miyamoto, K.; Kaneko, S.; Takamura, T. Metformin suppresses expression of the selenoprotein P gene via an AMP-activated kinase (AMPK)/FoxO3a pathway in H4IIEC3 hepatocytes. J. Biol. Chem., 2014, 289(1), 335-345.
[http://dx.doi.org/10.1074/jbc.M113.479386] [PMID: 24257750]
[161]
Tajima-Shirasaki, N.; Ishii, K.; Takayama, H.; Shirasaki, T.; Iwama, H.; Chikamoto, K.; Saito, Y.; Iwasaki, Y.; Teraguchi, A.; Lan, F.; Kikuchi, A.; Takeshita, Y.; Murao, K.; Matsugo, S.; Kaneko, S.; Misu, H.; Takamura, T. Eicosapentaenoic acid down-regulates expression of the selenoprotein P gene by inhibiting SREBP-1c protein independently of the AMP-activated protein kinase pathway in H4IIEC3 hepatocytes. J. Biol. Chem., 2017, 292(26), 10791-10800.
[http://dx.doi.org/10.1074/jbc.M116.747006] [PMID: 28465347]
[162]
Mita, Y.; Nakayama, K.; Inari, S.; Nishito, Y.; Yoshioka, Y.; Sakai, N.; Sotani, K.; Nagamura, T.; Kuzuhara, Y.; Inagaki, K.; Iwasaki, M.; Misu, H.; Ikegawa, M.; Takamura, T.; Noguchi, N.; Saito, Y. Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nat. Commun., 2017, 8(1), 1658.
[http://dx.doi.org/10.1038/s41467-017-01863-z] [PMID: 29162828]
[163]
Burgos-Morón, E.; Abad-Jiménez, Z.; Marañón, A.M.; Iannantuoni, F.; Escribano-López, I.; López-Domènech, S.; Salom, C.; Jover, A.; Mora, V.; Roldan, I.; Solá, E.; Rocha, M.; Víctor, V.M. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The battle continues. J. Clin. Med., 2019, 8(9), 1385.
[http://dx.doi.org/10.3390/jcm8091385] [PMID: 31487953]
[164]
Khurana, A.; Tekula, S.; Saifi, M.A.; Venkatesh, P.; Godugu, C. Therapeutic applications of selenium nanoparticles. Biomed. Pharmacother., 2019, 111, 802-812.
[http://dx.doi.org/10.1016/j.biopha.2018.12.146] [PMID: 30616079]
[165]
Rao, L.; Ma, Y.; Zhuang, M.; Luo, T.; Wang, Y.; Hong, A. Chitosan-decorated selenium nanoparticles as protein carriers to improve the in vivo half-life of the peptide therapeutic BAY 55-9837 for type 2 diabetes mellitus. Int. J. Nanomedicine, 2014, 9, 4819-4828.
[PMID: 25378923]
[166]
Zhao, S.; Wang, D.; Li, Y.; Han, L.; Xiao, X.; Ma, M.; Wan, D.C.C.; Hong, A.; Ma, Y. A novel selective VPAC2 agonist peptide-conjugated chitosan modified selenium nanoparticles with enhanced anti-type 2 diabetes synergy effects. Int. J. Nanomedicine, 2017, 12, 2143-2160.
[http://dx.doi.org/10.2147/IJN.S130566] [PMID: 28356733]
[167]
Mohamed, A.A.R.; Khater, S.I.; Hamed Arisha, A.; Metwally, M.M.M.; Mostafa-Hedeab, G.; El-Shetry, E.S. Chitosan-stabilized selenium nanoparticles alleviate cardio-hepatic damage in type 2 diabetes mellitus model via regulation of caspase, Bax/Bcl-2, and Fas/FasL-pathway. Gene, 2021, 768, 145288.
[http://dx.doi.org/10.1016/j.gene.2020.145288] [PMID: 33181259]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy