Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Design of Nanodrug Delivery Systems for Tumor Bone Metastasis

Author(s): Xiaoqing Zhai, Shan Peng, Chunyuan Zhai, Shuai Wang, Meina Xie*, Shoudong Guo* and Jingkun Bai*

Volume 30, Issue 15, 2024

Published on: 27 March, 2024

Page: [1136 - 1148] Pages: 13

DOI: 10.2174/0113816128296883240320040636

Price: $65

conference banner
Abstract

Tumor metastasis is a complex process that is controlled at the molecular level by numerous cytokines. Primary breast and prostate tumors most commonly metastasize to bone, and the development of increasingly accurate targeted nanocarrier systems has become a research focus for more effective anti-bone metastasis therapy. This review summarizes the molecular mechanisms of bone metastasis and the principles and methods for designing bone-targeted nanocarriers and then provides an in-depth review of bone-targeted nanocarriers for the treatment of bone metastasis in the context of chemotherapy, photothermal therapy, gene therapy, and combination therapy. Furthermore, this review also discusses the treatment of metastatic and primary bone tumors, providing directions for the design of nanodelivery systems and future research.

Keywords: Nanocarriers, drug delivery, tumor microenvironment, bone metastases, chemotherapy, cytokines.

[1]
Kawamura H, Yamaguchi T, Yano Y, et al. Characteristics and prognostic factors of bone metastasis in patients with colorectal cancer. Dis Colon Rectum 2018; 61(6): 673-8.
[http://dx.doi.org/10.1097/DCR.0000000000001071] [PMID: 29722726]
[2]
Gao X, Li L, Cai X, Huang Q, Xiao J, Cheng Y. Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges. Biomaterials 2021; 265: 120404.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120404] [PMID: 32987273]
[3]
Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer 2021; 21(3): 162-80.
[http://dx.doi.org/10.1038/s41568-020-00320-2] [PMID: 33462499]
[4]
Psaila B, Lyden D. The metastatic niche: Adapting the foreign soil. Nat Rev Cancer 2009; 9(4): 285-93.
[http://dx.doi.org/10.1038/nrc2621] [PMID: 19308068]
[5]
Yip RKH, Rimes JS, Capaldo BD, et al. Mammary tumour cells remodel the bone marrow vascular microenvironment to support metastasis. Nat Commun 2021; 12(1): 6920.
[http://dx.doi.org/10.1038/s41467-021-26556-6] [PMID: 34836954]
[6]
Wu K, Feng J, Lyu F, et al. Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer. Nat Commun 2021; 12(1): 5196.
[http://dx.doi.org/10.1038/s41467-021-25473-y] [PMID: 34465793]
[7]
Vanderburgh JP, Kwakwa KA, Werfel TA, et al. Systemic delivery of a Gli inhibitor via polymeric nanocarriers inhibits tumor-induced bone disease. J Control Release 2019; 311-312: 257-72.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.038] [PMID: 31494183]
[8]
Al Zein M, Boukhdoud M, Shammaa H, et al. Immunotherapy and immunoevasion of colorectal cancer. Drug Discov Today 2023; 28(9): 103669.
[http://dx.doi.org/10.1016/j.drudis.2023.103669] [PMID: 37328052]
[9]
Underwood PW, Ruff SM, Pawlik TM. Update on targeted therapy and immunotherapy for metastatic colorectal cancer. Cells 2024; 13(3): 245.
[http://dx.doi.org/10.3390/cells13030245] [PMID: 38334637]
[10]
Shen Y, Lv Y. Dual targeted zeolitic imidazolate framework nanoparticles for treating metastatic breast cancer and inhibiting bone destruction. Colloids Surf B Biointerfaces 2022; 219: 112826.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112826] [PMID: 36115265]
[11]
Hani U, Gowda BHJ, Haider N, et al. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review. AAPS PharmSciTech 2023; 24(8): 233.
[http://dx.doi.org/10.1208/s12249-023-02670-0] [PMID: 37973643]
[12]
Ashique S, Sandhu NK, Chawla V, Chawla PA. Targeted drug delivery: Trends and perspectives. Curr Drug Deliv 2021; 18(10): 1435-55.
[http://dx.doi.org/10.2174/1567201818666210609161301] [PMID: 34151759]
[13]
Ashique S, Garg A, Mishra N, et al. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). Naunyn Schmiedebergs Arch Pharmacol 2023; 396(11): 2769-92.
[http://dx.doi.org/10.1007/s00210-023-02522-5] [PMID: 37219615]
[14]
Ashique S, Upadhyay A, Kumar N, Chauhan S, Mishra N. Metabolic syndromes responsible for cervical cancer and advancement of nanocarriers for efficient targeted drug delivery- A review. Adv Cancer Bio - Metastasis 2022; 4: 100041.
[http://dx.doi.org/10.1016/j.adcanc.2022.100041]
[15]
Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: Attractive tools to treat colorectal cancer. Semin Cancer Biol 2022; 86(Pt 2): 1-13.
[http://dx.doi.org/10.1016/j.semcancer.2022.08.006] [PMID: 36028154]
[16]
Yang M, Li H, Liu X, et al. Fe-doped carbon dots: A novel biocompatible nanoplatform for multi-level cancer therapy. J Nanobiotechnol 2023; 21(1): 431.
[http://dx.doi.org/10.1186/s12951-023-02194-6] [PMID: 37978538]
[17]
Xu M, Li S. Nano-drug delivery system targeting tumor microenvironment: A prospective strategy for melanoma treatment. Cancer Lett 2023; 574: 216397.
[http://dx.doi.org/10.1016/j.canlet.2023.216397] [PMID: 37730105]
[18]
Zhang X, Li N, Zhang G, et al. Nano Strategies for artemisinin derivatives to enhance reverse efficiency of multidrug resistance in breast cancer. Curr Pharm Des 2023; 29(43): 3458-66.
[http://dx.doi.org/10.2174/0113816128282248231205105408] [PMID: 38270162]
[19]
Ashique S, Faiyazuddin M, Afzal O, et al. Advanced nanoparticles, the hallmark of targeted drug delivery for osteosarcoma-an updated review. J Drug Deliv Sci Technol 2023; 87: 104753.
[http://dx.doi.org/10.1016/j.jddst.2023.104753]
[20]
Hofbauer LC, Rachner TD, Coleman RE, Jakob F. Endocrine aspects of bone metastases. Lancet Diabetes Endocrinol 2014; 2(6): 500-12.
[http://dx.doi.org/10.1016/S2213-8587(13)70203-1] [PMID: 24880565]
[21]
Vinay R. KusumDevi V. Potential of targeted drug delivery system for the treatment of bone metastasis. Drug Deliv 2016; 23(1): 21-9.
[http://dx.doi.org/10.3109/10717544.2014.913325] [PMID: 24839990]
[22]
Carbone EJ, Rajpura K, Allen BN, Cheng E, Ulery BD, Lo KWH. Osteotropic nanoscale drug delivery systems based on small molecule bone-targeting moieties. Nanomedicine 2017; 13(1): 37-47.
[http://dx.doi.org/10.1016/j.nano.2016.08.015] [PMID: 27562211]
[23]
Wang D, Miller S, Kopecková P, Kopecek J. Bone-targeting macromolecular therapeutics. Adv Drug Deliv Rev 2005; 57(7): 1049-76.
[http://dx.doi.org/10.1016/j.addr.2004.12.011] [PMID: 15876403]
[24]
Schroeder A, Heller DA, Winslow MM, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer 2012; 12(1): 39-50.
[http://dx.doi.org/10.1038/nrc3180] [PMID: 22193407]
[25]
Cheng H, Chawla A, Yang Y, et al. Development of nanomaterials for bone-targeted drug delivery. Drug Discov Today 2017; 22(9): 1336-50.
[http://dx.doi.org/10.1016/j.drudis.2017.04.021] [PMID: 28487069]
[26]
Adjei I, Temples M, Brown S, Sharma B. Targeted nanomedicine to treat bone metastasis. Pharmaceutics 2018; 10(4): 205.
[http://dx.doi.org/10.3390/pharmaceutics10040205] [PMID: 30366428]
[27]
van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer nano-medicine. Nat Nanotechnol 2019; 14(11): 1007-17.
[http://dx.doi.org/10.1038/s41565-019-0567-y] [PMID: 31695150]
[28]
Zhou X, Yan N, Cornel EJ, et al. Bone-targeting polymer vesicles for simultaneous imaging and effective malignant bone tumor treatment. Biomaterials 2021; 269: 120345.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120345] [PMID: 33172607]
[29]
Cheng Y, Xu T. The effect of dendrimers on the pharmacodynamic and pharmacokinetic behaviors of non-covalently or covalently attached drugs. Eur J Med Chem 2008; 43(11): 2291-7.
[http://dx.doi.org/10.1016/j.ejmech.2007.12.021] [PMID: 18276038]
[30]
Nadar RA, Margiotta N, Iafisco M, van den Beucken JJJP, Boerman OC, Leeuwenburgh SCG. Bisphosphonate‐functionalized imaging agents, anti‐tumor agents and nanocarriers for treatment of bone cancer. Adv Healthc Mater 2017; 6(8): 1601119.
[http://dx.doi.org/10.1002/adhm.201601119] [PMID: 28207199]
[31]
Yang W, Li Y, Cheng Y, Wu Q, Wen L, Xu T. Evaluation of phenylbutazone and poly(amidoamine) dendrimers interactions by a combination of solubility, 2D-NOESY NMR, and isothermal titration calorimetry studies. J Pharm Sci 2009; 98(3): 1075-85.
[http://dx.doi.org/10.1002/jps.21519] [PMID: 18680167]
[32]
Liu J, Zeng Y, Shi S, et al. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ϵ-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone. Int J Nanomed 2017; 12: 3561-75.
[http://dx.doi.org/10.2147/IJN.S133787] [PMID: 28507436]
[33]
Lee D, Heo DN, Kim HJ, et al. Inhibition of osteoclast differentiation and bone resorption by bisphosphonate-conjugated gold nanoparticles. Sci Rep 2016; 6(1): 27336.
[http://dx.doi.org/10.1038/srep27336] [PMID: 27251863]
[34]
Ubellacker JM, Baryawno N, Severe N, et al. Modulating bone marrow hematopoietic lineage potential to prevent bone metastasis in breast cancer. Cancer Res 2018; 78(18): 5300-14.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0548] [PMID: 30065048]
[35]
Zhang B, Zhao J, Yan H, et al. A novel nano delivery system targeting different stages of osteoclasts. Biomater Sci 2022; 10(7): 1821-30.
[http://dx.doi.org/10.1039/D2BM00076H] [PMID: 35244664]
[36]
Chen F, Zeng Y, Qi X, et al. Targeted salinomycin delivery with EGFR and CD133 aptamers based dual-ligand lipid-polymer nanoparticles to both osteosarcoma cells and cancer stem cells. Nanomedicine 2018; 14(7): 2115-27.
[http://dx.doi.org/10.1016/j.nano.2018.05.015] [PMID: 29898423]
[37]
Yang K, Miron RJ, Bian Z, Zhang YF. A bone-targeting drug-delivery system based on Semaphorin 3A gene therapy ameliorates bone loss in osteoporotic ovariectomized mice. Bone 2018; 114: 40-9.
[http://dx.doi.org/10.1016/j.bone.2018.06.003] [PMID: 29883786]
[38]
Gu Y, Chen X, Zhang H, et al. Study on the cellular internalization mechanisms and in vivo anti-bone metastasis prostate cancer efficiency of the peptide T7-modified polypeptide nanoparticles. Drug Deliv 2020; 27(1): 161-9.
[http://dx.doi.org/10.1080/10717544.2019.1709923] [PMID: 31913730]
[39]
Niu Y, Yang H, Yu Z, et al. Intervention with the bone-associated tumor vicious cycle through dual-protein therapeutics for treatment of skeletal-related events and bone metastases. ACS Nano 2022; 16(2): 2209-23.
[http://dx.doi.org/10.1021/acsnano.1c08269] [PMID: 35077154]
[40]
Zhang G, Guo B, Wu H, et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat Med 2012; 18(2): 307-14.
[http://dx.doi.org/10.1038/nm.2617] [PMID: 22286306]
[41]
Cole LE, Vargo-Gogola T, Roeder RK. Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev 2016; 99(Pt A): 12-27.
[http://dx.doi.org/10.1016/j.addr.2015.10.005] [PMID: 26482186 ]
[42]
Liu Y, Yu P, Peng X, et al. Hexapeptide-conjugated calcitonin for targeted therapy of osteoporosis. J Control Release 2019; 304: 39-50.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.042] [PMID: 31054990]
[43]
Bhandari KH, Newa M, Chapman J, Doschak MR. Synthesis, characterization and evaluation of bone targeting salmon calcitonin analogs in normal and osteoporotic rats. J Control Release 2012; 158(1): 44-52.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.096] [PMID: 22001608]
[44]
Jadhav S, Käkelä M, Bourgery M, et al. In vivo bone-targeting of Bis(phosphonate)-conjugated double helical RNA monitored by positron emission tomography. Mol Pharm 2016; 13(7): 2588-95.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00261] [PMID: 27218688]
[45]
Sun W, Ge K, Jin Y, et al. Bone-targeted nanoplatform combining zoledronate and photothermal therapy to treat breast cancer bone metastasis. ACS Nano 2019; 13(7): 7556-67.
[http://dx.doi.org/10.1021/acsnano.9b00097] [PMID: 31259530]
[46]
Qiao H, Cui Z, Yang S, et al. Targeting osteocytes to attenuate early breast cancer bone metastasis by theranostic upconversion nanoparticles with responsive plumbagin release. ACS Nano 2017; 11(7): 7259-73.
[http://dx.doi.org/10.1021/acsnano.7b03197] [PMID: 28692257]
[47]
Kim Y, Zhang Z, Shim JH, Lee TS, Tung CH. A cell surface clicked navigation system to direct specific bone targeting. Bioorg Med Chem 2018; 26(3): 758-64.
[http://dx.doi.org/10.1016/j.bmc.2017.12.037] [PMID: 29306547]
[48]
von Moos R, Costa L, Gonzalez-Suarez E, Terpos E, Niepel D, Body JJ. Management of bone health in solid tumours: From bisphosphonates to a monoclonal antibody. Cancer Treat Rev 2019; 76: 57-67.
[http://dx.doi.org/10.1016/j.ctrv.2019.05.003] [PMID: 31136850]
[49]
Wang Y, Huang Q, He X, et al. Multifunctional melanin-like nanoparticles for bone-targeted chemo-photothermal therapy of malignant bone tumors and osteolysis. Biomaterials 2018; 183: 10-9.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.033] [PMID: 30144589]
[50]
Nguyen TDT, Pitchaimani A, Ferrel C, Thakkar R, Aryal S. Nano-confinement-driven enhanced magnetic relaxivity of SPIONs for targeted tumor bioimaging. Nanoscale 2018; 10(1): 284-94.
[http://dx.doi.org/10.1039/C7NR07035G] [PMID: 29210434]
[51]
Wu X, Hu Z, Nizzero S, et al. Bone-targeting nanoparticle to codeliver decitabine and arsenic trioxide for effective therapy of myelodysplastic syndrome with low systemic toxicity. J Control Release 2017; 268: 92-101.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.012] [PMID: 29042320]
[52]
Desai D, Zhang J, Sandholm J, et al. Lipid bilayer-gated mesoporous silica nanocarriers for tumor-targeted delivery of zoledronic acid in vivo. Mol Pharm 2017; 14(9): 3218-27.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00519] [PMID: 28737925]
[53]
Rotman SG, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O. Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics. J Control Release 2018; 269: 88-99.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.009] [PMID: 29127000]
[54]
Rohanizadeh R, Deng Y, Verron E. Therapeutic actions of curcumin in bone disorders. Bonekey Rep 2016; 5: 793.
[http://dx.doi.org/10.1038/bonekey.2016.20] [PMID: 26962450]
[55]
Wang Y, Jiang C, He W, et al. Targeted imaging of damaged bone in vivo with gemstone spectral computed tomography. ACS Nano 2016; 10(4): 4164-72.
[http://dx.doi.org/10.1021/acsnano.5b07401] [PMID: 27043072]
[56]
Feng X, Liu X, Cai X, et al. The influence of tetracycline inducible targeting rat pparγ gene silencing on the osteogenic and adipogenic differentiation of bone marrow stromal cells. Curr Pharm Des 2016; 22(41): 6330-8.
[http://dx.doi.org/10.2174/1381612822666160708223353] [PMID: 27396594]
[57]
Wang H, Liu J, Tao S, et al. Tetracycline-grafted PLGA nanoparticles as bone-targeting drug delivery system. Int J Nanomed 2015; 10: 5671-85.
[PMID: 26388691]
[58]
Hao Z, Fan W, Hao J, et al. Efficient delivery of micro RNA to bone-metastatic prostate tumors by using aptamer-conjugated atelocollagen in vitro and in vivo. Drug Deliv 2016; 23(3): 864-71.
[http://dx.doi.org/10.3109/10717544.2014.920059] [PMID: 24892627]
[59]
Pourtau L, Oliveira H, Thevenot J, et al. Antibody-functionalized magnetic polymersomes: In vivo targeting and imaging of bone metastases using high resolution MRI. Adv Healthc Mater 2013; 2(11): 1420-4.
[http://dx.doi.org/10.1002/adhm.201300061] [PMID: 23606565]
[60]
Wang M, Cai X, Yang J, et al. A targeted and pH-responsive bortezomib nanomedicine in the treatment of metastatic bone tumors. ACS Appl Mater Interfaces 2018; 10(48): 41003-11.
[http://dx.doi.org/10.1021/acsami.8b07527] [PMID: 30403331]
[61]
Ross MH, Esser AK, Fox GC, et al. Bone-induced expression of integrin β3 enables targeted nanotherapy of breast cancer metastases. Cancer Res 2017; 77(22): 6299-312.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1225] [PMID: 28855208]
[62]
Hofbauer LC, Bozec A, Rauner M, Jakob F, Perner S, Pantel K. Novel approaches to target the microenvironment of bone metastasis. Nat Rev Clin Oncol 2021; 18(8): 488-505.
[http://dx.doi.org/10.1038/s41571-021-00499-9] [PMID: 33875860]
[63]
Li X, Liang Y, Lian C, et al. CST6 protein and peptides inhibit breast cancer bone metastasis by suppressing CTSB activity and osteoclastogenesis. Theranostics 2021; 11(20): 9821-32.
[http://dx.doi.org/10.7150/thno.62187] [PMID: 34815788]
[64]
Zuo H, Yang D, Wan Y. Fam20C regulates bone resorption and breast cancer bone metastasis through osteopontin and BMP4. Cancer Res 2021; 81(20): 5242-54.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-3328] [PMID: 34433585]
[65]
O’Carrigan B, Wong MHF, Willson ML, Stockler MR, Pavlakis N, Goodwin A. Bisphosphonates and other bone agents for breast cancer. Cochrane Libr 2017; 2018(11): CD003474.
[http://dx.doi.org/10.1002/14651858.CD003474.pub4] [PMID: 29082518]
[66]
Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J Control Release 2012; 161(2): 175-87.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.063] [PMID: 21945285]
[67]
Borsi L, Balza E, Bestagno M, et al. Selective targeting of tumoral vasculature: Comparison of different formats of an antibody (L19) to the ED‐B domain of fibronectin. Int J Cancer 2002; 102(1): 75-85.
[http://dx.doi.org/10.1002/ijc.10662] [PMID: 12353237]
[68]
Hao T, Fu Y, Yang Y, et al. Tumor vasculature-targeting PEGylated peptide-drug conjugate prodrug nanoparticles improve chemotherapy and prevent tumor metastasis. Eur J Med Chem 2021; 219: 113430.
[http://dx.doi.org/10.1016/j.ejmech.2021.113430] [PMID: 33865152]
[69]
Vijayaraghavalu S, Gao Y, Rahman MT, et al. Synergistic combination treatment to break cross talk between cancer cells and bone cells to inhibit progression of bone metastasis. Biomaterials 2020; 227: 119558.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119558] [PMID: 31654872]
[70]
Zheng SJ, Yang M, Luo JQ, et al. Manganese-based immunostimulatory metal–organic framework activates the cGAS-STING pathway for cancer metalloimmunotherapy. ACS Nano 2023; 17(16): 15905-17.
[http://dx.doi.org/10.1021/acsnano.3c03962] [PMID: 37565626]
[71]
Figueroa-Espada CG, Guimarães PPG, Riley RS, Xue L, Wang K, Mitchell MJ. siRNA Lipid–polymer nanoparticles targeting E-Selectin and cyclophilin a in bone marrow for combination multiple myeloma therapy. Cell Mol Bioeng 2023; 16(4): 383-92.
[http://dx.doi.org/10.1007/s12195-023-00774-y] [PMID: 37810998]
[72]
Park SH, Keller ET, Shiozawa Y. Bone marrow microenvironment as a regulator and therapeutic target for prostate cancer bone metastasis. Calcif Tissue Int 2018; 102(2): 152-62.
[http://dx.doi.org/10.1007/s00223-017-0350-8] [PMID: 29094177]
[73]
Ren X, Chen X, Geng Z, Su J. Bone-targeted biomaterials: Strategies and applications. Chem Eng J 2022; 446: 137133.
[74]
Hu B, Zhang Y, Zhang G, et al. Research progress of bone-targeted drug delivery system on metastatic bone tumors. J Control Release 2022; 350: 377-88.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.034] [PMID: 36007681]
[75]
Zhang Y, Wei L, Miron RJ, Shi B, Bian Z. Anabolic bone formation via a site-specific bone-targeting delivery system by interfering with semaphorin 4D expression. J Bone Miner Res 2015; 30(2): 286-96.
[http://dx.doi.org/10.1002/jbmr.2322] [PMID: 25088728]
[76]
Yuan H, Wang H, Liu J, et al. Tetracycline-grafted PLGA nanoparticles as bone-targeting drug delivery system. Int J Nanomed 2015; 10: 5671-85.
[http://dx.doi.org/10.2147/IJN.S88798]
[77]
Liang C, Guo B, Wu H, et al. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference–based bone anabolic strategy. Nat Med 2015; 21(3): 288-94.
[http://dx.doi.org/10.1038/nm.3791] [PMID: 25665179]
[78]
He Y, Huang Y, Huang Z, et al. Bisphosphonate-functionalized coordination polymer nanoparticles for the treatment of bone metastatic breast cancer. J Control Release 2017; 264: 76-88.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.024] [PMID: 28842315]
[79]
Dong X, Zou S, Guo C, Wang K, Zhao F, Fan H. Multifunctional redox-responsive and CD44 receptor targeting polymer-drug nanomedicine based curcumin and alendronate: Synthesis, characterization and in vitro evaluation. Artif Cells Nanomed Biotechnol 2017; 46(1): 168-77.
[80]
Shao H, Varamini P. Breast cancer bone metastasis: A narrative review of emerging targeted drug delivery systems. Cells 2022; 11(3): 388.
[http://dx.doi.org/10.3390/cells11030388] [PMID: 35159207]
[81]
Que Y, Yang Y, Zafar H, Wang D. Tetracycline-grafted mPEG-PLGA micelles for bone-targeting and osteoporotic improvement. Front Pharmacol 2022; 13: 993095.
[http://dx.doi.org/10.3389/fphar.2022.993095] [PMID: 36188546]
[82]
Li C, Sun F, Tian J, et al. Continuously released Zn2+ in 3D-printed PLGA/β-TCP/Zn scaffolds for bone defect repair by improving osteoinductive and anti-inflammatory properties. Bioact Mater 2023; 24: 361-75.
[http://dx.doi.org/10.1016/j.bioactmat.2022.12.015] [PMID: 36632506]
[83]
González-Fernández Y, Imbuluzqueta E, Patiño-García A, Blanco-Prieto M. Antitumoral-lipid-based nanoparticles: A platform for future application in osteosarcoma therapy. Curr Pharm Des 2015; 21(42): 6104-24.
[http://dx.doi.org/10.2174/1381612821666151027152534] [PMID: 26503148]
[84]
dos Santos Ferreira D, Jesus de Oliveira Pinto BL, Kumar V, et al. Evaluation of antitumor activity and cardiac toxicity of a bone-targeted ph-sensitive liposomal formulation in a bone metastasis tumor model in mice. Nanomedicine 2017; 13(5): 1693-701.
[http://dx.doi.org/10.1016/j.nano.2017.03.005] [PMID: 28343016]
[85]
Feng S, Wu ZX, Zhao Z, et al. Engineering of bone- and CD44-dual-targeting redox-sensitive liposomes for the treatment of orthotopic osteosarcoma. ACS Appl Mater Interfaces 2019; 11(7): 7357-68.
[http://dx.doi.org/10.1021/acsami.8b18820] [PMID: 30682240]
[86]
Yin X, Feng S, Chi Y, et al. Estrogen-functionalized liposomes grafted with glutathione-responsive sheddable chotooligosaccharides for the therapy of osteosarcoma. Drug Deliv 2018; 25(1): 900-8.
[http://dx.doi.org/10.1080/10717544.2018.1458920] [PMID: 29644882]
[87]
Chen H, Li G, Chi H, et al. Alendronate-conjugated amphiphilic hyperbranched polymer based on Boltorn H40 and poly(ethylene glycol) for bone-targeted drug delivery. Bioconjug Chem 2012; 23(9): 1915-24.
[http://dx.doi.org/10.1021/bc3003088] [PMID: 22946621]
[88]
Chu W, Huang Y, Yang C, et al. Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis. Int J Pharm 2017; 516(1-2): 352-63.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.051] [PMID: 27887884]
[89]
Subia B, Dey T, Sharma S, Kundu SC. Target specific delivery of anticancer drug in silk fibroin based 3D distribution model of bone-breast cancer cells. ACS Appl Mater Interfaces 2015; 7(4): 2269-79.
[http://dx.doi.org/10.1021/am506094c] [PMID: 25557227]
[90]
Zhao Y, Ye W, Liu D, et al. Redox and pH dual sensitive bone targeting nanoparticles to treat breast cancer bone metastases and inhibit bone resorption. Nanoscale 2017; 9(19): 6264-77.
[http://dx.doi.org/10.1039/C7NR00962C] [PMID: 28470315]
[91]
Morton SW, Shah NJ, Quadir MA, Deng ZJ, Poon Z, Hammond PT. Osteotropic therapy via targeted layer-by-layer nanoparticles. Adv Healthc Mater 2014; 3(6): 867-75.
[http://dx.doi.org/10.1002/adhm.201300465] [PMID: 24124132]
[92]
Yamashita S, Katsumi H, Sakane T, Yamamoto A. Bone-targeting dendrimer for the delivery of methotrexate and treatment of bone metastasis. J Drug Target 2018; 26(9): 818-28.
[http://dx.doi.org/10.1080/1061186X.2018.1434659] [PMID: 29376757]
[93]
Wang X, Yang Y, Jia H, et al. Peptide decoration of nanovehicles to achieve active targeting and pathology-responsive cellular uptake for bone metastasis chemotherapy. Biomater Sci 2014; 2(7): 961-71.
[http://dx.doi.org/10.1039/c4bm00020j] [PMID: 26082834]
[94]
Ekladious I, Colson YL, Grinstaff MW. Polymer–drug conjugate therapeutics: Advances, insights and prospects. Nat Rev Drug Discov 2019; 18(4): 273-94.
[http://dx.doi.org/10.1038/s41573-018-0005-0] [PMID: 30542076]
[95]
Sun X, Gao W, Liu Y, et al. pH-responsive morphology shifting peptides coloaded with paclitaxel and sorafenib inhibit angiogenesis and tumor growth. Mater Des 2024; 238: 112619.
[http://dx.doi.org/10.1016/j.matdes.2023.112619]
[96]
Zhai X, Tang S, Meng F, et al. A dual drug-loaded peptide system with morphological transformation prolongs drug retention and inhibits breast cancer growth. Biomat Adv 2023; 154: 213650.
[http://dx.doi.org/10.1016/j.bioadv.2023.213650] [PMID: 37857084]
[97]
Meng F, Zhai X, Ma J, Li A, Wang X, Bai J. Enzyme-induced shape-shifting peptide nanocarrier coloaded with paclitaxel and dipyridamole inhibits platelet function and tumor metastasis. ACS Appl Mater Interfaces 2024; 16(1): 166-77.
[http://dx.doi.org/10.1021/acsami.3c13855] [PMID: 38143309]
[98]
Cao J, Yuan X, Sun X, et al. Matrix metalloproteinase-2-induced morphologic transformation of self-assembled peptide nanocarriers inhibits tumor growth and metastasis. ACS Materials Letters 2023; 5(3): 900-8.
[http://dx.doi.org/10.1021/acsmaterialslett.2c01093]
[99]
Cao J, Liu X, Yuan X, et al. Enzyme-induced morphological transformation of self-assembled peptide nanovehicles potentiates intratumoral aggregation and inhibits tumour immunosuppression. Chem Eng J 2023; 454: 140466.
[http://dx.doi.org/10.1016/j.cej.2022.140466]
[100]
Yoo D, Lee JH, Shin TH, Cheon J. Theranostic magnetic nanoparticles. Acc Chem Res 2011; 44(10): 863-74.
[http://dx.doi.org/10.1021/ar200085c] [PMID: 21823593]
[101]
Cao J, Gong Z, Liu X, et al. Stepwise targeting and tandem responsive peptide nanoparticles enhance immunotherapy through prolonged drug retention. ACS Mater Lett 2023; 5(10): 2604-13.
[http://dx.doi.org/10.1021/acsmaterialslett.3c00357]
[102]
Miller K, Eldar-Boock A, Polyak D, et al. Antiangiogenic antitumor activity of HPMA copolymer-paclitaxel-alendronate conjugate on breast cancer bone metastasis mouse model. Mol Pharm 2011; 8(4): 1052-62.
[http://dx.doi.org/10.1021/mp200083n] [PMID: 21545170]
[103]
Wang C, Sang H, Wang Y, et al. Foe to Friend: Supramolecular nanomedicines consisting of natural polyphenols and bortezomib. Nano Lett 2018; 18(11): 7045-51.
[http://dx.doi.org/10.1021/acs.nanolett.8b03015] [PMID: 30264573]
[104]
Wang K, Guo C, Dong X, et al. In vivo evaluation of reduction-responsive alendronate-hyaluronan-curcumin polymer-drug conjugates for targeted therapy of bone metastatic breast cancer. Mol Pharm 2018; 15(7): 2764-9.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00266] [PMID: 29792799]
[105]
Yin Q, Tang L, Cai K, et al. Pamidronate functionalized nanoconjugates for targeted therapy of focal skeletal malignant osteolysis. Proc Natl Acad Sci USA 2016; 113(32): E4601-9.
[http://dx.doi.org/10.1073/pnas.1603316113] [PMID: 27457945]
[106]
Zhu J, Huo Q, Xu M, et al. Bortezomib-catechol conjugated prodrug micelles: Combining bone targeting and aryl boronate-based pH-responsive drug release for cancer bone-metastasis therapy. Nanoscale 2018; 10(38): 18387-97.
[http://dx.doi.org/10.1039/C8NR03899F] [PMID: 30256367]
[107]
Wang C, Xu L, Liang C, Xiang J, Peng R, Liu Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv Mater 2014; 26(48): 8154-62.
[http://dx.doi.org/10.1002/adma.201402996] [PMID: 25331930]
[108]
Zhang H, Cui W, Qu X, et al. Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proc Natl Acad Sci USA 2019; 116(16): 7744-9.
[http://dx.doi.org/10.1073/pnas.1817251116] [PMID: 30926671]
[109]
Zhang S, Wang C, Chang H, Zhang Q, Cheng Y. Off-on switching of enzyme activity by near-infrared light-induced photothermal phase transition of nanohybrids. Sci Adv 2019; 5(8): eaaw4252.
[http://dx.doi.org/10.1126/sciadv.aaw4252] [PMID: 31457084]
[110]
Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: Theranostic applications. Chem Soc Rev 2013; 42(2): 530-47.
[http://dx.doi.org/10.1039/C2CS35342C] [PMID: 23059655]
[111]
Rastinehad AR, Anastos H, Wajswol E, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci USA 2019; 116(37): 18590-6.
[http://dx.doi.org/10.1073/pnas.1906929116] [PMID: 31451630]
[112]
Zhou Z, Fan T, Yan Y, et al. One stone with two birds: Phytic acid-capped platinum nanoparticles for targeted combination therapy of bone tumors. Biomaterials 2019; 194: 130-8.
[http://dx.doi.org/10.1016/j.biomaterials.2018.12.024] [PMID: 30593938]
[113]
Wang Y, Yang J, Liu H, et al. Osteotropic peptide-mediated bone targeting for photothermal treatment of bone tumors. Biomaterials 2017; 114: 97-105.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.010] [PMID: 27855337]
[114]
Yamashita S, Katsumi H, Hibino N, et al. Development of PEGylated carboxylic acid-modified polyamidoamine dendrimers as bone-targeting carriers for the treatment of bone diseases. J Control Release 2017; 262: 10-7.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.018] [PMID: 28710004]
[115]
Yan Y, Gao X, Zhang S, et al. A Carboxyl-terminated dendrimer enables osteolytic lesion targeting and photothermal ablation of malignant bone tumors. ACS Appl Mater Interfaces 2019; 11(1): 160-8.
[http://dx.doi.org/10.1021/acsami.8b15827] [PMID: 30525391]
[116]
Shen W, Wang Q, Shen Y, et al. Green tea catechin dramatically promotes RNAi mediated by low-molecular-weight polymers. ACS Cent Sci 2018; 4(10): 1326-33.
[http://dx.doi.org/10.1021/acscentsci.8b00363] [PMID: 30410970]
[117]
Zhang M, Lin J, Jin J, Yu W, Qi Y, Tao H. Delivery of siRNA using functionalized gold nanorods enhances anti-osteosarcoma efficacy. Front Pharmacol 2021; 12: 799588.
[http://dx.doi.org/10.3389/fphar.2021.799588] [PMID: 34987409]
[118]
Gerardo-Ramírez M, Keggenhoff FL, Giam V, et al. CD44 contributes to the regulation of MDR1 protein and doxorubicin chemoresistance in osteosarcoma. Int J Mol Sci 2022; 23(15): 8616.
[http://dx.doi.org/10.3390/ijms23158616] [PMID: 35955749]
[119]
Jiang Y, He K. Nanobiotechnological approaches in osteosarcoma therapy: Versatile (nano)platforms for theranostic applications. Environ Res 2023; 229: 115939.
[http://dx.doi.org/10.1016/j.envres.2023.115939] [PMID: 37088317]
[120]
Mekhail GM, Kamel AO, Awad GAS, et al. Synthesis and evaluation of alendronate-modified gelatin biopolymer as a novel osteotropic nanocarrier for gene therapy. Nanomedicine (Lond) 2016; 11(17): 2251-73.
[http://dx.doi.org/10.2217/nnm-2016-0151] [PMID: 27527003]
[121]
Wang F, Pang JD, Huang LL, et al. Nanoscale polysaccharide derivative as an AEG-1 siRNA carrier for effective osteosarcoma therapy. Int J Nanomed 2018; 13: 857-75.
[http://dx.doi.org/10.2147/IJN.S147747] [PMID: 29467575]
[122]
Chen Q, Zheng C, Li Y, et al. Bone targeted delivery of SDF-1 via Alendronate functionalized nanoparticles in guiding stem cell migration. ACS Appl Mater Interfaces 2018; 10(28): 23700-10.
[http://dx.doi.org/10.1021/acsami.8b08606] [PMID: 29939711]
[123]
Yang YS, Xie J, Wang D, et al. Bone-targeting AAV-mediated silencing of Schnurri-3 prevents bone loss in osteoporosis. Nat Commun 2019; 10(1): 2958.
[http://dx.doi.org/10.1038/s41467-019-10809-6] [PMID: 31273195]
[124]
Alméciga-Díaz CJ, Montaño AM, Barrera LA, Tomatsu S. Tailoring the AAV2 capsid vector for bone-targeting. Pediatr Res 2018; 84(4): 545-51.
[http://dx.doi.org/10.1038/s41390-018-0095-8] [PMID: 30323349]
[125]
Dong Z, Gong H, Gao M, et al. Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics 2016; 6(7): 1031-42.
[http://dx.doi.org/10.7150/thno.14431] [PMID: 27217836]
[126]
Thamake SI, Raut SL, Gryczynski Z, Ranjan AP, Vishwanatha JK. Alendronate coated poly-lactic-co-glycolic acid (PLGA) nanoparticles for active targeting of metastatic breast cancer. Biomaterials 2012; 33(29): 7164-73.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.026] [PMID: 22795543]
[127]
Li C, Zhang Y, Chen G, Hu F, Zhao K, Wang Q. Engineered multifunctional nanomedicine for simultaneous stereotactic chemotherapy and inhibited osteolysis in an orthotopic model of bone metastasis. Adv Mater 2017; 29(13): 1605754.
[http://dx.doi.org/10.1002/adma.201605754] [PMID: 28134449]
[128]
Ma Y, Chen L, Li X, et al. Rationally integrating peptide-induced targeting and multimodal therapies in a dual-shell theranostic platform for orthotopic metastatic spinal tumors. Biomaterials 2021; 275: 120917.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120917] [PMID: 34182327]
[129]
Xiu Y, Xu H, Zhao C, et al. Chloroquine reduces osteoclastogenesis in murine osteoporosis by preventing TRAF3 degradation. J Clin Invest 2014; 124(1): 297-310.
[http://dx.doi.org/10.1172/JCI66947] [PMID: 24316970]
[130]
Zhang Y, Sha R, Zhang L, et al. Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nat Commun 2018; 9(1): 4236.
[http://dx.doi.org/10.1038/s41467-018-06529-y] [PMID: 30315154]
[131]
Wang Y, Chen H, Lin K, et al. Breaking the vicious cycle between tumor cell proliferation and bone resorption by chloroquine-loaded and bone-targeted polydopamine nanoparticles. Sci China Mater 2021; 64(2): 474-87.
[http://dx.doi.org/10.1007/s40843-020-1405-8]
[132]
Liu C, Hu A, Chen H, et al. The osteogenic niche-targeted arsenic nanoparticles prevent colonization of disseminated breast tumor cells in the bone. Acta Pharm Sin B 2022; 12(1): 364-77.
[http://dx.doi.org/10.1016/j.apsb.2021.06.012] [PMID: 35127392]
[133]
Fishbein I, Alferiev IS, Nyanguile O, et al. Bisphosphonate-mediated gene vector delivery from the metal surfaces of stents. Proc Natl Acad Sci USA 2006; 103(1): 159-64.
[http://dx.doi.org/10.1073/pnas.0502945102] [PMID: 16371477]
[134]
Ashique S, Afzal O, Hussain A, et al. It’s all about plant derived natural phytoconstituents and phytonanomedicine to control skin cancer. J Drug Deliv Sci Technol 2023; 84: 104495.
[http://dx.doi.org/10.1016/j.jddst.2023.104495]
[135]
Liu Y, Liu Y, Sun X, Wang Y, Du C, Bai J. Morphologically transformable peptide nanocarriers coloaded with doxorubicin and curcumin inhibit the growth and metastasis of hepatocellular carcinoma. Mater Today Bio 2024; 24: 100903.
[http://dx.doi.org/10.1016/j.mtbio.2023.100903] [PMID: 38130427]
[136]
Kfoury Y, Baryawno N, Severe N, Mei S, Gustafsson K, Hirz T. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell 2021; 39(11): 1464-78.
[http://dx.doi.org/10.1016/j.ccell.2021.09.005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy