[28]
Bozkurt, Y.; Karayel, E. 3D printing technology; methods, biomedical applications, future opportunities and trends. J. Mater. Res. Technol., 2021, 14, 1430-1450.
[29]
Dong, C.A.L. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers, 2016, 8(2), 42.
[30]
Mu, X.; Agostinacchio, F.; Xiang, N.; Pei, Y.; Khan, Y.; Guo, C.; Cebe, P.; Motta, A.; Kaplan, D. Recent advances in 3D printing with protein-based inks. Prog. Polym. Sci., 2021, 115, 101375.
[33]
Guttridge, C.; Shannon, A.; Sullivan, A.O.; O'Sullivan, K.J.; O'Sullivan, L.W. Biocompatible 3D printing resins for medical applications: A review of marketed intended uses, biocompatibility certification, and post-processing guidance. Annals. 3D Print. Med., 2022.
[34]
Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A review of 3D printing technology for medical applications. Engineering, 2015, 4(5), 729-742.
[36]
Marques, C.F.; Diogo, G.S.; Pina, S.; Oliveira, J.M.; Silva, T.H.; Reis, R.L. Collagen-based bioinks for hard tissue engineering applications: A comprehensive review. J. Mater. Sci. Mater. Med., 2019, 30(3), 32.
[45]
Ghosh, S.; Kaushik, G.; Roy, P.; Lahiri, D. Application of 3D bioprinting in wound healing: A review. Trends Biomater. Artif. Organs, 2021, 35(5)
[63]
Ashammakhi, N.; Ahadian, S.; Xu, C.; Montazerian, H.; Ko, H.; Nasiri, R.; Barros, N.; Khademhosseini, A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio, 2019, 1, 100008.
[68]
Yahang, M.; Chen, J.; An, X.; Liang, J.; Li, J.; Zhou, Y.; Sun, X. Effect of synergism of solid loading and sintering temperature on microstructural evolution and mechanical properties of 60 vol% high solid loading ceramic core obtained through stereolithography 3D printing. J. Eur. Ceram. Soc., 2023, 43(2), 661-675.
[69]
Xiaolong, Y.M.a.b. Stereolithography 3D printing of ceramic cores for hollow aeroengine turbine blades. J. Mater. Sci. Technol., 2022, 127, 177-182.
[70]
Dirè, S.; Motta, A.; Kaplan, D.L. In situ 3D printing: Opportunities with silk inks. Trends Biotechnol, 2021, 39(7), 719-730.
[76]
Kumar, P.; Mehta, N.; Abubakar, A.A.; Verma, A.K.; Kaka, U.; Sharma, N.; Sazili, A.Q.; Pateiro, M.; Kumar, M.; Lorenzo, J.M. Potential alternatives of animal proteins for sustainability in the food sector. Food Rev. Int., 2022, 39(8), 1-26.
[81]
Jamróz, W.J.S.; Szafraniec, J.; Kurek, M. 3D printing in pharmaceutical and medical applications – recent achievements and challenges. Pharm Res, 2018, 35, 176.
[88]
Harussani, M.M.; Sapuan, S.M.; Iyad, M.; Wong, H.K.; Farouk, Z.I.; Nazrin, A. Collagen based composites derived from marine organisms: As a solution for the underutilization of fish biomass, jellyfish and sponges. In: Composites from the Aquatic Environment; Springer, 2023; pp. 245-274.
[96]
Liu, N.; Zhang, X.; Guo, Q.; Wu, T. 3D bioprinted scaffolds for tissue repair and regeneration. Front. Mater., 2022, 9, 925321.
[98]
Nijsure, M.P.; Kishore, V. Collagen-based scaffolds for bone tissue engineering applications. In: Orthopedic Biomaterials; Springer, 2018; pp. 187-224.
[99]
Mathews, S.; Bhonde, R.; Gupta, P.K.; Totey, S. Novel biomimetic tripolymer scaffolds consisting of chitosan, collagen type 1, and hyaluronic acid for bone marrow-derived human mesenchymal stem cells-based bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater., 2010, 102(8), 1825-1834.
[105]
Mozdzen , L.C.; Rodgers, R.; Banks, J.M.; Bailey, R.C.; Harley , B.A.C. Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers. Acta Biomater, 2016, 33, 25-33.
[108]
Chicatun, F.; Griffanti, G.; McKee, M.D.; Nazhat, S.N. Collagen/chitosan composite scaffolds for bone and cartilage tissue engineering. In: Biomedical Composites; Woodhead Publishing Series, 2017; pp. 163-198.
[110]
Chen, P. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics, 2019, 9(9), 2439-2459.
[111]
Pierce, D.M. Multi-phase, large-strain constitutive models of cartilage for finite element analyses in 3-D. Arch Appl Mech, 2022, 92, 513-528.
[113]
Shirazi, R.; Adl, S.A. Computational aspects in mechanical modeling of the articular cartilage tissue. Proc Inst Mech Eng H, 2013, 227(4), 402-420.
[114]
Liu, C.Z.; Xia, Z.D.; Han, Z.W.; Hulley, P.A.; Triffitt, J.T.; Czernuszka, J.T. Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater., 2007, 85(2), 519-528.
[115]
Chen, J.; Peng, Q.; Peng, X.; Han, L.; Wang, X.; Wang, J.; Zang, H. Recent advances in mechano-responsive hydrogels for biomedical applications. ACS Appl. Polym. Mater., 2020, 2(3), 1092-1107.
[116]
Linka, K.A.S.; Schäfer, A.; Hillgärtner, M. Towards patient-specific computational modelling of articular cartilage on the basis of advanced multiparametric MRI techniques. Sci Rep, 2019, 9, 7172.
[117]
Radke, K.L.L.M.W.; Wilms, L.M.; Frenken, M.; Stabinska, J. Lorentzian-corrected apparent exchange-dependent relaxation (LAREX) Ω-plot analysis-an adaptation for qCEST in a multi-pool system: Comprehensive in silico, in situ, and in vivo studies. Int. J. Mol. Sci., 2022, 23(13), 6920.
[118]
Klarmann, G.J.; Piroli, M.E.; Loverde, J.R. 3D printing a universal knee meniscus using a custom collagen ink. Bioprinting, 2023, 31, e00272.
[126]
Wang, Z.; Yang, Y.; Gao, Y.; Xu, Z.; Yang, S.; Jin, M. Establishing a novel 3D printing bioinks system with recombinant human collagen. Int J Biol Macromol, 2022, 211, 400-409.
[127]
Callanan, N.M.a.A. Novel phase separated polycaprolactone/collagen scaffolds for cartilage tissue engineering. Biomed. Mater., 2018, 13(5), 051001.
[128]
Temple, J.P.; Yeager, K.; Bhumairtana, S.; Vunjak-Norakovic, G.; Grayson, W.L. Bioreactor cultivation of anatomically shaped human grafts. Biomimetics and stem cell: Methods and Protocols, 2014, 57-78.
[129]
Tack, P.J.V. 3D-printing techniques in a medical setting: A systematic literature review. Biomed. Eng. Online, 2016, 15, 115.
[130]
Xia, Y.; Zhou, P.; Cheng, X.; Wei, H.; Sun, R.; Tian, H.; Chen, X. Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor. Mol. Ther., 2014, 23(2), 330-338.
[131]
Han, J.; Meng, Q.; Xi, T.; Zhuang, H. Collagen scaffolds with different pore sizes for vascularized bone regeneration in vivo. 2016.
[132]
Liang, Y.; Liang, Z.; Wang, X.; Zhang, Y.; Zhang, Z.; Chen, X. Low-temperature 3D printing of collagen and chitosan composite for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl., 2021, 123, 111963.