Generic placeholder image

The International Journal of Gastroenterology and Hepatology Diseases

Editor-in-Chief

ISSN (Print): 2666-2906
ISSN (Online): 2666-2914

Review Article

A Foodborne Disease “Campylobacteriosis”: Global Epidemiology, Pathogenicity, Diagnosis and Treatment

Author(s): Pooja Choudhary, Aruna Punia, Sudesh Kumari, Namita Sharma, Sweety Dahiya and Anil K. Chhillar*

Volume 3, 2024

Published on: 22 March, 2024

Article ID: e220324228262 Pages: 12

DOI: 10.2174/0126662906281070240223053537

Price: $65

Open Access Journals Promotions 2
Abstract

Campylobacteriosis is a foodborne disease caused by Campylobacter, which is one of the leading causative agents of bacterial gastrointestinal diseases in developed and developing countries. According to WHO, Campylobacter species infects a hundred million people yearly. The bacterium is thermotolerant, cytochrome oxidase-positive, spiral-shaped, gram-negative, and microaerophilic, by exhibiting corkscrew motility it passes through the intestines of animals and birds. It is generally transmitted through the consumption of contaminated food associated with animal and their products. The main infectious species include C. coli, C. jejuni, C. fetus and C. upsaliensis. Infection symptoms can be mild to serious depending upon the patient's age and in some cases can lead to permanent neurological disorders. Detection of Campylobacter in food, clinical and environmental samples is accomplished with the help of combinatorial usage of selective enrichment and culture methods. Currently, there is no sole viable approach for infection management because of resistance emergence. In this review article, we discuss Campylobacter epidemiology, pathogenicity, various diagnostic methods and treatment of Campylobacteriosis.

Keywords: Campylobacter, pathogenicity, gastroenteritis, epidemiology, fouelborne disease, domestic animals.

[1]
WHO. The global view of campylobacteriosis. 2013. Available from: https://www.who.int/publications-detail-redirect/9789241564601
[2]
Taylor LH, Latham SM, woolhouse MEJ. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 2001; 356(1411): 983-9.
[http://dx.doi.org/10.1098/rstb.2001.0888] [PMID: 11516376]
[3]
WHO. Campylobacter. 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/campylobacter
[4]
Rukambile E, Sintchenko V, Muscatello G, Kock R, Alders R. Infection, colonization and shedding of Campylobacter and Salmonella in animals and their contribution to human disease: A review. Zoonoses Public Health 2019; 66(6): 562-78.
[http://dx.doi.org/10.1111/zph.12611] [PMID: 31179637]
[5]
Hsieh YH, Sulaiman IM. Campylobacteriosis: An Emerging Infectious Foodborne Disease. Elsevier Inc 2018; 15
[http://dx.doi.org/10.1016/B978-0-12-811444-5.00005-1]
[6]
Heimesaat MM, Backert S, Alter T, Bereswill S. Human campylobacteriosis---a serious infectious threat in a one health perspec-tiveFighting Campylobacter Infections. Cham: Springer International Publishing 2021; pp. 1-23.
[http://dx.doi.org/10.1007/978-3-030-65481-8_1]
[7]
Casalino G, D’Amico F, Dinardo FR, et al. Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli in wild birds from a wildlife rescue centre. Animals 2022; 12(20): 2889.
[http://dx.doi.org/10.3390/ani12202889] [PMID: 36290276]
[8]
de Vries SPW, Vurayai M, Holmes M, et al. Phylogenetic analyses and antimicrobial resistance profiles of Campylobacter spp. from diarrhoeal patients and chickens in Botswana. PLoS One 2018; 13(3): e0194481.
[http://dx.doi.org/10.1371/journal.pone.0194481] [PMID: 29561903]
[9]
Altekruse SF, Stern NJ, Fields PI, Swerdlow DL. Campylobacter jejuni--an emerging foodborne pathogen. Emerg Infect Dis 1999; 5(1): 28-35.
[http://dx.doi.org/10.3201/eid0501.990104] [PMID: 10081669]
[10]
Wang J, Vaddu S, Bhumanapalli S, et al. A systematic review and meta-analysis of the sources of Campylobacter in poultry production (preharvest) and their relative contributions to the microbial risk of poultry meat. Poult Sci 2023; 102(10): 102905.
[http://dx.doi.org/10.1016/j.psj.2023.102905] [PMID: 37516002]
[11]
Ansarifar E, Riahi SM, Tasara T, Sadighara P, Zeinali T. Campylobacter prevalence from food, animals, human and environmental samples in Iran: A systematic review and meta-analysis. BMC Microbiol 2023; 23(1): 126.
[http://dx.doi.org/10.1186/s12866-023-02879-w] [PMID: 37165317]
[12]
Ramírez OAM, McEwan NR, Stanley K, Nava-Diaz R, Tipacamú AG. A systematic review on the role of wildlife as carriers and spreaders of Campylobacter spp. Animals 2023; 13(8): 1334.
[http://dx.doi.org/10.3390/ani13081334] [PMID: 37106897]
[13]
Del Collo LP, Karns JS, Biswas D, et al. Prevalence, antimicrobial resistance, and molecular characterization of Campylobacter spp. in bulk tank milk and milk filters from US dairies. J Dairy Sci 2017; 100(5): 3470-9.
[http://dx.doi.org/10.3168/jds.2016-12084] [PMID: 28237599]
[14]
Scallan E, Mahon BE. Foodborne diseases active surveillance network (FoodNet) in 2012: A foundation for food safety in the United States. Clin Infect Dis 2012; 54(S5): S381-4.
[http://dx.doi.org/10.1093/cid/cis257] [PMID: 22572657]
[15]
Kaakoush NO, Rodríguez CN, Mitchell HM, Man SM. Global epidemiology of Campylobacter infection. Clin Microbiol Rev 2015; 28(3): 687-720.
[http://dx.doi.org/10.1128/CMR.00006-15] [PMID: 26062576]
[16]
CDC. Campylobacter (Campylobacteriosis). 2020. Available from: https://www.cdc.gov/campylobacter/index.html (Accessed on: December 2, 2020).
[17]
Kirkpatrick BD, Tribble DR. Update on human Campylobacter jejuni infections. Curr Opin Gastroenterol 2011; 27(1): 1-7.
[http://dx.doi.org/10.1097/MOG.0b013e3283413763] [PMID: 21124212]
[18]
Levin RE. Campylobacter jejuni: A review of its characteristics, pathogenicity, ecology, distribution, subspecies characterization and molecular methods of detection. Food Biotechnol 2007; 21(4): 271-347.
[http://dx.doi.org/10.1080/08905430701536565]
[19]
Lindmark B, Rompikuntal PK, Vaitkevicius K, et al. Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni. BMC Microbiol 2009; 9(1): 220.
[http://dx.doi.org/10.1186/1471-2180-9-220] [PMID: 19835618]
[20]
Al Hakeem WG, Fathima S, Shanmugasundaram R, Selvaraj RK. Campylobacter jejuni in poultry: Pathogenesis and control strategies. Microorganisms 2022; 10(11): 2134.
[http://dx.doi.org/10.3390/microorganisms10112134] [PMID: 36363726]
[21]
Baars T, Berge C, Garssen J, Verster J. The impact of raw milk consumption on gastrointestinal bowel and skin complaints in immune depressed adults. Eur Neuropsychopharmacol 2019; 29: S226.
[http://dx.doi.org/10.1016/j.euroneuro.2018.11.367]
[22]
Hudson A, King N, Lake R, Cressey P. Risk profile: Campylobacter jejuni/coli in raw Milk. MPI Technical Paper No: 2014/15, 2014.
[23]
El-Zamkan MA, Hameed AKG. Prevalence of Campylobacter jejuni and Campylobacter coli in raw milk and some dairy products. Vet World 2016; 9(10): 1147-51.
[http://dx.doi.org/10.14202/vetworld.2016.1147-1151] [PMID: 27847427]
[24]
Dehghani Z, Hosseini M, Mohammadnejad J, Ganjali MR. New colorimetric DNA sensor for detection of Campylobacter jejuni in milk sample based on peroxidase‐like activity of gold/platinium nanocluster. ChemistrySelect 2019; 4(40): 11687-92.
[http://dx.doi.org/10.1002/slct.201901815]
[25]
Igwaran A, Okoh AI. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019; 5(11): e02814.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02814] [PMID: 31763476]
[26]
Modi S, Brahmbhatt MN, Chatur YA, Nayak JB. Prevalence of Campylobacter species in milk and milk products, their virulence gene profile and antibiogram. Vet World 2015; 8(1): 1-8.
[http://dx.doi.org/10.14202/vetworld.2015.1-8] [PMID: 27046986]
[27]
Rzeznitzeck J, Breves G, Rychlik I, et al. The effect of Campylobacter jejuni and Campylobacter coli colonization on the gut morphology, functional integrity, and microbiota composition of female turkeys. Gut Pathog 2022; 14(1): 33.
[http://dx.doi.org/10.1186/s13099-022-00508-x] [PMID: 35922874]
[28]
Urban-Chmiel R, Marek A, Stępień-Pyśniak D, et al. Antibiotic resistance in bacteria—A review. Antibiotics 2022; 11(8): 1079.
[http://dx.doi.org/10.3390/antibiotics11081079] [PMID: 36009947]
[29]
McEwen SA, Collignon PJ. Antimicrobial resistance: A one health perspective. Microbiol Spectr 2018; 6(2)
[http://dx.doi.org/10.1128/microbiolspec.ARBA-0009-2017]
[30]
Gahamanyi N, Mboera LEG, Matee MI, Mutangana D, Komba EVG. Prevalence, risk factors, and antimicrobial resistance pro-files of thermophilic Campylobacter species in humans and animals in sub-saharan Africa: A systematic review. Int J Microbiol 2020; 2020: 1-12.
[http://dx.doi.org/10.1155/2020/2092478] [PMID: 32025233]
[31]
The european union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA Journal 2017; 15(12): e05077.
[http://dx.doi.org/10.2903/j.efsa.2017.5077]
[32]
Andrzejewska M, Szczepańska B, Śpica D, Klawe JJ. Prevalence, virulence, and antimicrobial resistance of Campylobacter spp. in raw milk, beef, and pork meat in Northern Poland. Foods 2019; 8(9): 420.
[http://dx.doi.org/10.3390/foods8090420] [PMID: 31533265]
[33]
Authority EFS. Control EC for DP and. The European Union one health 2020 zoonoses report. EFSA J 2021; 19(12): e06971.
[PMID: 36329690]
[34]
CDC. Outbreak of multidrug-resistant campylobacter infections linked to contact with pet store puppies. 2019. Available from: https://www.cdc.gov/campylobacter/outbreaks/puppies-12-19/index.html (Accessed on: December 2, 2020).
[35]
ECDC. European centre for disease prevention and control report, surveillance. 2022. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/campylobacteriosis-annual-epidemiological-report-2021.pdf
[36]
Hoffmann S, Ashton L, Todd JE, Ahn J, Berck P. Attributing US campylobacteriosis cases to food sources, season, and temperature. 2021. Available from: https://www.ers.usda.gov/webdocs/publications/100501/err-284.pdf
[37]
Liu F, Lee SA, Xue J, Riordan SM, Zhang L. Global epidemiology of campylobacteriosis and the impact of COVID-19. Front Cell Infect Microbiol 2022; 12: 979055.
[http://dx.doi.org/10.3389/fcimb.2022.979055] [PMID: 36519137]
[38]
Hansson I, Sandberg M, Habib I, Lowman R, Engvall EO. Knowledge gaps in control of Campylobacter for prevention of campylobacteriosis. Transbound Emerg Dis 2018; 65 (Suppl. 1): 30-48.
[http://dx.doi.org/10.1111/tbed.12870] [PMID: 29663680]
[39]
Marder EP, Cieslak PR, Cronquist AB, et al. Incidence and trends of infections with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance — foodborne diseases active surveillance network, 10 U.S. Sites, 2013–2016. MMWR Morb Mortal Wkly Rep 2017; 66(15): 397-403.
[http://dx.doi.org/10.15585/mmwr.mm6615a1] [PMID: 28426643]
[40]
Batz MB, Hoffmann S, Morris JG Jr. Ranking the disease burden of 14 pathogens in food sources in the United States using attribu-tion data from outbreak investigations and expert elicitation. J Food Prot 2012; 75(7): 1278-91.
[http://dx.doi.org/10.4315/0362-028X.JFP-11-418] [PMID: 22980012]
[41]
Arsenault J, Berke O, Michel P, Ravel A, Gosselin P. Environmental and demographic risk factors for campylobacteriosis: Do vari-ous geographical scales tell the same story? BMC Infect Dis 2012; 12(1): 318.
[http://dx.doi.org/10.1186/1471-2334-12-318] [PMID: 23173982]
[42]
Ravel A, Pintar K, Nesbitt A, Pollari F. Non food-related risk factors of campylobacteriosis in Canada: A matched case-control study. BMC Public Health 2016; 16(1): 1016.
[http://dx.doi.org/10.1186/s12889-016-3679-4] [PMID: 27677338]
[43]
Fernández H. [Campylobacter and campylobacteriosis: A view from South America]. Rev Peru Med Exp Salud Publica 2011; 28(1): 121-7.
[http://dx.doi.org/10.1590/S1726-46342011000100019] [PMID: 21537780]
[44]
The European union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J 2018; 16(12): e05500.
[http://dx.doi.org/10.2903/j.efsa.2018.5500]
[45]
The European union one health 2019 zoonoses report. EFSA J 2021; 19(2): e06406.
[http://dx.doi.org/10.2903/j.efsa.2021.6406]
[46]
The European union one health 2021 zoonoses report. EFSA J 2022; 20(12): e07666.
[http://dx.doi.org/10.2903/j.efsa.2022.7666]
[47]
Stingl K, Knüver MT, Vogt P, et al. Quo vadis? — monitoring Campylobacter in Germany. Eur J Microbiol Immunol 2012; 2(1): 88-96.
[http://dx.doi.org/10.1556/EuJMI.2.2012.1.12] [PMID: 24611125]
[48]
Hauri AM, Just M, McFarland S, Schweigmann A, Schlez K, Krahn J. [Campylobacteriosis outbreaks in the state of Hesse, Germany, 2005-2011: Raw milk yet again]. Dtsch Med Wochenschr 2013; 138(8): 357-61.
[http://dx.doi.org/10.1055/s-0032-1332884] [PMID: 23404322]
[49]
Kemmeren JM, Mangen MJJ, Duynhoven VY, Havelaar AH. Priority setting of foodborne pathogens: Disease burden and costs of selected enteric pathogens. RIVM report 2006; 330080001.
[50]
de Boer RF, Ott A, Güren P, van Zanten E, van Belkum A, Smid KAMD. Detection of Campylobacter species and Arcobacter butzleri in stool samples by use of real-time multiplex PCR. J Clin Microbiol 2013; 51(1): 253-9.
[http://dx.doi.org/10.1128/JCM.01716-12] [PMID: 23152553]
[51]
Kuhn KG, Nygård KM, Herrador GB, et al. Campylobacter infections expected to increase due to climate change in Northern Europe. Sci Rep 2020; 10(1): 13874.
[http://dx.doi.org/10.1038/s41598-020-70593-y] [PMID: 32807810]
[52]
Huang JL, Xu HY, Bao GY, et al. Epidemiological surveillance of Campylobacter jejuni in chicken, dairy cattle and diarrhoea patients. Epidemiol Infect 2009; 137(8): 1111-20.
[http://dx.doi.org/10.1017/S0950268809002039] [PMID: 19192321]
[53]
Chen J, Sun X-T, Zeng Z, Yu Y-Y. Campylobacter enteritis in adult patients with acute diarrhea from 2005 to 2009 in Beijing, China. Chin Med J 2011; 124(10): 1508-12.
[PMID: 21740807]
[54]
Wang J, Guo YC, Li N. Prevalence and risk assessment of Campylobacter jejuni in chicken in China. Biomed Environ Sci 2013; 26(4): 243-8.
[http://dx.doi.org/10.3967/0895-3988.2013.04.002] [PMID: 23534464]
[55]
Kubota K, Kasuga F, Iwasaki E, et al. Estimating the burden of acute gastroenteritis and foodborne illness caused by Campylobacter, Salmonella, and Vibrio parahaemolyticus by using population-based telephone survey data, Miyagi Prefecture, Japan, 2005 to 2006. J Food Prot 2011; 74(10): 1592-8.
[http://dx.doi.org/10.4315/0362-028X.JFP-10-387] [PMID: 22004803]
[56]
Mukherjee P, Ramamurthy T, Bhattacharya MK, Rajendran K, Mukhopadhyay AK. Campylobacter jejuni in hospitalized patients with diarrhea, Kolkata, India. Emerg Infect Dis 2013; 19(7): 1155-6.
[http://dx.doi.org/10.3201/eid1907.121278] [PMID: 23763834]
[57]
Sinha A, SenGupta S, Guin S, et al. Culture-independent real-time PCR reveals extensive polymicrobial infections in hospitalized diarrhoea cases in Kolkata, India. Clin Microbiol Infect 2013; 19(2): 173-80.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03746.x] [PMID: 22268636]
[58]
Rajendran P, Babji S, George AT, Rajan DP, Kang G, Ajjampur SS. Detection and species identification of Campylobacter in stool samples of children and animals from Vellore, south India. Indian J Med Microbiol 2012; 30(1): 85-8.
[http://dx.doi.org/10.4103/0255-0857.93049] [PMID: 22361767]
[59]
Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013; 382(9888): 209-22.
[http://dx.doi.org/10.1016/S0140-6736(13)60844-2] [PMID: 23680352]
[60]
Murugesan M, Abraham D, Samuel P, Ajjampur SSR. Campylobacter diarrhea in children in South Asia: A systematic review. Indian J Med Microbiol 2022; 40(3): 330-6.
[http://dx.doi.org/10.1016/j.ijmmb.2022.03.010] [PMID: 35397849]
[61]
Weinberger M, Lerner L, Valinsky L, et al. Increased incidence of Campylobacter spp. infection and high rates among children, Israel. Emerg Infect Dis 2013; 19(11): 1828-31.
[http://dx.doi.org/10.3201/eid1911.120900] [PMID: 24188185]
[62]
Dayan N, Revivo D, Even L, Elkayam O, Glikman D. Campylobacter is the leading cause of bacterial gastroenteritis and dysentery in hospitalized children in the Western Galilee Region in Israel. Epidemiol Infect 2010; 138(10): 1405-6.
[http://dx.doi.org/10.1017/S0950268810000737] [PMID: 20370957]
[63]
OzFoodNet Working Group. Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: Annual report of the OzFoodNet network, 2010. Commun Dis Intell Q Rep 2012; 36(3): E213-41.
[PMID: 23186234]
[64]
OzFoodNet Working Group. Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: Annual report of the OzFoodNet Network, 2008. Commun Dis Intell Q Rep 2009; 33(4): 389-413.
[PMID: 20301968]
[65]
OzFoodNet Working Group. Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: Annual report of the OzFoodNet Network, 2009. Commun Dis Intell Q Rep 2010; 34(4): 396-426.
[PMID: 21413526]
[66]
Gibney KB, O’Toole J, Sinclair M, Leder K. Disease burden of selected gastrointestinal pathogens in Australia, 2010. Int J Infect Dis 2014; 28: 176-85.
[http://dx.doi.org/10.1016/j.ijid.2014.08.006] [PMID: 25281904]
[67]
Sears A, Baker MG, Wilson N, et al. Marked campylobacteriosis decline after interventions aimed at poultry, New Zealand. Emerg Infect Dis 2011; 17(6): 1007-15.
[http://dx.doi.org/10.3201/eid/1706.101272] [PMID: 21749761]
[68]
Gilpin BJ, Walshe G, On SL, Smith D, Marshall JC, French NP. Application of molecular epidemiology to understanding campyl-obacteriosis in the Canterbury region of New Zealand. Epidemiol Infect 2013; 141(6): 1253-66.
[http://dx.doi.org/10.1017/S0950268812001719] [PMID: 22906314]
[69]
Cornelius AJ, Chambers S, Aitken J, Brandt SM, Horn B, On SLW. epsilonproteobacteria in humans, New Zealand. Emerg Infect Dis 2012; 18(3): 510-2.
[http://dx.doi.org/10.3201/eid1803.110875] [PMID: 22377283]
[70]
Gilpin BJ, Walker T, Paine S, et al. A large scale waterborne Campylobacteriosis outbreak, Havelock North, New Zealand. J Infect 2020; 81(3): 390-5.
[http://dx.doi.org/10.1016/j.jinf.2020.06.065] [PMID: 32610108]
[71]
Howard P, Alexander N, Atkinson A, et al. Bacterial, viral and parasitic aetiology of paediatric diarrhoea in the highlands of Papua New Guinea. J Trop Pediatr 2000; 46(1): 10-4.
[http://dx.doi.org/10.1093/tropej/46.1.10] [PMID: 10730034]
[72]
Mason J, Iturriza-Gomara M, O’Brien SJ, et al. Campylobacter infection in children in Malawi is common and is frequently associated with enteric virus co-infections. PLoS One 2013; 8(3): e59663.
[http://dx.doi.org/10.1371/journal.pone.0059663] [PMID: 23555739]
[73]
Swierczewski BE, Odundo EA, Koech MC, et al. Enteric pathogen surveillance in a case-control study of acute diarrhoea in the town of Kisii, Kenya. J Med Microbiol 2013; 62(11): 1774-6.
[http://dx.doi.org/10.1099/jmm.0.059139-0] [PMID: 23842139]
[74]
Platts-Mills JA, Liu J, Gratz J, et al. Detection of Campylobacter in stool and determination of significance by culture, enzyme immunoassay, and PCR in developing countries. J Clin Microbiol 2014; 52(4): 1074-80.
[http://dx.doi.org/10.1128/JCM.02935-13] [PMID: 24452175]
[75]
Lastovica AJ. Emerging Campylobacter spp.: The tip of the iceberg. Clin Microbiol Newsl 2006; 28(7): 49-56.
[http://dx.doi.org/10.1016/j.clinmicnews.2006.03.004]
[76]
Paintsil EK, Ofori LA, Adobea S, et al. Prevalence and antibiotic resistance in Campylobacter spp. Isolated from humans and food-producing animals in West Africa: A systematic review and meta-analysis. Pathogens 2022; 11(2): 140.
[http://dx.doi.org/10.3390/pathogens11020140] [PMID: 35215086]
[77]
Escherich T. Contributions to the knowledge of intestinal bacteria. III. About the presence of vibrios in the intestinal canal and the stools of infants (Articles Adding to Knowl Intest Bact III Exist Vibrios Intest Feces Babies). Munch Med Wochenschr 1886; 33: 815-7.
[78]
McFadyean J, Stockman S. Report of the departmental committee appointed by the board of agriculture and fisheries to inquire into epizootic abortion. Appendix to part III, abortion in sheep. 1913. Available from: https://search.worldcat.org/title/Report-of-the-Depart-mental-Committee-appointed-by-the-Board-of-Agriculture-and-Fisheries-to-inquire-into-epizootic-abortion.-Appendix-to-part-III-Abortion-in-sheep/oclc/152479441
[79]
Levy AJ. A gastro-enteritis cutbreak probably due to a bovine strain of vibrio. Yale J Biol Med 1946; 18(4): 243-58.
[PMID: 21019769]
[80]
Vincent R. Severe septicemia during pregnancy due to vibration. Bull Acad Natl Med 1947; 131: 90-2.
[81]
King EO. Human infections with Vibrio fetus and a closely related vibrio. J Infect Dis 1957; 101(2): 119-28.
[http://dx.doi.org/10.1093/infdis/101.2.119] [PMID: 13475869]
[82]
Sebald M, VERON M. [Base dna content and classification of vibrios]. Ann Inst Pasteur 1963; 105: 897-910.
[83]
Butzler JP, Dekeyser P, Detrain M, Dehaen F. Related vibrio in stools. J Pediatr 1973; 82(3): 493-5.
[http://dx.doi.org/10.1016/S0022-3476(73)80131-3] [PMID: 4572934]
[84]
Dekeyser P, Gossuin-Detrain M, Butzler JP, Sternon J. Acute enteritis due to related vibrio: First positive stool cultures. J Infect Dis 1972; 125(4): 390-2.
[http://dx.doi.org/10.1093/infdis/125.4.390] [PMID: 4553081]
[85]
Skirrow MB. Campylobacter enteritis: A “new” disease. BMJ 1977; 2(6078): 9-11.
[http://dx.doi.org/10.1136/bmj.2.6078.9] [PMID: 871765]
[86]
Veron M, Chatelain R. Taxonomic study of the genus Campylobacter sebald and vkron and designation of the neotype strain for the type species, Campylobacter fetus (Smith and Taylor). Sebald and Vkon 1973; 23: 122-34.
[87]
Vandamme P, De Ley J. Proposal for a new family, campylobacteraceae. Int J Syst Evol Microbiol 1991; 41: 451-5.
[88]
Costa D, Iraola G. Pathogenomics of emerging Campylobacter species. Clin Microbiol Rev 2019; 32(4): e00072-18.
[http://dx.doi.org/10.1128/CMR.00072-18] [PMID: 31270126]
[89]
Beltrá SM, Lee BG, López ABA, Quiñones B. Overview of methodologies for the culturing, recovery and detection of Campylobacter. Int J Environ Health Res 2023; 33: 307-23.
[http://dx.doi.org/10.1080/09603123.2022.2029366]
[90]
Lastovica AJ, On SLW, Zhang L. The family campylobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, Eds. The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg 2014; pp. 307-35.
[http://dx.doi.org/10.1007/978-3-642-39044-9_274]
[91]
Acheson D, Allos BM. Campylobacter jejuni infections: update on emerging issues and trends. Clin Infect Dis 2001; 32(8): 1201-6.
[http://dx.doi.org/10.1086/319760] [PMID: 11283810]
[92]
Cecil RLF, Goldman L, Schafer AI. Goldman’s Cecil Medicine, Expert Consult Premium Edition--Enhanced Online Features and Print, Single Volume, 24: Goldman’s Cecil Medicine; Elsevier Health Sciences 2012; 24.
[93]
Nishiguchi S, Sekine I, Kuroda S, Sato M, Kitagawa I. Myositis ossificans of the hip due to pyogenic arthritis caused by <i>Campylobacter fetus</i> subspecies <i>fetus</i>. Intern Med 2017; 56(8): 967-72.
[http://dx.doi.org/10.2169/internalmedicine.56.7906] [PMID: 28420848]
[94]
Silva MF, Pereira G, Carneiro C, et al. Campylobacter portucalensis sp. nov., a new species of Campylobacter isolated from the preputial mucosa of bulls. PLoS One 2020; 15(1): e0227500.
[http://dx.doi.org/10.1371/journal.pone.0227500] [PMID: 31923228]
[95]
Silva J, Leite D, Fernandes M, Mena C, Gibbs PA, Teixeira P. Campylobacter spp. as a foodborne pathogen: A review. Front Microbiol 2011; 2: 200.
[http://dx.doi.org/10.3389/fmicb.2011.00200] [PMID: 21991264]
[96]
Vandenberg O, Skirrow MB, Butzler JP. Campylobacter and acrobacter. Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology. Wiley 2005.
[97]
Bolton FJ, Hutchinson DN, Parker G. Reassessment of selective agars and filtration techniques for isolation ofCampylobacter species from faeces. Eur J Clin Microbiol Infect Dis 1988; 7(2): 155-60.
[http://dx.doi.org/10.1007/BF01963069] [PMID: 3134202]
[98]
Huang H, Garcia MM. Isolation and identification of <em>campylobacter. In: Tellez-Isaias G, El-Ashram S, Eds. Spp from Food and Food-Related Environment” P. Rijeka: IntechOpen 2022.
[99]
Corry JEL, Post DE, Colin P, Laisney MJ. Culture media for the isolation of campylobacters. Int J Food Microbiol 1995; 26(1): 43-76.
[http://dx.doi.org/10.1016/0168-1605(95)00044-K] [PMID: 7662519]
[100]
Wassenaar TM, Newell DG. The genus Campylobacter. Prokaryotes 2006; 7: 119-38.
[http://dx.doi.org/10.1007/0-387-30747-8_4]
[101]
Mota-Gutierrez J, Lis L, Lasagabaster A, et al. Campylobacter spp. prevalence and mitigation strategies in the broiler production chain. Food Microbiol 2022; 104: 103998.
[http://dx.doi.org/10.1016/j.fm.2022.103998] [PMID: 35287817]
[102]
Myintzaw P, Jaiswal AK, Jaiswal S. A review on Campylobacteriosis associated with poultry meat consumption. Food Rev Int 2022; 39(4): 2107-21.
[103]
Garénaux A, Jugiau F, Rama F, et al. Survival of Campylobacter jejuni strains from different origins under oxidative stress conditions: Effect of temperature. Curr Microbiol 2008; 56(4): 293-7.
[http://dx.doi.org/10.1007/s00284-007-9082-8] [PMID: 18180992]
[104]
Harvey P, Leach S. Analysis of coccal cell formation by Campylobacter jejuni using continuous culture techniques, and the importance of oxidative stress. J Appl Microbiol 1998; 85(2): 398-404.
[http://dx.doi.org/10.1046/j.1365-2672.1998.00532.x] [PMID: 9750311]
[105]
Kassem II, Chandrashekhar K, Rajashekara G. Of energy and survival incognito: A relationship between viable but non-culturable cells formation and inorganic polyphosphate and formate metabolism in Campylobacter jejuni. Front Microbiol 2013; 4: 183.
[http://dx.doi.org/10.3389/fmicb.2013.00183] [PMID: 23847606]
[106]
McKenna A, Ijaz UZ, Kelly C, et al. Impact of industrial production system parameters on chicken microbiomes: Mechanisms to improve performance and reduce Campylobacter. Microbiome 2020; 8(1): 128.
[http://dx.doi.org/10.1186/s40168-020-00908-8] [PMID: 32907634]
[107]
Perez-Arnedo I, Gonzalez-Fandos E. Prevalence of Campylobacter spp. in poultry in three Spanish farms, a slaughterhouse and a further processing plant. Foods 2019; 8(3): 111.
[http://dx.doi.org/10.3390/foods8030111] [PMID: 30917510]
[108]
Epping L, Walther B, Piro RM, et al. Genome-wide insights into population structure and host specificity of Campylobacter jejuni. Sci Rep 2021; 11(1): 10358.
[http://dx.doi.org/10.1038/s41598-021-89683-6] [PMID: 33990625]
[109]
Møller Nielsen E, Engberg J, Madsen M. Distribution of serotypes of Campylobacter jejuni and C. coli from Danish patients, poultry, cattle and swine. FEMS Immunol Med Microbiol 1997; 19(1): 47-56.
[http://dx.doi.org/10.1111/j.1574-695X.1997.tb01071.x] [PMID: 9322068]
[110]
Tang M, Zhou Q, Zhang X, et al. Antibiotic resistance profiles and molecular mechanisms of Campylobacter from chicken and pig in China. Front Microbiol 2020; 11: 592496.
[http://dx.doi.org/10.3389/fmicb.2020.592496] [PMID: 33193261]
[111]
Sibanda N, McKenna A, Richmond A, et al. A review of the effect of management practices on campylobacter prevalence in poultry farms. Front Microbiol 2018; 9: 2002.
[http://dx.doi.org/10.3389/fmicb.2018.02002] [PMID: 30197638]
[112]
Chaban B, Ngeleka M, Hill JE. Detection and quantification of 14 Campylobacter species in pet dogs reveals an increase in species richness in feces of diarrheic animals. BMC Microbiol 2010; 10(1): 73.
[http://dx.doi.org/10.1186/1471-2180-10-73] [PMID: 20219122]
[113]
Jay-Russell MT, Bates A, Harden L, Miller WG, Mandrell RE. Isolation of Campylobacter from feral swine (Sus scrofa) on the ranch associated with the 2006 Escherichia coli O157:H7 spinach outbreak investigation in California. Zoonoses Public Health 2012; 59(5): 314-9.
[http://dx.doi.org/10.1111/j.1863-2378.2012.01465.x] [PMID: 22405465]
[114]
Barker-Davies RM, O’Sullivan O, Senaratne KPP, et al. The Stanford Hall consensus statement for post-COVID-19 rehabilitation. Br J Sports Med 2020; 54(16): 949-59.
[http://dx.doi.org/10.1136/bjsports-2020-102596] [PMID: 32475821]
[115]
Djennad A, Nichols G, Loiacono G, et al. The seasonality and effects of temperature and rainfall on Campylobacter infections. Int J Popul Data Sci 2017; 1(1): 1.
[http://dx.doi.org/10.23889/ijpds.v1i1.51]
[116]
Frirdich E, Biboy J, Huynh S, Parker CT, Vollmer W, Gaynor EC. Morphology heterogeneity within a Campylobacter jejuni helical population: the use of calcofluor white to generate rod‐shaped C. jejuni 81‐176 clones and the genetic determinants responsible for differences in morphology within 11168 strains. Mol Microbiol 2017; 104(6): 948-71.
[http://dx.doi.org/10.1111/mmi.13672] [PMID: 28316093]
[117]
Kaakoush NO, Baar C, MacKichan J, et al. Insights into the molecular basis of the microaerophily of three Campylobacterales: a comparative study. Antonie van Leeuwenhoek 2009; 96(4): 545-57.
[http://dx.doi.org/10.1007/s10482-009-9370-3] [PMID: 19669588]
[118]
Biswas D, Hannon SJ, Townsend HG, Potter A, Allan BJ. Genes coding for virulence determinants of Campylobacter jejuni in human clinical and cattle isolates from Alberta, Canada, and their potential role in colonization of poultry. Int Microbiol 2011; 14(1): 25-32.
[PMID: 22015699]
[119]
CDC. National center for emerging and zoonotic infectious diseases (NCEZID) 2020. 2020. Available from: https://www.cdc.gov/ncezid/index.html
[120]
Khademi F, Sahebkar A. Prevalence of fluoroquinolone-resistant campylobacter species in Iran: A systematic review and meta-analysis. Int J Microbiol 2020; 2020: 8868197.
[http://dx.doi.org/10.1155/2020/8868197]
[121]
Morishita S, Fujiwara H, Murota H, et al. Bloodstream infection caused by Campylobacter lari. J Infect Chemother 2013; 19(2): 333-7.
[http://dx.doi.org/10.1007/s10156-012-0471-y] [PMID: 22965843]
[122]
Dingle KE, Van Den Braak N, Colles FM, et al. Sequence typing confirms that Campylobacter jejuni strains associated with Guillain-Barré and Miller-Fisher syndromes are of diverse genetic lineage, serotype, and flagella type. J Clin Microbiol 2001; 39(9): 3346-9.
[http://dx.doi.org/10.1128/JCM.39.9.3346-3349.2001] [PMID: 11526174]
[123]
Kobayashi R, Matsumoto S, Yoshida Y. Case of acute pancreatitis associated with Campylobacter enteritis. World J Gastroenterol 2014; 20(23): 7514-7.
[http://dx.doi.org/10.3748/wjg.v20.i23.7514] [PMID: 24966623]
[124]
Korman TM, Varley CC, Spelman DW. Acute hepatitis associated withCampylobacter jejuni bacteraemia. Eur J Clin Microbiol Infect Dis 1997; 16(9): 678-81.
[http://dx.doi.org/10.1007/BF01708559] [PMID: 9352262]
[125]
Louwen R, van Baarlen P, van Vliet AHM, van Belkum A, Hays JP, Endtz HP. Campylobacter bacteremia: A rare and under-reported event? Eur J Microbiol Immunol 2012; 2(1): 76-87.
[http://dx.doi.org/10.1556/EuJMI.2.2012.1.11] [PMID: 24611124]
[126]
Peters BEG, Jongenburger I, de Boer E, Reitsma JWF. Validation by interlaboratory trials of EN ISO 10272 - Microbiology of the food chain - Horizontal method for detection and enumeration of Campylobacter spp. - Part 1: Detection method. Int J Food Microbiol 2019; 288: 39-46.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.05.007] [PMID: 29934105]
[127]
Jacobs-Reitsma WF, Jongenburger I, de Boer E, Peters BEG. Validation by interlaboratory trials of EN ISO 10272 - Microbiology of the food chain - horizontal method for detection and enumeration of campylobacter spp. - part 2: colony-count technique. Int J Food Microbiol 2019; 288: 32-8.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.05.008] [PMID: 29929852]
[128]
ISO. Water quality–detection and enumeration of thermotolerant campylobacter species 2005. https://www.iso.org/standard/42082.html
[129]
Persson S, Olsen KEP. Multiplex PCR for identification of Campylobacter coli and Campylobacter jejuni from pure cultures and directly on stool samples. J Med Microbiol 2005; 54(11): 1043-7.
[http://dx.doi.org/10.1099/jmm.0.46203-0] [PMID: 16192435]
[130]
Sails AD, Fox AJ, Bolton FJ, Wareing DRA, Greenway DLA. A real-time PCR assay for the detection of Campylobacter jejuni in foods after enrichment culture. Appl Environ Microbiol 2003; 69(3): 1383-90.
[http://dx.doi.org/10.1128/AEM.69.3.1383-1390.2003] [PMID: 12620820]
[131]
Choudhary P, Punia A, Dahiya S, et al. Recent trends in diagnosis of campylobacter infection. Advances in Animal Disease Diagnosis 2021; 219-28.
[http://dx.doi.org/10.1201/9781003080282-14]
[132]
Eberle KN, Kiess AS. Phenotypic and genotypic methods for typing Campylobacter jejuni and Campylobacter coli in poultry. Poult Sci 2012; 91(1): 255-64.
[http://dx.doi.org/10.3382/ps.2011-01414] [PMID: 22184452]
[133]
Al Amri A, Senok AC, Ismaeel AY, Al-Mahmeed AE, Botta GA. Multiplex PCR for direct identification of Campylobacter spp. in human and chicken stools. J Med Microbiol 2007; 56(10): 1350-5.
[http://dx.doi.org/10.1099/jmm.0.47220-0] [PMID: 17893173]
[134]
Yan W, Chang N, Taylor DE. Pulsed-field gel electrophoresis of Campylobacter jejuni and Campylobacter coli genomic DNA and its epidemiologic application. J Infect Dis 1991; 163(5): 1068-72.
[http://dx.doi.org/10.1093/infdis/163.5.1068] [PMID: 2019755]
[135]
Potturi-Venkata LP, Backert S, Lastovica AJ, et al. Evaluation of different plate media for direct cultivation of Campylobacter species from live broilers. Poult Sci 2007; 86(7): 1304-11.
[http://dx.doi.org/10.1093/ps/86.7.1304] [PMID: 17575175]
[136]
Wassenaar TM, Astorga FA, Alonso R, et al. Comparison of Campylobacter fla -SVR genotypes isolated from humans and poultry in three European regions. Lett Appl Microbiol 2009; 49(3): 388-95.
[http://dx.doi.org/10.1111/j.1472-765X.2009.02678.x] [PMID: 19627478]
[137]
Tagini F, Greub G. Bacterial genome sequencing in clinical microbiology: A pathogen-oriented review. Eur J Clin Microbiol Infect Dis 2017; 36(11): 2007-20.
[http://dx.doi.org/10.1007/s10096-017-3024-6] [PMID: 28639162]
[138]
Ahmed MU, Dunn L, Ivanova EP. Evaluation of current molecular approaches for genotyping of Campylobacter jejuni strains. Foodborne Pathog Dis 2012; 9(5): 375-85.
[http://dx.doi.org/10.1089/fpd.2011.0988] [PMID: 22506653]
[139]
Bardon J, Kolar M, Cekanova L, Hejnar P, Koukalova D. Prevalence of Campylobacter jejuni and its resistance to antibiotics in poultry in the Czech Republic. Zoonoses Public Health 2009; 56(3): 111-6.
[http://dx.doi.org/10.1111/j.1863-2378.2008.01176.x] [PMID: 18771516]
[140]
Bolton DJ. Campylobacter virulence and survival factors. Food Microbiol 2015; 48: 99-108.
[http://dx.doi.org/10.1016/j.fm.2014.11.017] [PMID: 25790997]
[141]
Bruzzese E, Giannattasio A, Guarino A. Antibiotic treatment of acute gastroenteritis in children. F1000 Res 2018; 7: 193.
[http://dx.doi.org/10.12688/f1000research.12328.1] [PMID: 29511533]
[142]
Gilbert DN, Moellering RC, Eliopoulos GM, Sande MA. The Sanford Guide to Antimicrobial Therapy. (37th ed.), Vienna, Va: Antimicrob. Ther 2007.
[143]
Neustaedter CM, Robertson K, Tschritter D, et al. A scoping review of factors associated with antimicrobial-resistant Campylobacter species infections in humans. Epidemiol Infect 2023; 151: e100.
[http://dx.doi.org/10.1017/S0950268823000742] [PMID: 37283142]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy