Title:In-silico Studies, Synthesis, and Antacid Activities of Magnesium (II)
Complexes
Volume: 21
Issue: 6
Author(s): Basuki Nath Jha, Richa Kothari and Anurag Agrawal*
Affiliation:
- Department of Pharmacology,
Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, Gautam Buddha Nagar, U.P.,
201310, India
Keywords:
Antacid activity, schiff base, Mg (II) complexes, spectroscopic characterization, semicarbazone ligand, keto-enol isomerism.
Abstract:
Background: Nowadays, acidity is a severe problem worldwide caused by excessive
gastric acid secretion by the stomach and proximal intestine.
Objective: Antacids are drugs capable of buffering stomach acid. Therefore, in our research work,
we have reported the in-silico studies, synthesis, characterization, and evaluation of antacid activities
of magnesium (II) complexes via the acid-base neutralization process.
Methods: In this research, some magnesium complexes were synthesized and their antacid behavior
was compared with marketed products. Also, in-silico studies were performed on H+/K+
ATPase (Proton pump). All synthesized compounds were characterized by various spectroscopic
techniques like UV-Vis, FT-IR, XRD, and DSC techniques.
Result: Spectroscopic analysis results showed that the semicarbazone ligand shows keto-enol
isomerism and forms a coordinated stable complex with magnesium ions in the crystalline phase.
The FT-IR results confirmed the presence of Mg-O stretching, N-H bending, and C=N stretching
vibrations in Mg (II) complexes.
Conclusion: The antacid activities of Mg (II) complexes were excellent as compared to the semicarbazone
ligand and comparable with that of marketed antacid drugs like ENO, and Pantop-D. Insilco
studies also confirmed that semicarbazone ligand and its Mg (II) complexes were both found
to be fitted into the active sites of molecular targets, and Mg (II) complexes showed better binding
affinities towards macromolecular as compared to semicarbazone ligand.