Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Research Article

Investigation of the Effect of Power and Duration of Ultrasonic Irradiation on the Synthesis of Thiazoles

Author(s): Eghlima Ehsani, Afshin Sarvary* and Setareh Habibzadeh

Volume 22, Issue 2, 2025

Published on: 18 March, 2024

Page: [263 - 269] Pages: 7

DOI: 10.2174/0115701794287558240220115823

Price: $65

TIMBC 2025
Abstract

Introduction: The effect of power and duration of ultrasonic irradiation on the synthesis of thiazoles via the Hantzsch reaction was investigated.

Methods: The reaction of phenacyl bromides with thioamides under ultrasonic irradiation afforded the target thiazoles in good yields.

Results: The results showed that high power and long irradiation time cause the decomposition of the reaction materials, and for this reaction, the irradiation power of 720 watts and a total duration of 4 minutes, wherein a pulsing function was performed in 50% of each second, were considered the most suitable irradiation properties for the synthesis of thiazoles through the Hantzsch reaction.

Conclusion: The use of mild conditions, short time frame, high yields, simple separation of the reaction product, and no use of the base for neutralization are the advantages of the present method.

Keywords: Ultrasonic, power irradiation, duration irradiation, hantzsch reaction, phenacyl bromides, thiazole.

Graphical Abstract
[1]
Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications; Wiley-VCH: Weinheim, 2003.
[http://dx.doi.org/10.1002/352760183X]
[2]
Duc, D.X.; Chung, N.T. Recent development in the synthesis of thiazoles. Curr. Org. Synth., 2022, 19(6), 702-730.
[http://dx.doi.org/10.2174/1570179419666220216122637] [PMID: 35170413]
[3]
Ali, S.H.; Sayed, A.R. Review of the synthesis and biological activity of thiazoles. Synth. Commun., 2021, 51(5), 670-700.
[http://dx.doi.org/10.1080/00397911.2020.1854787]
[4]
Feng, M.; Tang, B.; Liang, S.H.; Jiang, X. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry. Curr. Top. Med. Chem., 2016, 16(11), 1200-1216.
[http://dx.doi.org/10.2174/1568026615666150915111741] [PMID: 26369815]
[5]
(a) Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, 97, 699-718.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.015] [PMID: 25934508 ];
(b) Pola, S. Significance of thiazole-based heterocycles for bioactive systems. In: Scope of Selective Heterocycles from Organic and Pharmaceutical Perspective; InTech, 2016.
[http://dx.doi.org/10.5772/62077];
(c) Ayman, M.; Abdelmonsef, A.H.; Rashdan, H.R.M. Mini review on the synthesis and biological impact of thiazoles. ChemistrySelect, 2023, 8, e202300414.
[http://dx.doi.org/10.1002/slct.202300414]
[6]
(a) Ghodse, S.M.; Telvekar, V.N. Synthesis of 2-aminothiazole derivatives from easily available thiourea and alkyl/aryl ketones using aqueous NaICl2. Tetrahedron Lett., 2015, 56(2), 472-474.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.140];
(b) Yadav, J.S.; Reddy, B.V.S.; Rao, Y.G.; Narsaiah, A.V. First example of the coupling of α-diazoketones with thiourea: A novel route for the synthesis of 2-aminothiazoles. Tetrahedron Lett., 2008, 49(15), 2381-2383.
[http://dx.doi.org/10.1016/j.tetlet.2008.02.068]
[7]
Srinivasan, K.V.; Potewar, T.M.; Ingale, S.A. Catalyst-free efficient synthesis of 2-aminothiazoles in water at ambient temperature. Tetrahedron, 2008, 64, 5019-5022.
[http://dx.doi.org/10.1016/j.tet.2008.03.082]
[8]
Chen, B.; Guo, S.; Guo, X.; Zhang, G.; Yu, Y. Selective access to 4-substituted 2-aminothiazoles and 4-substituted 5-thiocyano-2-aminothiazoles from vinyl azides and potassium thiocyanate switched by palladium and iron catalysts. Org. Lett., 2015, 17, 4698-4701.
[http://dx.doi.org/10.1021/acs.orglett.5b02152]
[9]
Bonilla, M.P.; Cardena, P.A.; Marmol, Q.E.; Tellez, A.J.L.; Rejon, M.G.J. Preparation, antimicrobial activity, and toxicity of 2-amino-4-arylthiazole aerivatives. Heteroatom Chem., 2006, 17, 254.
[http://dx.doi.org/10.1002/hc.20182]
[10]
Potewar, T.M.; Ingale, S.A.; Srinivasan, K.V. Efficient synthesis of 2,4-disubstituted thiazoles using ionic liquid under ambient conditions: A practical approach towards the synthesis of fanetizole. Tetrahedron, 2007, 63, 11066-11069.
[http://dx.doi.org/10.1016/j.tet.2007.08.036]
[11]
Boeini, Z.H.; Mansouri, S.G. Three-component and solvent-free synthesis of thiazoles from tertiary thioamides. J. Iran. Chem. Soc., 2016, 13, 1571-1577.
[http://dx.doi.org/10.1007/s13738-016-0873-3]
[12]
Narender, M.; Somi, R.M.; Sridhar, R.; Nageswar, K.; Nageswar, K.; Rama, R.K. Aqueous phase synthesis of thiazoles and aminothiazoles in the presence of β-cyclodextrin. Tetrahedron Lett., 2005, 46, 5953-5955.
[http://dx.doi.org/10.1016/j.tetlet.2005.06.130]
[13]
Raut, D.G.; Bhosale, R.B. One-pot PEG-mediated syntheses of 2-(2-Hydrazinyl) thiazole derivatives: Novel route. J. Sulfur Chem., 2018, 39, 1-7.
[http://dx.doi.org/10.1080/17415993.2017.1371175]
[14]
(a) Brahmachari, G.; Nayek, N.; Mandal, M.; Bhowmick, A.; Karmakar, I. Ultrasound-promoted organic synthesis - a recent update. Curr. Org. Chem., 2021, 25(13), 1539-1565.
[http://dx.doi.org/10.2174/1385272825666210316122319];
(b) Ziarani, M.G. kheilkordi, Z.; Gholamzadeh, P. Ultrasound-assisted synthesis of heterocyclic compounds. Mol. Divers., 2020, 24(3), 771-820.
[http://dx.doi.org/10.1007/s11030-019-09964-1] [PMID: 31165431]
[15]
Pagadala, R.; Kasi, V.; Shabalala, N.G.; Jonnalagadda, S.B. Ultrasound-assisted multicomponent synthesis of heterocycles in water – A review. Arab. J. Chem., 2022, 15(1), 103544.
[http://dx.doi.org/10.1016/j.arabjc.2021.103544]
[16]
Nomura, H.; Koda, S. What is sonochemistry? In: Sonochemistry and the Acoustic Bubble; Elsevier, 2015; pp. 1-9.
[http://dx.doi.org/10.1016/B978-0-12-801530-8.00001-3]
[17]
Johansen, K.; Song, J.H.; Prentice, P. Performance characterisation of a passive cavitation detector optimised for subharmonic periodic shock waves from acoustic cavitation in MHz and sub-MHz ultrasound. Ultrason. Sonochem., 2018, 43, 146-155.
[http://dx.doi.org/10.1016/j.ultsonch.2018.01.007] [PMID: 29555269]
[18]
Sharma, A.; Priya, A.; Kaur, M.; Singh, A.; Kaur, G.; Banerjee, B. Ultrasound-assisted synthesis of bioactive S -heterocycles. Synth. Commun., 2021, 51(21), 3209-3236.
[http://dx.doi.org/10.1080/00397911.2021.1970775]
[19]
Banerjee, B. Ultrasound and nanocatalysts: An ideal and sustainable combination to carry out diverse organic transformations. ChemistrySelect, 2019, 4, 2484-2500.
[http://dx.doi.org/10.1002/slct.201803081]
[20]
Chebanov, V.A.; Desenko, S.M.; Lipson, V.V. Heterocycles on the crest of microwaves and ultrasonics in the institute for single crystals of national academy of sciences of ukraine: Chemistry and history. Chem. Heterocycl. Compd., 2023, 59, 386-405.
[http://dx.doi.org/10.1007/s10593-023-03207-w]
[21]
Hussien, M.; Ali, T.E.; Sayed, I.E.E.; Abdelaleem, A.H.; Torkey, H.M.; Assiri, M.A.; Yahia, I.S. Ultrasound-assisted synthesis of some novel 1,3-diarylpyrazolyl α-aminophosphonates conjugated with nitrogen heterocycles as antifungal agents using CdI2 nanoparticles as an efficient catalyst. Russ. J. Org. Chem., 2023, 59, 1214-1223.
[http://dx.doi.org/10.1134/S1070428023070138]
[22]
Shihab, I.A.; Muhammed, M.Y.; Alheety, M.A.; Nuaman, H.A.; Karadag, A. Rapid ultrasound-assisted synthesis, characterization, DFT, molecular docking, and anticancer activity of palladium and zinc complexes with 2,6-dimethoxybenzoic acid: A comprehensive study. J. Mol. Struct., 2023, 1294, 136259.
[http://dx.doi.org/10.1016/j.molstruc.2023.136259]
[23]
Desai, V.; Patil, S.; Nipane, S.; Sawant, V.; Kurane, R.; Deshmukh, M. KI-oxone catalyzed ultrasound-promoted synthesis of imidazo[1,2-a]-pyridine-3-carboxylates (IPCs) and evaluation of their anti-tubercular activity. J. Iran Chem. Soc., 2023, 20, 1917-1925.
[http://dx.doi.org/10.1007/s13738-023-02808-8]
[24]
Azargashb, S.; Sarvary, A.; Darzi, H.S.K. Synthesized NaA nanozeolite as a catalyst for the preparation of 3-amino imidazo[1,2-a]pyridines under solvent-free conditions. Lett. Org. Chem., 2022, 19(9), 711-718.
[http://dx.doi.org/10.2174/1570178619666211220103759]
[25]
Dehghan, N.; Isfahani, N.H.; Sarvary, A.; Bakherad, M. Synthesis of bis(1,5-disubstituted tetrazoles) via double four component azido-ugi reaction. J. Heterocycl. Chem., 2021, 58, 350-356.
[http://dx.doi.org/10.1002/jhet.4178]
[26]
Sarvary, A.; Shaabani, S.; Ghanji, N.; Shaabani, A. Three-component reaction of isocyanide with dialkyl acetylene dicarboxylate and alkyl mercaptan: Preparation of new derivatives of stable ketenimines. J. Sulfur Chem., 2015, 36, 117-123.
[http://dx.doi.org/10.1080/17415993.2014.978330]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy