Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Review Article

The Right Ventricle in Pulmonary Arterial Hypertension: An Organ at the “Heart of the Problem”

Author(s): Siddharth Singh and Michael I. Lewis*

Volume 20, Issue 3, 2024

Published on: 15 March, 2024

Page: [219 - 242] Pages: 24

DOI: 10.2174/011573398X267174240311065457

Price: $65

conference banner
Abstract

Pulmonary Arterial Hypertension (PAH) is a progressive disease with no cure. A major determinant of outcome is the function of the right ventricle (RV). Unfortunately, progressive RV dysfunction and failure can occur despite PAH-specific therapies. While initial adaptive hypertrophic changes occur to maintain cardiac output and preserve contractile function and reserve, maladaptive changes occur in the RV muscle that contribute to RV systolic and diastolic dysfunction and failure. These include impaired angiogenesis / decreased capillary density with ischemia, fibrosis, cardiomyocyte apoptosis and impaired autophagy, inflammation, enhanced oxidative stress, altered metabolism, etc. Of note, there are no therapies currently approved that offset these changes and treatment of RV dysfunction is largely supportive only. Further patients often do not qualify for bilateral lung transplantation because of co-morbidities such as renal impairment. Thus, a dire unmet need exists regarding the management of RV dysfunction and failure in patients with PAH. In this State-of-the-Art review, we comprehensively outline the unique features of the RV compared to the left ventricle (LV) under normal circumstances and highlight the unique challenges faced by the RV when confronted with increased afterload as occurs in PAH. We provide detailed insights into the basis for the adaptive hypertrophic phase as well as detailed commentary into the pathophysiology of the maladapted dysfunctional state as well as the pathobiological aberrations occurring in the RV muscle that underlines the progressive dysfunction and failure that commonly ensues. We also review comprehensively the evaluation of RV function using all currently employed imaging, hemodynamic and other modalities and provide a balanced outline of strengths and limitations of such approaches with the treating clinician in mind. We outline the current approaches, albeit limited to chronic multi-modal management of RV dysfunction and failure. We further outline new possible approaches to treatment that include novel pharmacologic approaches, possible use of cellular/stem cell therapies and mechanical approaches. This review is directed to the treating clinician to provide comprehensive insights regarding the RV in patients with PAH.

Keywords: Right ventricle, pulmonary arterial hypertension, adaptive RV hypertrophy, maladaptive RV hypertrophy, RV systolic and diastolic dysfunction, pathobiology of RV muscle, workup of RV function, right heart catheterization, echocardiogram, cardiac magnetic resonance scan, BNP, pulmonary artery elastance, RV functional reserve, chronic right heart failure, novel therapies.

Graphical Abstract
[1]
Hassoun PM. Pulmonary Arterial Hypertension. N Engl J Med 2021; 385(25): 2361-76.
[http://dx.doi.org/10.1056/NEJMra2000348] [PMID: 34910865]
[2]
Farber HW, Miller DP, Poms AD, et al. Five-Year outcomes of patients enrolled in the REVEAL Registry. Chest 2015; 148(4): 1043-54.
[http://dx.doi.org/10.1378/chest.15-0300] [PMID: 26066077]
[3]
Humbert M, Sitbon O, Chaouat A, et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation 2010; 122(2): 156-63.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.911818] [PMID: 20585011]
[4]
D’Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 1991; 115(5): 343-9.
[http://dx.doi.org/10.7326/0003-4819-115-5-343] [PMID: 1863023]
[5]
Hendriks PM, Staal DP, van de Groep LD, et al. The evolution of survival of pulmonary arterial hypertension over 15 years. Pulm Circ 2022; 12(4): e12137.
[http://dx.doi.org/10.1002/pul2.12137] [PMID: 36268054]
[6]
van de Veerdonk MC, Bogaard HJ, Voelkel NF. The right ventricle and pulmonary hypertension. Heart Fail Rev 2016; 21(3): 259-71.
[http://dx.doi.org/10.1007/s10741-016-9526-y] [PMID: 26833318]
[7]
Brewis MJ, Bellofiore A, Vanderpool RR, et al. Imaging right ventricular function to predict outcome in pulmonary arterial hypertension. Int J Cardiol 2016; 218: 206-11.
[http://dx.doi.org/10.1016/j.ijcard.2016.05.015] [PMID: 27236116]
[8]
van Wolferen SA, Marcus JT, Boonstra A, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 2007; 28(10): 1250-7.
[http://dx.doi.org/10.1093/eurheartj/ehl477] [PMID: 17242010]
[9]
Forfia PR, Fisher MR, Mathai SC, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 2006; 174(9): 1034-41.
[http://dx.doi.org/10.1164/rccm.200604-547OC] [PMID: 16888289]
[10]
Trip P, Rain S, Handoko ML, et al. Clinical relevance of right ventricular diastolic stiffness in pulmonary hypertension. Eur Respir J 2015; 45(6): 1603-12.
[http://dx.doi.org/10.1183/09031936.00156714] [PMID: 25882798]
[11]
van de Veerdonk MC, Kind T, Marcus JT, et al. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol 2011; 58(24): 2511-9.
[http://dx.doi.org/10.1016/j.jacc.2011.06.068] [PMID: 22133851]
[12]
van de Veerdonk MC, Marcus JT, Westerhof N, et al. Signs of right ventricular deterioration in clinically stable patients with pulmonary arterial hypertension. Chest 2015; 147(4): 1063-71.
[http://dx.doi.org/10.1378/chest.14-0701] [PMID: 25376008]
[13]
Gomez-Arroyo J, Sandoval J, Simon MA, Dominguez-Cano E, Voelkel NF, Bogaard HJ. Treatment for pulmonary arterial hypertension-associated right ventricular dysfunction. Ann Am Thorac Soc 2014; 11(7): 1101-15.
[http://dx.doi.org/10.1513/AnnalsATS.201312-425FR] [PMID: 25079379]
[14]
Sanz J, Sánchez-Quintana D, Bossone E, Bogaard HJ, Naeije R. Anatomy, function, and dysfunction of the right ventricle. J Am Coll Cardiol 2019; 73(12): 1463-82.
[http://dx.doi.org/10.1016/j.jacc.2018.12.076] [PMID: 30922478]
[15]
Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 2008; 117(11): 1436-48.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.653576] [PMID: 18347220]
[16]
Ho SY, Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart 2006; 92 (Suppl. 1): i2-i13.
[http://dx.doi.org/10.1136/hrt.2005.077875] [PMID: 16543598]
[17]
Haddad F, Guihaire J, Skhiri M, et al. Septal curvature is marker of hemodynamic, anatomical, and electromechanical ventricular interdependence in patients with pulmonary arterial hypertension. Echocardiography 2014; 31(6): 699-707.
[http://dx.doi.org/10.1111/echo.12468] [PMID: 24372843]
[18]
Konstam MA, Kiernan MS, Bernstein D, et al. Evaluation and Management of Right-Sided Heart Failure: A Scientific Statement From the American Heart Association. Circulation 2018; 137(20): e578-622.
[http://dx.doi.org/10.1161/CIR.0000000000000560] [PMID: 29650544]
[19]
Matthews J, McLaughlin V. Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: a detailed review of the pathophysiology, diagnosis, and management. Curr Cardiol Rev 2008; 4(1): 49-59.
[http://dx.doi.org/10.2174/157340308783565384] [PMID: 19924277]
[20]
Pinsky MR. The right ventricle: Interaction with the pulmonary circulation. Crit Care 2016; 20(1): 266.
[http://dx.doi.org/10.1186/s13054-016-1440-0] [PMID: 27613549]
[21]
Chin KM, Kim NHS, Rubin LJ. The right ventricle in pulmonary hypertension. Coron Artery Dis 2005; 16(1): 13-8.
[http://dx.doi.org/10.1097/00019501-200502000-00003] [PMID: 15654194]
[22]
Singh S, Lewis MI. Evaluating the right ventricle in acute and chronic pulmonary embolism: Current and future considerations. Semin Respir Crit Care Med 2021; 42(2): 199-211.
[http://dx.doi.org/10.1055/s-0040-1722290] [PMID: 33548932]
[23]
Lankhaar JW, Westerhof N, Faes TJC, et al. Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension. Eur Heart J 2008; 29(13): 1688-95.
[http://dx.doi.org/10.1093/eurheartj/ehn103] [PMID: 18349027]
[24]
Tedford RJ, Hassoun PM, Mathai SC, et al. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation 2012; 125(2): 289-97.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.051540] [PMID: 22131357]
[25]
Dell’Italia LJ. Anatomy and physiology of the right ventricle. Cardiol Clin 2012; 30(2): 167-87.
[http://dx.doi.org/10.1016/j.ccl.2012.03.009] [PMID: 22548810]
[26]
Guazzi M, Naeije R. Pulmonary Hypertension in Heart Failure. J Am Coll Cardiol 2017; 69(13): 1718-34.
[http://dx.doi.org/10.1016/j.jacc.2017.01.051] [PMID: 28359519]
[27]
de Man FS, Handoko ML, Vonk-Noordegraaf A. The unknown pathophysiological relevance of right ventricular hypertrophy in pulmonary arterial hypertension. Eur Respir J 2019; 53(4): 1900255.
[http://dx.doi.org/10.1183/13993003.00255-2019] [PMID: 30948507]
[28]
Middleton RC, Fournier, M, Rogers, RG, Grimes, BS, Xu, X, & Lewis, MI. Temporal changes in key signal transduction pathways mediating muscle protein synthesis with adaptive and maladaptive right ventricular hypertrophy in pulmonary arterial hypertension. Cardio Open 2023; 8: 296-309.
[http://dx.doi.org/10.33140/COA.08.01.01]
[29]
Paulin R, Michelakis ED. The metabolic theory of pulmonary arterial hypertension. Circ Res 2014; 115(1): 148-64.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.301130] [PMID: 24951764]
[30]
Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res 2014; 114(3): 565-71.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.300507] [PMID: 24481846]
[31]
Llucià-Valldeperas A, de Man FS, Bogaard HJ. Adaptation and maladaptation of the right ventricle in pulmonary vascular diseases. Clin Chest Med 2021; 42(1): 179-94.
[http://dx.doi.org/10.1016/j.ccm.2020.11.010] [PMID: 33541611]
[32]
Spruijt OA, Vissers L, Bogaard HJ, Hofman MBM, Vonk-Noordegraaf A, Marcus JT. Increased native T1-values at the interventricular insertion regions in precapillary pulmonary hypertension. Int J Cardiovasc Imaging 2016; 32(3): 451-9.
[http://dx.doi.org/10.1007/s10554-015-0787-7] [PMID: 26472581]
[33]
Ryan JJ, Archer SL. Emerging concepts in the molecular basis of pulmonary arterial hypertension: part I: metabolic plasticity and mitochondrial dynamics in the pulmonary circulation and right ventricle in pulmonary arterial hypertension. Circulation 2015; 131(19): 1691-702.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.006979] [PMID: 25964279]
[34]
Vonk Noordegraaf A, Westerhof BE, Westerhof N. The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol 2017; 69(2): 236-43.
[http://dx.doi.org/10.1016/j.jacc.2016.10.047] [PMID: 28081831]
[35]
Voelkel NF, Gomez-Arroyo J, Abbate A, Bogaard HJ. Mechanisms of right heart failure-A work in progress and a plea for failure prevention. Pulm Circ 2013; 3(1): 137-43.
[http://dx.doi.org/10.4103/2045-8932.109957] [PMID: 23662190]
[36]
Bogaard HJ, Natarajan R, Mizuno S, et al. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med 2010; 182(5): 652-60.
[http://dx.doi.org/10.1164/rccm.201003-0335OC] [PMID: 20508210]
[37]
Piao L, Fang YH, Parikh KS, et al. GRK2-mediated inhibition of adrenergic and dopaminergic signaling in right ventricular hypertrophy: therapeutic implications in pulmonary hypertension. Circulation 2012; 126(24): 2859-69.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.109868] [PMID: 23124027]
[38]
Rain S, Bos DSG, Handoko ML, et al. Protein changes contributing to right ventricular cardiomyocyte diastolic dysfunction in pulmonary arterial hypertension. J Am Heart Assoc 2014; 3(3): e000716.
[http://dx.doi.org/10.1161/JAHA.113.000716] [PMID: 24895160]
[39]
Murch SD, La Gerche A, Roberts TJ, Prior DL, MacIsaac AI, Burns AT. Abnormal right ventricular relaxation in pulmonary hypertension. Pulm Circ 2015; 5(2): 370-5.
[http://dx.doi.org/10.1086/681268] [PMID: 26064464]
[40]
Reddy S, Bernstein D. Molecular mechanisms of right ventricular failure. Circulation 2015; 132(18): 1734-42.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.012975] [PMID: 26527692]
[41]
van der Bruggen CEE, Tedford RJ, Handoko ML, van der Velden J, de Man FS. RV pressure overload: From hypertrophy to failure. Cardiovasc Res 2017; 113(12): 1423-32.
[http://dx.doi.org/10.1093/cvr/cvx145] [PMID: 28957530]
[42]
Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 2009; 135(3): 794-804.
[http://dx.doi.org/10.1378/chest.08-0492] [PMID: 19265089]
[43]
Sutendra G, Michelakis ED. Pulmonary arterial hypertension: Challenges in translational research and a vision for change. Sci Transl Med 2013; 5(208): 208sr5.
[http://dx.doi.org/10.1126/scitranslmed.3005428] [PMID: 24154604]
[44]
Kümpers P, Nickel N, Lukasz A, et al. Circulating angiopoietins in idiopathic pulmonary arterial hypertension. Eur Heart J 2010; 31(18): 2291-300.
[http://dx.doi.org/10.1093/eurheartj/ehq226] [PMID: 20601390]
[45]
Potus F, Ruffenach G, Dahou A, et al. Downregulation of MicroRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 2015; 132(10): 932-43.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.016382] [PMID: 26162916]
[46]
Crnkovic S, Egemnazarov B, Damico R, et al. Disconnect between fibrotic response and right ventricular dysfunction. Am J Respir Crit Care Med 2019; 199(12): 1550-60.
[http://dx.doi.org/10.1164/rccm.201809-1737OC] [PMID: 30557518]
[47]
Bogaard HJ, Voelkel NF. Is Myocardial Fibrosis impairing right heart function? Am J Respir Crit Care Med 2019; 199(12): 1458-9.
[http://dx.doi.org/10.1164/rccm.201812-2307ED] [PMID: 30608865]
[48]
Simpson CE, Hassoun PM. Myocardial Fibrosis as a Potential Maladaptive Feature of Right Ventricle Remodeling in Pulmonary Hypertension. Am J Respir Crit Care Med 2019; 200(6): 662-3.
[http://dx.doi.org/10.1164/rccm.201906-1154ED] [PMID: 31216171]
[49]
Andersen S, Nielsen-Kudsk JE, Vonk Noordegraaf A, de Man FS. Right Ventricular Fibrosis. Circulation 2019; 139(2): 269-85.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035326] [PMID: 30615500]
[50]
Polyakova V, Hein S, Kostin S, Ziegelhoeffer T, Schaper J. Matrix metalloproteinases and their tissue inhibitors in pressure-overloaded human myocardium during heart failure progression. J Am Coll Cardiol 2004; 44(8): 1609-18.
[http://dx.doi.org/10.1016/j.jacc.2004.07.023] [PMID: 15489093]
[51]
Ambade AS, Hassoun PM, Damico RL. Basement membrane extracellular matrix proteins in pulmonary vascular and right ventricular remodeling in pulmonary hypertension. Am J Respir Cell Mol Biol 2021; 65(3): 245-58.
[http://dx.doi.org/10.1165/rcmb.2021-0091TR] [PMID: 34129804]
[52]
Gomez-Arroyo J, Santos-Martinez LE, Aranda A, et al. Differences in right ventricular remodeling secondary to pressure overload in patients with pulmonary hypertension. Am J Respir Crit Care Med 2014; 189(5): 603-6.
[http://dx.doi.org/10.1164/rccm.201309-1711LE] [PMID: 24579837]
[53]
Middleton RC, Fournier M, Xu X, Marbán E, Lewis MI. Therapeutic benefits of intravenous cardiosphere-derived cell therapy in rats with pulmonary hypertension. PLoS One 2017; 12(8): e0183557.
[http://dx.doi.org/10.1371/journal.pone.0183557] [PMID: 28837618]
[54]
Mikhael M, Makar C, Wissa A, Le T, Eghbali M, Umar S. Oxidative Stress and Its Implications in the Right Ventricular Remodeling Secondary to Pulmonary Hypertension. Front Physiol 2019; 10: 1233.
[http://dx.doi.org/10.3389/fphys.2019.01233] [PMID: 31607955]
[55]
Shults N, Melnyk O, Suzuki D, Suzuki Y. Redox Biology of Right-Sided Heart Failure. Antioxidants 2018; 7(8): 106.
[http://dx.doi.org/10.3390/antiox7080106] [PMID: 30096794]
[56]
Ahmed LA, Obaid AAZ, Zaki HF, Agha AM. Role of oxidative stress, inflammation, nitric oxide and transforming growth factor-beta in the protective effect of diosgenin in monocrotaline-induced pulmonary hypertension in rats. Eur J Pharmacol 2014; 740: 379-87.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.026] [PMID: 25062790]
[57]
Woo E, Kato R, Imano H, et al. Capillary Degeneration and Right Ventricular Remodeling Due to Hypoxic Stress with Sugen5416. Curr Vasc Pharmacol 2017; 15(6): 589-98.
[PMID: 28460626]
[58]
Talati M, Hemnes A. Fatty acid metabolism in pulmonary arterial hypertension: role in right ventricular dysfunction and hypertrophy. Pulm Circ 2015; 5(2): 269-78.
[http://dx.doi.org/10.1086/681227] [PMID: 26064451]
[59]
Gomez-Arroyo J, Mizuno S, Szczepanek K, et al. Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Heart Fail 2013; 6(1): 136-44.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.111.966127] [PMID: 23152488]
[60]
Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 2014; 115(1): 165-75.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301141] [PMID: 24951765]
[61]
Campian ME, Hardziyenka M, de Bruin K, et al. Early inflammatory response during the development of right ventricular heart failure in a rat model. Eur J Heart Fail 2010; 12(7): 653-8.
[http://dx.doi.org/10.1093/eurjhf/hfq066] [PMID: 20495202]
[62]
Otsuki S, Sawada H, Yodoya N, et al. Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats. PLoS One 2015; 10(2): e0118655.
[http://dx.doi.org/10.1371/journal.pone.0118655] [PMID: 25714834]
[63]
Sun XQ, Abbate A, Bogaard HJ. Role of cardiac inflammation in right ventricular failure. Cardiovasc Res 2017; 113(12): 1441-52.
[http://dx.doi.org/10.1093/cvr/cvx159] [PMID: 28957536]
[64]
Overbeek MJ, Mouchaers KT, Niessen HM. Characteristics of interstitial fibrosis and inflammatory cell infiltration in right ventricles of systemic sclerosis-associated pulmonary arterial hypertension. Int J Rheumatol 2010; 2010: 604615.
[http://dx.doi.org/10.1155/2010/604615]
[65]
Waehre A, Vistnes M, Sjaastad I, et al. Chemokines regulate small leucine-rich proteoglycans in the extracellular matrix of the pressure-overloaded right ventricle. J Appl Physiol 2012; 112(8): 1372-82.
[http://dx.doi.org/10.1152/japplphysiol.01350.2011] [PMID: 22345433]
[66]
Campian ME, Verberne HJ, Hardziyenka M, et al. Serial noninvasive assessment of apoptosis during right ventricular disease progression in rats. J Nucl Med 2009; 50(8): 1371-7.
[http://dx.doi.org/10.2967/jnumed.108.061366] [PMID: 19617336]
[67]
Zungu-Edmondson M, Shults NV, Wong CM, Suzuki YJ. Modulators of right ventricular apoptosis and contractility in a rat model of pulmonary hypertension. Cardiovasc Res 2016; 110(1): 30-9.
[http://dx.doi.org/10.1093/cvr/cvw014] [PMID: 26790474]
[68]
Ikeda S, Hamada M, Hiwada K. Cardiomyocyte apoptosis with enhanced expression of P53 and bax in right ventricle after pulmonary arterial banding. Life Sci 1999; 65(9): 925-33.
[http://dx.doi.org/10.1016/S0024-3205(99)00322-7] [PMID: 10465352]
[69]
Su M, Wang J, Wang C, et al. MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis. Cell Death Differ 2015; 22(6): 986-99.
[http://dx.doi.org/10.1038/cdd.2014.187] [PMID: 25394488]
[70]
Su M, Chen Z, Wang C, et al. Cardiac-Specific Overexpression of miR-222 Induces Heart Failure and Inhibits Autophagy in Mice. Cell Physiol Biochem 2016; 39(4): 1503-11.
[http://dx.doi.org/10.1159/000447853] [PMID: 27614440]
[71]
Drake JI, Bogaard HJ, Mizuno S, et al. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am J Respir Cell Mol Biol 2011; 45(6): 1239-47.
[http://dx.doi.org/10.1165/rcmb.2010-0412OC] [PMID: 21719795]
[72]
Lewis MI, Li H, Huang ZS, Biring MS, Cercek B, Fournier M. Influence of varying degrees of malnutrition on IGF-I expression in the rat diaphragm. J Appl Physiol 2003; 95(2): 555-62.
[http://dx.doi.org/10.1152/japplphysiol.00916.2002] [PMID: 12704096]
[73]
Lowes BD, Minobe W, Abraham WT, et al. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J Clin Invest 1997; 100(9): 2315-24.
[http://dx.doi.org/10.1172/JCI119770] [PMID: 9410910]
[74]
Chaponnier C, Gabbiani G. Pathological situations characterized by altered actin isoform expression. J Pathol 2004; 204(4): 386-95.
[http://dx.doi.org/10.1002/path.1635] [PMID: 15495226]
[75]
Kawut SM, Lima JAC, Barr RG, et al. Sex and race differences in right ventricular structure and function: the multi-ethnic study of atherosclerosis-right ventricle study. Circulation 2011; 123(22): 2542-51.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.985515] [PMID: 21646505]
[76]
Tello K, Richter MJ, Yogeswaran A, et al. Sex differences in right ventricular–pulmonary arterial coupling in pulmonary arterial hypertension. Am J Respir Crit Care Med 2020; 202(7): 1042-6.
[http://dx.doi.org/10.1164/rccm.202003-0807LE] [PMID: 32501730]
[77]
Jacobs W, van de Veerdonk MC, Trip P, et al. The right ventricle explains sex differences in survival in idiopathic pulmonary arterial hypertension. Chest 2014; 145(6): 1230-6.
[http://dx.doi.org/10.1378/chest.13-1291] [PMID: 24306900]
[78]
Cheron C, McBride SA, Antigny F, et al. Sex and gender in pulmonary arterial hypertension. Eur Respir Rev 2021; 30(162): 200330.
[http://dx.doi.org/10.1183/16000617.0330-2020] [PMID: 34750113]
[79]
Cunningham CM, Li M, Ruffenach G, et al. Y-Chromosome Gene, Uty, Protects against pulmonary hypertension by reducing proinflammatory chemokines. Am J Respir Crit Care Med 2022; 206(2): 186-96.
[http://dx.doi.org/10.1164/rccm.202110-2309OC] [PMID: 35504005]
[80]
van der Bruggen CE, Happé CM, Dorfmüller P, et al. Bone Morphogenetic Protein Receptor Type 2 Mutation in Pulmonary Arterial Hypertension. Circulation 2016; 133(18): 1747-60.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.020696] [PMID: 26984938]
[81]
Soon E, Crosby A, Southwood M, et al. Bone morphogenetic protein receptor type II deficiency and increased inflammatory cytokine production. A gateway to pulmonary arterial hypertension. Am J Respir Crit Care Med 2015; 192(7): 859-72.
[http://dx.doi.org/10.1164/rccm.201408-1509OC] [PMID: 26073741]
[82]
Hemnes AR, Brittain EL, Trammell AW, et al. Evidence for right ventricular lipotoxicity in heritable pulmonary arterial hypertension. Am J Respir Crit Care Med 2014; 189(3): 325-34.
[http://dx.doi.org/10.1164/rccm.201306-1086OC] [PMID: 24274756]
[83]
Brittain EL, Talati M, Fessel JP, et al. Fatty acid metabolic defects and right ventricular lipotoxicity in human pulmonary arterial hypertension. Circulation 2016; 133(20): 1936-44.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.019351] [PMID: 27006481]
[84]
Talati MH, Brittain EL, Fessel JP, et al. Mechanisms of Lipid Accumulation in the Bone Morphogenetic Protein Receptor Type 2 Mutant Right Ventricle. Am J Respir Crit Care Med 2016; 194(6): 719-28.
[http://dx.doi.org/10.1164/rccm.201507-1444OC] [PMID: 27077479]
[85]
Sundaram SM, Chung L. An Update on Systemic Sclerosis-Associated Pulmonary Arterial Hypertension: a Review of the Current Literature. Curr Rheumatol Rep 2018; 20(2): 10.
[http://dx.doi.org/10.1007/s11926-018-0709-5] [PMID: 29488016]
[86]
Tedford RJ, Mudd JO, Girgis RE, et al. Right ventricular dysfunction in systemic sclerosis-associated pulmonary arterial hypertension. Circ Heart Fail 2013; 6(5): 953-63.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.000008] [PMID: 23797369]
[87]
Hsu S, Kokkonen-Simon KM, Kirk JA, et al. Right ventricular myofilament functional differences in humans with systemic sclerosis–associated versus idiopathic pulmonary arterial hypertension. Circulation 2018; 137(22): 2360-70.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.033147] [PMID: 29352073]
[88]
Arvanitaki A, Gatzoulis MA, Opotowsky AR, et al. Eisenmenger Syndrome. J Am Coll Cardiol 2022; 79(12): 1183-98.
[http://dx.doi.org/10.1016/j.jacc.2022.01.022] [PMID: 35331414]
[89]
Gan CT, McCann GP, Marcus JT, et al. NT-proBNP reflects right ventricular structure and function in pulmonary hypertension. Eur Respir J 2006; 28(6): 1190-4.
[http://dx.doi.org/10.1183/09031936.00016006] [PMID: 16971413]
[90]
Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2016; 37(1): 67-119.
[http://dx.doi.org/10.1093/eurheartj/ehv317] [PMID: 26320113]
[91]
Griffiths M, Yang J, Simpson CE, et al. ST2 is a biomarker of pediatric pulmonary arterial hypertension severity and clinical worsening. Chest 2021; 160(1): 297-306.
[http://dx.doi.org/10.1016/j.chest.2021.01.085] [PMID: 33609516]
[92]
Geenen LW, Baggen VJM, Kauling RM, et al. The prognostic value of soluble ST2 in adults with pulmonary hypertension. J Clin Med 2019; 8(10): 1517.
[http://dx.doi.org/10.3390/jcm8101517] [PMID: 31547136]
[93]
Omura J, Habbout K, Shimauchi T, et al. Identification of long noncoding RNA H19 as a New biomarker and therapeutic target in right ventricular failure in pulmonary arterial hypertension. Circulation 2020; 142(15): 1464-84.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.047626] [PMID: 32698630]
[94]
Keranov S, Jafari L, Haen S, et al. CILP1 as a biomarker for right ventricular dysfunction in patients with ischemic cardiomyopathy. Pulm Circ 2022; 12(1): e12062.
[http://dx.doi.org/10.1002/pul2.12062] [PMID: 35506075]
[95]
Hemnes A, Rothman AMK, Swift AJ, Zisman LS. Role of biomarkers in evaluation, treatment and clinical studies of pulmonary arterial hypertension. Pulm Circ 2020; 10(4): 1-17.
[http://dx.doi.org/10.1177/2045894020957234] [PMID: 33282185]
[96]
Bodhey NK, Beerbaum P, Sarikouch S, et al. Functional analysis of the components of the right ventricle in the setting of tetralogy of Fallot. Circ Cardiovasc Imaging 2008; 1(2): 141-7.
[http://dx.doi.org/10.1161/CIRCIMAGING.108.783795] [PMID: 19808531]
[97]
Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010; 23(7): 685-713.
[http://dx.doi.org/10.1016/j.echo.2010.05.010] [PMID: 20620859]
[98]
Sengupta PP, Korinek J, Belohlavek M, et al. Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol 2006; 48(10): 1988-2001.
[http://dx.doi.org/10.1016/j.jacc.2006.08.030] [PMID: 17112989]
[99]
Sakuma M, Ishigaki H, Komaki K, et al. Right ventricular ejection function assessed by cineangiography--Importance of bellows action. Circ J 2002; 66(6): 605-9.
[http://dx.doi.org/10.1253/circj.66.605] [PMID: 12074282]
[100]
Kind T, Mauritz GJ, Marcus JT, van de Veerdonk M, Westerhof N, Vonk-Noordegraaf A. Right ventricular ejection fraction is better reflected by transverse rather than longitudinal wall motion in pulmonary hypertension. J Cardiovasc Magn Reson 2010; 12(1): 35.
[http://dx.doi.org/10.1186/1532-429X-12-35] [PMID: 20525337]
[101]
Cingolani HE, Pérez NG, Cingolani OH, Ennis IL. The Anrep effect: 100 years later. Am J Physiol Heart Circ Physiol 2013; 304(2): H175-82.
[http://dx.doi.org/10.1152/ajpheart.00508.2012] [PMID: 23161880]
[102]
Vonk-Noordegraaf A, Haddad F, Chin KM, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol 2013; 62(25) (Suppl.): D22-33.
[http://dx.doi.org/10.1016/j.jacc.2013.10.027] [PMID: 24355638]
[103]
Jone PN, Patel SS, Cassidy C, Ivy DD. Three-dimensional echocardiography of right ventricular function correlates with severity of pediatric pulmonary hypertension. Congenit Heart Dis 2016; 11(6): 562-9.
[http://dx.doi.org/10.1111/chd.12337] [PMID: 26899626]
[104]
Vitarelli A, Mangieri E, Terzano C, et al. Three-dimensional echocardiography and 2D-3D speckle-tracking imaging in chronic pulmonary hypertension: diagnostic accuracy in detecting hemodynamic signs of right ventricular (RV) failure. J Am Heart Assoc 2015; 4(3): e001584.
[http://dx.doi.org/10.1161/JAHA.114.001584] [PMID: 25792128]
[105]
Fisher MR, Forfia PR, Chamera E, et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 2009; 179(7): 615-21.
[http://dx.doi.org/10.1164/rccm.200811-1691OC] [PMID: 19164700]
[106]
Nathan SD, Shlobin OA, Barnett SD, et al. Right ventricular systolic pressure by echocardiography as a predictor of pulmonary hypertension in idiopathic pulmonary fibrosis. Respir Med 2008; 102(9): 1305-10.
[http://dx.doi.org/10.1016/j.rmed.2008.03.022] [PMID: 18619825]
[107]
Yin D, Wang Y, Zheng M, et al. Comparison of pulmonary artery pressure measurement with doppler echocardiography or with right heart catheterization in patients with congenital heart disease. Front Pediatr 2019; 7: 421.
[http://dx.doi.org/10.3389/fped.2019.00421] [PMID: 31681718]
[108]
Magnino C, Omedè P, Avenatti E, et al. Inaccuracy of right atrial pressure estimates through Inferior Vena Cava Indices. Am J Cardiol 2017; 120(9): 1667-73.
[http://dx.doi.org/10.1016/j.amjcard.2017.07.069] [PMID: 28912040]
[109]
Kitabatake A, Inoue M, Asao M, et al. Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation 1983; 68(2): 302-9.
[http://dx.doi.org/10.1161/01.CIR.68.2.302] [PMID: 6861308]
[110]
Lopez-Candales A, Eleswarapu A, Shaver J, Edelman K, Gulyasy B, Candales MD. Right ventricular outflow tract spectral signal: A useful marker of right ventricular systolic performance and pulmonary hypertension severity. Eur J Echocardiogr 2010; 11(6): 509-15.
[http://dx.doi.org/10.1093/ejechocard/jeq009] [PMID: 20207723]
[111]
Takahama H, McCully RB, Frantz RP, Kane GC. Unraveling the RV ejection doppler envelope. JACC Cardiovasc Imaging 2017; 10(10): 1268-77.
[http://dx.doi.org/10.1016/j.jcmg.2016.12.021] [PMID: 28412426]
[112]
Addetia K, Miyoshi T, Citro R, et al. Two-dimensional echocardiographic right ventricular size and systolic function measurements stratified by sex, age, and ethnicity: Results of the world alliance of societies of echocardiography study. J Am Soc Echocardiogr 2021; 34(11): 1148-1157.e1.
[http://dx.doi.org/10.1016/j.echo.2021.06.013] [PMID: 34274451]
[113]
Lai WW, Gauvreau K, Rivera ES, Saleeb S, Powell AJ, Geva T. Accuracy of guideline recommendations for two-dimensional quantification of the right ventricle by echocardiography. Int J Cardiovasc Imaging 2008; 24(7): 691-8.
[http://dx.doi.org/10.1007/s10554-008-9314-4] [PMID: 18438737]
[114]
Morcos P, Vick GW III, Sahn DJ, Jerosch-Herold M, Shurman A, Sheehan FH. Correlation of right ventricular ejection fraction and tricuspid annular plane systolic excursion in tetralogy of Fallot by magnetic resonance imaging. Int J Cardiovasc Imaging 2009; 25(3): 263-70.
[http://dx.doi.org/10.1007/s10554-008-9387-0] [PMID: 19048388]
[115]
Hoette S, Creuzé N, Günther S, et al. RV fractional area change and TAPSE as predictors of severe right ventricular dysfunction in pulmonary hypertension: A CMR study. Lung 2018; 196(2): 157-64.
[http://dx.doi.org/10.1007/s00408-018-0089-7] [PMID: 29435740]
[116]
Giusca S, Jurcut R, Coman IM, et al. Right ventricular function predicts clinical response to specific vasodilator therapy in patients with pulmonary hypertension. Echocardiography 2013; 30(1): 17-26.
[http://dx.doi.org/10.1111/j.1540-8175.2012.01809.x] [PMID: 22985202]
[117]
Spruijt OA, Di Pasqua MC, Bogaard HJ, et al. Serial assessment of right ventricular systolic function in patients with precapillary pulmonary hypertension using simple echocardiographic parameters: A comparison with cardiac magnetic resonance imaging. J Cardiol 2017; 69(1): 182-8.
[http://dx.doi.org/10.1016/j.jjcc.2016.02.019] [PMID: 27012754]
[118]
D’Andrea A, Stanziola A, Di Palma E, et al. Right ventricular structure and function in idiopathic pulmonary fibrosis with or without pulmonary hypertension. Echocardiography 2016; 33(1): 57-65.
[http://dx.doi.org/10.1111/echo.12992] [PMID: 26096076]
[119]
Henein MY, Grönlund C, Tossavainen E, Söderberg S, Gonzalez M, Lindqvist P. Right and left heart dysfunction predict mortality in pulmonary hypertension. Clin Physiol Funct Imaging 2017; 37(1): 45-51.
[http://dx.doi.org/10.1111/cpf.12266] [PMID: 26096286]
[120]
Siddiqui I, Rajagopal S, Brucker A, et al. Clinical and echocardiographic predictors of outcomes in patients with pulmonary hypertension. Am J Cardiol 2018; 122(5): 872-8.
[http://dx.doi.org/10.1016/j.amjcard.2018.05.019] [PMID: 30093068]
[121]
Sachdev A, Villarraga HR, Frantz RP, et al. Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest 2011; 139(6): 1299-309.
[http://dx.doi.org/10.1378/chest.10-2015] [PMID: 21148241]
[122]
Fine NM, Chen L, Bastiansen PM, et al. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging 2013; 6(5): 711-21.
[http://dx.doi.org/10.1161/CIRCIMAGING.113.000640] [PMID: 23811750]
[123]
Li Y, Wang T, Haines P, et al. Prognostic value of right ventricular two-dimensional and three-dimensional speckle-tracking strain in pulmonary arterial hypertension: Superiority of longitudinal strain over circumferential and radial strain. J Am Soc Echocardiogr 2020; 33(8): 985-994.e1.
[http://dx.doi.org/10.1016/j.echo.2020.03.015] [PMID: 32532643]
[124]
Schindera ST, Mehwald PS, Sahn DJ, Kececioglu D. Accuracy of real-time three-dimensional echocardiography for quantifying right ventricular volume: Static and pulsatile flow studies in an anatomic in vitro model. J Ultrasound Med 2002; 21(10): 1069-75.
[http://dx.doi.org/10.7863/jum.2002.21.10.1069] [PMID: 12369661]
[125]
Maffessanti F, Muraru D, Esposito R, et al. Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: A multicenter echocardiographic study in 507 healthy volunteers. Circ Cardiovasc Imaging 2013; 6(5): 700-10.
[http://dx.doi.org/10.1161/CIRCIMAGING.113.000706] [PMID: 23811752]
[126]
Murata M, Tsugu T, Kawakami T, et al. Prognostic value of three-dimensional echocardiographic right ventricular ejection fraction in patients with pulmonary arterial hypertension. Oncotarget 2016; 7(52): 86781-90.
[http://dx.doi.org/10.18632/oncotarget.13505] [PMID: 27893420]
[127]
Moceri P, Duchateau N, Baudouy D, et al. Three-dimensional right-ventricular regional deformation and survival in pulmonary hypertension. Eur Heart J Cardiovasc Imaging 2018; 19(4): 450-8.
[http://dx.doi.org/10.1093/ehjci/jex163] [PMID: 28637308]
[128]
Benza RL, Gomberg-Maitland M, Elliott CG, et al. Predicting survival in patients with pulmonary arterial hypertension. Chest 2019; 156(2): 323-37.
[http://dx.doi.org/10.1016/j.chest.2019.02.004] [PMID: 30772387]
[129]
El-Kersh K, Zhao C, Elliott G, et al. Derivation of a risk score (REVEAL-ECHO) based on echocardiographic parameters of patients with pulmonary arterial hypertension. Chest 2023; 163(5): 1232-44.
[http://dx.doi.org/10.1016/j.chest.2022.12.045] [PMID: 36634897]
[130]
Mazurek JA, Vaidya A, Mathai SC, Roberts JD, Forfia PR. Follow-up tricuspid annular plane systolic excursion predicts survival in pulmonary arterial hypertension. Pulm Circ 2017; 7(2): 361-71.
[http://dx.doi.org/10.1177/2045893217694175] [PMID: 28597759]
[131]
Ghio S, Pica S, Klersy C, et al. Prognostic value of TAPSE after therapy optimisation in patients with pulmonary arterial hypertension is independent of the haemodynamic effects of therapy. Open Heart 2016; 3(1): e000408.
[http://dx.doi.org/10.1136/openhrt-2016-000408] [PMID: 27175288]
[132]
Kubba S, Davila CD, Forfia PR. Methods for evaluating right ventricular function and ventricular–arterial coupling. Prog Cardiovasc Dis 2016; 59(1): 42-51.
[http://dx.doi.org/10.1016/j.pcad.2016.06.001] [PMID: 27393072]
[133]
Brimioulle S, Wauthy P, Ewalenko P, et al. Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am J Physiol Heart Circ Physiol 2003; 284(5): H1625-30.
[http://dx.doi.org/10.1152/ajpheart.01023.2002] [PMID: 12531727]
[134]
Todaro MC, Carerj S, Zito C, Trifirò MP, Consolo G, Khandheria B. Echocardiographic evaluation of right ventricular-arterial coupling in pulmonary hypertension. Am J Cardiovasc Dis 2020; 10(4): 272-83.
[PMID: 33224574]
[135]
French S, Amsallem M, Ouazani N, et al. Non-invasive right ventricular load adaptability indices in patients with scleroderma-associated pulmonary arterial hypertension. Pulm Circ 2018; 8(3): 1-11.
[http://dx.doi.org/10.1177/2045894018788268] [PMID: 29938590]
[136]
Levy PT, El Khuffash A, Woo KV, Singh GK. Right ventricular–pulmonary vascular interactions: An emerging role for pulmonary artery acceleration time by echocardiography in adults and children. J Am Soc Echocardiogr 2018; 31(8): 962-4.
[http://dx.doi.org/10.1016/j.echo.2018.04.004] [PMID: 29807847]
[137]
Boulate D, Amsallem M, Kuznetsova T, et al. Echocardiographic evaluations of right ventriculo–arterial coupling in experimental and clinical pulmonary hypertension. Physiol Rep 2019; 7(24): e14322.
[http://dx.doi.org/10.14814/phy2.14322] [PMID: 31876125]
[138]
Iacoviello M, Monitillo F, Citarelli G, et al. Right ventriculo-arterial coupling assessed by two-dimensional strain: A new parameter of right ventricular function independently associated with prognosis in chronic heart failure patients. Int J Cardiol 2017; 241: 318-21.
[http://dx.doi.org/10.1016/j.ijcard.2017.04.051] [PMID: 28479093]
[139]
Tello K, Wan J, Dalmer A, et al. Validation of the tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio for the assessment of right ventricular-arterial coupling in severe pulmonary hypertension. Circ Cardiovasc Imaging 2019; 12(9): e009047.
[http://dx.doi.org/10.1161/CIRCIMAGING.119.009047] [PMID: 31500448]
[140]
Aubert R, Venner C, Huttin O, et al. Three-dimensional echocardiography for the assessment of right ventriculo-arterial coupling. J Am Soc Echocardiogr 2018; 31(8): 905-15.
[http://dx.doi.org/10.1016/j.echo.2018.04.013] [PMID: 29958760]
[141]
Bernardo RJ, Haddad F, Couture EJ, et al. Mechanics of right ventricular dysfunction in pulmonary arterial hypertension and heart failure with preserved ejection fraction. Cardiovasc Diagn Ther 2020; 10(5): 1580-603.
[http://dx.doi.org/10.21037/cdt-20-479] [PMID: 33224775]
[142]
Grünig E, Peacock AJ. Imaging the heart in pulmonary hypertension: An update. Eur Respir Rev 2015; 24(138): 653-64.
[http://dx.doi.org/10.1183/16000617.0058-2015] [PMID: 26621979]
[143]
Goh ZM, Balasubramanian N, Alabed S, et al. Right ventricular remodelling in pulmonary arterial hypertension predicts treatment response. Heart 2022; 108(17): 1392-400.
[http://dx.doi.org/10.1136/heartjnl-2021-320733] [PMID: 35512982]
[144]
Lewis RA, Johns CS, Cogliano M, et al. Identification of cardiac magnetic resonance imaging thresholds for risk stratification in pulmonary arterial hypertension. Am J Respir Crit Care Med 2020; 201(4): 458-68.
[http://dx.doi.org/10.1164/rccm.201909-1771OC] [PMID: 31647310]
[145]
Peacock AJ, Crawley S, McLure L, et al. Changes in right ventricular function measured by cardiac magnetic resonance imaging in patients receiving pulmonary arterial hypertension-targeted therapy: The EURO-MR study. Circ Cardiovasc Imaging 2014; 7(1): 107-14.
[http://dx.doi.org/10.1161/CIRCIMAGING.113.000629] [PMID: 24173272]
[146]
Yamada Y, Okuda S, Kataoka M, et al. Prognostic value of cardiac magnetic resonance imaging for idiopathic pulmonary arterial hypertension before initiating intravenous prostacyclin therapy. Circ J 2012; 76(7): 1737-43.
[http://dx.doi.org/10.1253/circj.CJ-11-1237] [PMID: 22498565]
[147]
Alabed S, Shahin Y, Garg P, et al. Cardiac-MRI predicts clinical worsening and mortality in pulmonary arterial hypertension. JACC Cardiovasc Imaging 2021; 14(5): 931-42.
[http://dx.doi.org/10.1016/j.jcmg.2020.08.013] [PMID: 33008758]
[148]
Badagliacca R, Poscia R, Pezzuto B, et al. Right ventricular remodeling in idiopathic pulmonary arterial hypertension: Adaptive versus maladaptive morphology. J Heart Lung Transplant 2015; 34(3): 395-403.
[http://dx.doi.org/10.1016/j.healun.2014.11.002] [PMID: 25499139]
[149]
Roeleveld RJ, Marcus JT, Faes TJC, et al. Interventricular septal configuration at MR imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology 2005; 234(3): 710-7.
[http://dx.doi.org/10.1148/radiol.2343040151] [PMID: 15634939]
[150]
Dellegrottaglie S, Sanz J, Poon M, et al. Pulmonary hypertension: Accuracy of detection with left ventricular septal-to-free wall curvature ratio measured at cardiac MR. Radiology 2007; 243(1): 63-9.
[http://dx.doi.org/10.1148/radiol.2431060067] [PMID: 17392248]
[151]
Junqueira FP, Macedo R, Coutinho AC, et al. Myocardial delayed enhancement in patients with pulmonary hypertension and right ventricular failure: Evaluation by cardiac MRI. Br J Radiol 2009; 82(982): 821-6.
[http://dx.doi.org/10.1259/bjr/28241773] [PMID: 19398466]
[152]
Sanz J, Dellegrottaglie S, Kariisa M, et al. Prevalence and correlates of septal delayed contrast enhancement in patients with pulmonary hypertension. Am J Cardiol 2007; 100(4): 731-5.
[http://dx.doi.org/10.1016/j.amjcard.2007.03.094] [PMID: 17697838]
[153]
McCann GP, Gan CT, Beek AM, Niessen HWM, Noordegraaf AV, van Rossum AC. Extent of MRI delayed enhancement of myocardial mass is related to right ventricular dysfunction in pulmonary artery hypertension. AJR Am J Roentgenol 2007; 188(2): 349-55.
[http://dx.doi.org/10.2214/AJR.05.1259] [PMID: 17242241]
[154]
Freed BH, Gomberg-Maitland M, Chandra S, et al. Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. J Cardiovasc Magn Reson 2012; 14(1): 11.
[http://dx.doi.org/10.1186/1532-429X-14-11] [PMID: 22296860]
[155]
Wang L, Li W, Yang Y, et al. Quantitative assessment of right ventricular glucose metabolism in idiopathic pulmonary arterial hypertension patients: a longitudinal study. Eur Heart J Cardiovasc Imaging 2016; 17(10): 1161-8.
[http://dx.doi.org/10.1093/ehjci/jev297] [PMID: 26588985]
[156]
Tatebe S, Fukumoto Y, Oikawa-Wakayama M, et al. Enhanced [18F]fluorodeoxyglucose accumulation in the right ventricular free wall predicts long-term prognosis of patients with pulmonary hypertension: a preliminary observational study. Eur Heart J Cardiovasc Imaging 2014; 15(6): 666-72.
[http://dx.doi.org/10.1093/ehjci/jet276] [PMID: 24408936]
[157]
Fang W, Zhao L, Xiong CM, et al. Comparison of 18F-FDG uptake by right ventricular myocardium in idiopathic pulmonary arterial hypertension and pulmonary arterial hypertension associated with congenital heart disease. Pulm Circ 2012; 2(3): 365-72.
[http://dx.doi.org/10.4103/2045-8932.101651] [PMID: 23130105]
[158]
Kazimierczyk R, Szumowski P, Nekolla SG, et al. Prognostic role of PET/MRI hybrid imaging in patients with pulmonary arterial hypertension. Heart 2021; 107(1): 54-60.
[http://dx.doi.org/10.1136/heartjnl-2020-316741] [PMID: 32522819]
[159]
Chizinga M, Fares WH. Chronic right heart failure. Heart Fail Clin 2018; 14(3): 413-23.
[http://dx.doi.org/10.1016/j.hfc.2018.03.007] [PMID: 29966638]
[160]
Murray MD, Deer MM, Ferguson JA, et al. Open-label randomized trial of torsemide compared with furosemide therapy for patients with heart failure. Am J Med 2001; 111(7): 513-20.
[http://dx.doi.org/10.1016/S0002-9343(01)00903-2] [PMID: 11705426]
[161]
Safdar Z, Cho E. Effect of spironolactone use in pulmonary arterial hypertension – analysis from pivotal trial databases. Pulm Circ 2021; 11(4): 1-11.
[http://dx.doi.org/10.1177/20458940211045618] [PMID: 34790347]
[162]
Safdar Z, Frost A, Basant A, Deswal A, O’Brian Smith E, Entman M. Spironolactone in pulmonary arterial hypertension: Results of a cross-over study. Pulm Circ 2020; 10(2): 1-8.
[http://dx.doi.org/10.1177/2045894019898030] [PMID: 32426108]
[163]
Maron BA, Waxman AB, Opotowsky AR, et al. Effectiveness of spironolactone plus ambrisentan for treatment of pulmonary arterial hypertension (from the [ARIES] study 1 and 2 trials). Am J Cardiol 2013; 112(5): 720-5.
[http://dx.doi.org/10.1016/j.amjcard.2013.04.051] [PMID: 23751938]
[164]
Mathur PN, Powles P, Pugsley SO, McEwan MP, Campbell EJ. Effect of digoxin on right ventricular function in severe chronic airflow obstruction. A controlled clinical trial. Ann Intern Med 1981; 95(3): 283-8.
[http://dx.doi.org/10.7326/0003-4819-95-3-283] [PMID: 7023308]
[165]
Rich S, Seidlitz M, Dodin E, et al. The short-term effects of digoxin in patients with right ventricular dysfunction from pulmonary hypertension. Chest 1998; 114(3): 787-92.
[http://dx.doi.org/10.1378/chest.114.3.787] [PMID: 9743167]
[166]
Alajaji W, Baydoun A, Al-Kindi SG, Henry L, Hanna MA, Oliveira GH. Digoxin therapy for cor pulmonale: A systematic review. Int J Cardiol 2016; 223: 320-4.
[http://dx.doi.org/10.1016/j.ijcard.2016.08.018] [PMID: 27543702]
[167]
Skhiri M, Hunt SA, Denault AY, Haddad F. [Evidence-based management of right heart failure: A systematic review of an empiric field]. Rev Esp Cardiol 2010; 63(4): 451-71.
[http://dx.doi.org/10.1016/S0300-8932(10)70066-X] [PMID: 20334811]
[168]
Claessen G, La Gerche A, Dymarkowski S, Claus P, Delcroix M, Heidbuchel H. Pulmonary vascular and right ventricular reserve in patients with normalized resting hemodynamics after pulmonary endarterectomy. J Am Heart Assoc 2015; 4(3): e001602.
[http://dx.doi.org/10.1161/JAHA.114.001602] [PMID: 25801760]
[169]
Ritchie M, Waggoner AD, Dávila-román VG, Barzilai B, Trulock EP, Eisenberg PR. Echocardiographic characterization of the improvement in right ventricular function in patients with severe pulmonary hypertension after single-lung transplantation. J Am Coll Cardiol 1993; 22(4): 1170-4.
[http://dx.doi.org/10.1016/0735-1097(93)90433-2] [PMID: 8409056]
[170]
Schulman LL, Leibowitz DW, Anandarangam T, et al. Variability of right ventricular functional recovery after lung transplantation. Transplantation 1996; 62(5): 622-5.
[http://dx.doi.org/10.1097/00007890-199609150-00014] [PMID: 8830826]
[171]
Grünig E, Lichtblau M, Ehlken N, et al. Safety and efficacy of exercise training in various forms of pulmonary hypertension. Eur Respir J 2012; 40(1): 84-92.
[http://dx.doi.org/10.1183/09031936.00123711] [PMID: 22323570]
[172]
Yan L, Shi W, Liu Z, et al. The benefit of exercise-based rehabilitation programs in patients with pulmonary hypertension: a systematic review and meta-analysis of randomized controlled trials. Pulm Circ 2021; 11(2): 1-8.
[http://dx.doi.org/10.1177/20458940211007810] [PMID: 34104422]
[173]
Benza RL, Doyle M, Lasorda D, et al. Monitoring Pulmonary Arterial Hypertension using an Implantable Hemodynamic Sensor. Chest 2019; 156(6): 1176-86.
[http://dx.doi.org/10.1016/j.chest.2019.06.010] [PMID: 31265832]
[174]
Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res 2005; 96(4): 442-50.
[http://dx.doi.org/10.1161/01.RES.0000157672.70560.7b] [PMID: 15692087]
[175]
Granton J, Langleben D, Kutryk MB, et al. Endothelial NO-Synthase Gene-Enhanced Progenitor Cell Therapy for Pulmonary Arterial Hypertension. Circ Res 2015; 117(7): 645-54.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.305951] [PMID: 26195220]
[176]
Provencher S, Herve P, Jais X, et al. Deleterious effects of beta-blockers on exercise capacity and hemodynamics in patients with portopulmonary hypertension. Gastroenterology 2006; 130(1): 120-6.
[http://dx.doi.org/10.1053/j.gastro.2005.10.013] [PMID: 16401475]
[177]
Grinnan D, Bogaard HJ, Grizzard J, et al. Treatment of group I pulmonary arterial hypertension with carvedilol is safe. Am J Respir Crit Care Med 2014; 189(12): 1562-4.
[http://dx.doi.org/10.1164/rccm.201311-2025LE] [PMID: 24930531]
[178]
Thenappan T, Weir EK, Prins KW, Pritzker MR, Archer SL. Carvedilol for treatment of right ventricular dysfunction in pulmonary arterial hypertension. J Am Heart Assoc 2021; 10(14): e021518.
[http://dx.doi.org/10.1161/JAHA.121.021518] [PMID: 34259020]
[179]
Rijnierse MT, Groeneveldt JA, van Campen JSJA, et al. Bisoprolol therapy does not reduce right ventricular sympathetic activity in pulmonary arterial hypertension patients. Pulm Circ 2020; 10(2): 1-9.
[http://dx.doi.org/10.1177/2045894019873548] [PMID: 32363028]
[180]
van Campen JSJA, de Boer K, van de Veerdonk MC, et al. Bisoprolol in idiopathic pulmonary arterial hypertension: An explorative study. Eur Respir J 2016; 48(3): 787-96.
[http://dx.doi.org/10.1183/13993003.00090-2016] [PMID: 27390285]
[181]
Farha S, Saygin D, Park MM, et al. Pulmonary arterial hypertension treatment with carvedilol for heart failure: Aa randomized controlled trial. JCI Insight 2017; 2(16): e95240.
[http://dx.doi.org/10.1172/jci.insight.95240] [PMID: 28814664]
[182]
Bandyopadhyay D, Bajaj NS, Zein J, Minai OA, Dweik RA. Outcomes of β-blocker use in pulmonary arterial hypertension: A propensity-matched analysis. Eur Respir J 2015; 46(3): 750-60.
[http://dx.doi.org/10.1183/09031936.00215514] [PMID: 26022959]
[183]
Badagliacca R, Mercurio V, Romeo E, et al. Beta-blockers in pulmonary arterial hypertension: Time for a second thought? Vascul Pharmacol 2022; 144: 106974.
[http://dx.doi.org/10.1016/j.vph.2022.106974] [PMID: 35248781]
[184]
Fang YH, Piao L, Hong Z, et al. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle. J Mol Med (Berl) 2012; 90(1): 31-43.
[http://dx.doi.org/10.1007/s00109-011-0804-9] [PMID: 21874543]
[185]
Han Y, Forfia P, Vaidya A, et al. Ranolazine improves right ventricular function in patients with precapillary pulmonary hypertension: Results from a double-blind, randomized, placebo-controlled trial. J Card Fail 2021; 27(2): 253-7.
[http://dx.doi.org/10.1016/j.cardfail.2020.10.006] [PMID: 33223140]
[186]
Verdejo HE, Rojas A, López-Crisosto C, et al. Effects of trimetazidine on right ventricular function and ventricular remodeling in patients with pulmonary artery hypertension: A randomised controlled trial. J Clin Med 2023; 12(4): 1571.
[http://dx.doi.org/10.3390/jcm12041571] [PMID: 36836104]
[187]
Michelakis ED, Gurtu V, Webster L, et al. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Sci Transl Med 2017; 9(413): eaao4583.
[http://dx.doi.org/10.1126/scitranslmed.aao4583] [PMID: 29070699]
[188]
Pena A, Kobir A, Goncharov D, et al. Pharmacological inhibition of mtor kinase reverses right ventricle remodeling and improves right ventricle structure and function in rats. Am J Respir Cell Mol Biol 2017; 57(5): 615-25.
[http://dx.doi.org/10.1165/rcmb.2016-0364OC] [PMID: 28679058]
[189]
Kojonazarov B, Novoyatleva T, Boehm M, et al. p38 MAPK inhibition improves heart function in pressure-loaded right ventricular hypertrophy. Am J Respir Cell Mol Biol 2017; 57(5): 603-14.
[http://dx.doi.org/10.1165/rcmb.2016-0374OC] [PMID: 28657795]
[190]
Boehm M, Tian X, Ali MK, et al. Improving right ventricular function by increasing BMP signaling with FK506. Am J Respir Cell Mol Biol 2021; 65(3): 272-87.
[http://dx.doi.org/10.1165/rcmb.2020-0528OC] [PMID: 33938785]
[191]
Spiekerkoetter E, Sung YK, Sudheendra D, et al. Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension. Eur Respir J 2017; 50(3): 1602449.
[http://dx.doi.org/10.1183/13993003.02449-2016] [PMID: 28893866]
[192]
Dai Z, Zhu MM, Peng Y, et al. Therapeutic targeting of vascular remodeling and right heart failure in pulmonary arterial hypertension with a hif-2α inhibitor. Am J Respir Crit Care Med 2018; 198(11): 1423-34.
[http://dx.doi.org/10.1164/rccm.201710-2079OC] [PMID: 29924941]
[193]
Humbert M, McLaughlin V, Gibbs JSR, et al. Sotatercept for the treatment of pulmonary arterial hypertension. N Engl J Med 2021; 384(13): 1204-15.
[http://dx.doi.org/10.1056/NEJMoa2024277] [PMID: 33789009]
[194]
Lumens J, Arts T, Broers B, et al. Right ventricular free wall pacing improves cardiac pump function in severe pulmonary arterial hypertension: a computer simulation analysis. Am J Physiol Heart Circ Physiol 2009; 297(6): H2196-205.
[http://dx.doi.org/10.1152/ajpheart.00870.2009] [PMID: 19837949]
[195]
Handoko ML, Lamberts RR, Redout EM, et al. Right ventricular pacing improves right heart function in experimental pulmonary arterial hypertension: a study in the isolated heart. Am J Physiol Heart Circ Physiol 2009; 297(5): H1752-9.
[http://dx.doi.org/10.1152/ajpheart.00555.2009] [PMID: 19734361]
[196]
Hardziyenka M, Surie S, de Groot JR, et al. Right ventricular pacing improves haemodynamics in right ventricular failure from pressure overload: an open observational proof-of-principle study in patients with chronic thromboembolic pulmonary hypertension. Europace 2011; 13(12): 1753-9.
[http://dx.doi.org/10.1093/europace/eur189] [PMID: 21784747]
[197]
Oktay AA, Mandras SA, Shah S, et al. First in human: The effects of biventricular pacing on cardiac output in severe pulmonary arterial hypertension. Heart Vessels 2020; 35(6): 852-8.
[http://dx.doi.org/10.1007/s00380-019-01540-9] [PMID: 31792566]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy