Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Immunomodulatory Plant Natural Products as Therapeutics against Inflammatory Skin Diseases

Author(s): Nikhila Sampath Kumar, Navaneetha Reddy, Halmuthur Kumar* and Sravanthi Vemireddy

Volume 24, Issue 12, 2024

Published on: 11 March, 2024

Page: [1013 - 1034] Pages: 22

DOI: 10.2174/0115680266277952240223120435

Price: $65

Abstract

Frequently occurring inflammatory skin conditions such as psoriasis, dermatitis, acne, including skin cancer, wounds and other disorders arising out of premature skin aging, deteriorate skin health and adversely impact human life. Even though several synthetic compounds have evolved for treating these skin conditions, natural-product-based therapeutics are gaining popularity with growing evidence of their efficacy and safety for treating skin disorders. Many of these inflammatory skin diseases have underlying disturbances in our immune system and immunomodulatory natural products provide solutions for their effective treatment and aid in understanding the underlying mechanism of such inflammatory skin conditions. Based on this premise, the present review summarizes the possible application of plant-derived immunomodulatory compositions and single molecules for treating inflammatory skin conditions. In vitro, in vivo and mechanistic studies reported the application of selected plant-derived natural products for the treatment of inflammatory skin disorders including, cancer and infections.

Several online databases including PubMed, Google Scholar, and Science Direct have been searched for gathering the information covered in this review. Empirical studies demonstrated that most of these natural compounds exhibited therapeutic properties through their immunomodulatory and anti-inflammatory potential supplemented often with anti-microbial, anti-neoplastic, and anti- oxidant activities. Overall, plant-based natural products discussed here are capable of modulating the immune system to minimize or completely suppress the pro-inflammatory markers, scavenge free radicals (ROS), prevent bacteria, fungal, and virus-derived skin infections and often regress skin cancer through the induction of apoptosis. The challenges and opportunities associated with the application of plant-based immunomodulators for skin applications and their safety considerations are also discussed here. The present study indicated that immunomodulatory plant natural products being biologically validated ligands against various biological targets manifested in inflammatory skin diseases, offer an effective, safe and affordable treatment for such disorders affecting skin health. However, further clinical evaluations are needed to substantiate these findings.

Keywords: Anti-inflammatory natural products, Immunomodulators, Skin disorder, Dermatitis, Psoriasis, Skin cancer, Topical drug delivery.

Graphical Abstract
[1]
Chen, J.; Li, W.; Yao, H.; Xu, J. Insights into drug discovery from natural products through structural modification. Fitoterapia, 2015, 103, 231-241.
[http://dx.doi.org/10.1016/j.fitote.2015.04.012] [PMID: 25917513]
[2]
Goh, B.H. Targeting human inflammatory skin diseases with natural products: Exploring potential mechanisms and regulatory pathways. Frontiers Media SA, 2021.
[3]
Mohd Zaid, N.A.; Sekar, M.; Bonam, S.R.; Gan, S.H.; Lum, P.T.; Begum, M.Y.; Mat Rani, N.N.I.; Vaijanathappa, J.; Wu, Y.S.; Subramaniyan, V.; Fuloria, N.K.; Fuloria, S. Promising natural products in new drug design, development, and therapy for skin disorders: An overview of scientific evidence and understanding their mechanism of action. Drug Des. Devel. Ther., 2022, 16, 23-66.
[http://dx.doi.org/10.2147/DDDT.S326332] [PMID: 35027818]
[4]
Moudgil, K.D.; Venkatesha, S.H. The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation. Int. J. Mol. Sci., 2022, 24(1), 95.
[http://dx.doi.org/10.3390/ijms24010095] [PMID: 36613560]
[5]
Javadi, B.; Sahebkar, A. Natural products with anti-inflammatory and immunomodulatory activities against autoimmune myocarditis. Pharmacol. Res., 2017, 124, 34-42.
[http://dx.doi.org/10.1016/j.phrs.2017.07.022] [PMID: 28757189]
[6]
Dawid-Pać, R. Medicinal plants used in treatment of inflammatory skin diseases. Adv. Dermatol. Allergol., 2013, 30(3), 170-177.
[http://dx.doi.org/10.5114/pdia.2013.35620]
[7]
Brahmachari, G. Natural products in drug discovery: impacts and opportunities—an assessment. In: Bioactive natural products: opportunities and challenges in medicinal chemistry; World Scientific, 2012; pp. 1-199.
[8]
Majeed, M. Evidence-based medicinal plant products for the health care of world population. Ann. Phytomed., 2017, VI(I), 1-4.
[http://dx.doi.org/10.21276/ap.2017.6.1.1]
[9]
Subramoniam, A. Phytomedicines for healthcare. Ann. Phytomed., 2014, 3, 1-3.
[10]
Pandey, M. Phytomedicine: An ancient approach turning into future potential source of thera-peutics. J. Pharmacog. Phytother., 2011, 3(1), 113-117.
[11]
Gawkrodger, D. Dermatology e-book: an illustrated colour text; Elsevier Health Sciences, 2016.
[12]
Sinikumpu, S.P.; Huilaja, L.; Jokelainen, J.; Koiranen, M.; Auvinen, J.; Hägg, P.M.; Wikström, E.; Timonen, M.; Tasanen, K. High prevalence of skin diseases and need for treatment in a middle-aged population. A Northern Finland Birth Cohort 1966 study. PLoS One, 2014, 9(6), e99533.
[http://dx.doi.org/10.1371/journal.pone.0099533] [PMID: 24911008]
[13]
Akdis, C.A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat. Rev. Immunol., 2021, 21(11), 739-751.
[http://dx.doi.org/10.1038/s41577-021-00538-7] [PMID: 33846604]
[14]
Richmond, J.M.; Harris, J.E. Immunology and skin in health and disease. Cold Spring Harb. Perspect. Med., 2014, 4(12), a015339.
[http://dx.doi.org/10.1101/cshperspect.a015339] [PMID: 25452424]
[15]
Ahad, B. Medicinal plants and herbal drugs: An overview. In: Medicinal and Aromatic Plants; Springer, 2021.
[16]
Barkat, M.A. Herbal medicine: clinical perspective and regulatory status. Combinat. Chem. High Through. Screen., 2021, 24(10), 573-1582.
[http://dx.doi.org/10.2174/1386207323999201110192942]
[17]
Anand, U.; Tudu, C.K.; Nandy, S.; Sunita, K.; Tripathi, V.; Loake, G.J.; Dey, A.; Proćków, J. Ethnodermatological use of medicinal plants in India: From ayurvedic formulations to clinical perspectives - A review. J. Ethnopharmacol., 2022, 284, 114744.
[http://dx.doi.org/10.1016/j.jep.2021.114744] [PMID: 34656666]
[18]
Kurian, A.; Sankar, M.A. Medicinal plants; New India Publishing, 2007. Vol. 2.
[19]
Cleland, J.A.; Venzke, J.W. Dermatomyositis: Evolution of a Diagnosis. Phys. Ther., 2003, 83(10), 932-945.
[http://dx.doi.org/10.1093/ptj/83.10.932] [PMID: 14519064]
[20]
Arbuckle, M.R.; McClain, M.T.; Rubertone, M.V.; Scofield, R.H.; Dennis, G.J.; James, J.A.; Harley, J.B. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med., 2003, 349(16), 1526-1533.
[http://dx.doi.org/10.1056/NEJMoa021933] [PMID: 14561795]
[21]
Corsini, E.; Galli, C.L. Epidermal cytokines in experimental contact dermatitis. Toxicology, 2000, 142(3), 203-212.
[http://dx.doi.org/10.1016/S0300-483X(99)00145-6] [PMID: 10667891]
[22]
Kaplan, D.H.; Igyártó, B.Z.; Gaspari, A.A. Early immune events in the induction of allergic contact dermatitis. Nat. Rev. Immunol., 2012, 12(2), 114-124.
[http://dx.doi.org/10.1038/nri3150] [PMID: 22240625]
[23]
Siiskonen, H.; Harvima, I. Mast cells and sensory nerves contribute to neurogenic inflammation and pruritus in chronic skin inflammation. Front. Cell. Neurosci., 2019, 13, 422.
[http://dx.doi.org/10.3389/fncel.2019.00422] [PMID: 31619965]
[24]
Chieosilapatham, P.; Kiatsurayanon, C.; Umehara, Y.; Trujillo-Paez, J.V.; Peng, G.; Yue, H.; Nguyen, L.T.H.; Niyonsaba, F. Keratinocytes: Innate immune cells in atopic dermatitis. Clin. Exp. Immunol., 2021, 204(3), 296-309.
[http://dx.doi.org/10.1111/cei.13575] [PMID: 33460469]
[25]
Pratt, C.H.; King, L.E., Jr; Messenger, A.G.; Christiano, A.M.; Sundberg, J.P. Alopecia areata. Nat. Rev. Dis. Primers, 2017, 3(1), 17011.
[http://dx.doi.org/10.1038/nrdp.2017.11] [PMID: 28300084]
[26]
Armstrong, A.W.; Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA, 2020, 323(19), 1945-1960.
[http://dx.doi.org/10.1001/jama.2020.4006] [PMID: 32427307]
[27]
Arnold, D.L.; Krishnamurthy, K. Lichen planus; StatPearls, 2018.
[28]
Villarreal, C.D.V.; Alanis, J.C.S.; Pérez, J.C.J.; Candiani, J.O. Cutaneous graft-versus-host disease after hematopoietic stem cell transplant - a review. An. Bras. Dermatol., 2016, 91(3), 336-343.
[http://dx.doi.org/10.1590/abd1806-4841.20164180] [PMID: 27438202]
[29]
Freeman, A.F.; Davis, J.; Anderson, V.L.; Barson, W.; Darnell, D.N.; Puck, J.M.; Holland, S.M. Pneumocystis jiroveci infection in patients with hyper-immunoglobulin E syndrome. Pediatrics, 2006, 118(4), e1271-e1275.
[http://dx.doi.org/10.1542/peds.2006-0311] [PMID: 16940164]
[30]
Freeman, A.F.; Olivier, K.N. Olivier, Hyper-IgE syndromes and the lung. Clin. Chest Med., 2016, 37(3), 557-567.
[http://dx.doi.org/10.1016/j.ccm.2016.04.016]
[31]
Arnaout, M.A. Leukocyte adhesion molecules deficiency: Its structural basis, pathophysiology and implications for modulating the inflammatory response. Immunol. Rev., 1990, 114(1), 145-180.
[http://dx.doi.org/10.1111/j.1600-065X.1990.tb00564.x] [PMID: 1973407]
[32]
Vaillant, A.A.J.; Ahmad, F. Leukocyte adhesion deficiency. Stat Pearls; Stat Pearls Publishing: Treasure Island, FL, 2022.
[33]
Plaza, J.A.; Prieto, V. Inflammatory Skin Disorders; Demos Medical Publishing, 2012.
[34]
Harris, B.W.; Crane, J.S.; Schlessinger, J. Solar urticaria; StatPearls, 2017.
[35]
Norris, P.G.; Morris, J.; Smith, N.P.; Chu, A.C.; Hawk, J.L.M. Chronic actinic dermatitis: An immunohistologic and photobiologic study. J. Am. Acad. Dermatol., 1989, 21(5), 966-971.
[http://dx.doi.org/10.1016/S0190-9622(89)70284-X] [PMID: 2808833]
[36]
Foti, C. Photoallergic contact dermatitis. Giornale Italiano di Dermatologia e Venereologia: Organo Ufficiale. Societa Italiana di Dermatologia e Sifilografia, 2009, 144(5), 515-525.
[37]
Bergqvist, C.; Ezzedine, K. Vitiligo: a review. Dermatology, 2020, 236(6), 571-592.
[http://dx.doi.org/10.1159/000506103] [PMID: 32155629]
[38]
Marks, J.G.; Miller, J.J. Lookingbill and Marks' Principles of Dermatology E-Book; Elsevier Health Sciences, 2017.
[39]
Reamy, B.V.; Williams, P.M.; Lindsay, T.J. Henoch-Schönlein purpura. Am. Fam. Physician, 2009, 80(7), 697-704.
[PMID: 19817340]
[40]
Chango Azanza, J.J.; Calle Sarmiento, P.M.; Lopetegui Lia, N.; Alexander, S.A.; Modi, V. Leukocytoclastic vasculitis: An early skin biopsy makes a difference. Cureus, 2020, 12(5), e7912.
[http://dx.doi.org/10.7759/cureus.7912] [PMID: 32494527]
[41]
Baigrie, D.; Goyal, A.; Crane, J.S. Leukocytoclastic vasculitis; StatPearls, 2018.
[42]
Jennette, J.C. Nomenclature of systemic vasculitides. arthritis & rheumatism. Official J. Am. Coll. Rheumatol., 1994, 37(2), 187-192.
[43]
Deacock, S.J. An approach to the patient with urticaria. Clin. Exp. Immunol., 2008, 153(2), 151-161.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03693.x] [PMID: 18713139]
[44]
Engin, B.; Oba, M.Ç.; Serdaroğlu, S. Urticaria and Angioedema; Springer, 2017.
[45]
Ely, J.W.; Seabury Stone, M. The generalized rash: part I. Differential diagnosis. Am. Fam. Physician, 2010, 81(6), 726-734.
[PMID: 20229971]
[46]
Hafsi, W.; Badri, T. Erythema Multiforme; Johns Hopkins, 2017.
[47]
Paulino, L.; Hamblin, D.J.; Osondu, N.; Amini, R. Variants of erythema multiforme: A case report and literature review. Cureus, 2018, 10(10), e3459.
[http://dx.doi.org/10.7759/cureus.3459] [PMID: 30564538]
[48]
Klimas, N.; Quintanilla-Dieck, J.; Vandergriff, T. Stevens–Johnson syndrome and toxic epidermal necrolysis. In: Cutaneous Drug Eruptions: Diagnosis; Histopathology and Therapy, 2015; pp. 259-269.
[http://dx.doi.org/10.1007/978-1-4471-6729-7_24]
[49]
Karre, S.; Eriator, I.; Karre, S. Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN): could retinoids play a causative role? Med. Sci. Monit., 2015, 21, 133-143.
[http://dx.doi.org/10.12659/MSM.891043] [PMID: 25579087]
[50]
Farasat, S.; Aksentijevich, I.; Toro, J.R. Autoinflammatory diseases: Clinical and genetic advances. Arch. Dermatol., 2008, 144(3), 392-402.
[http://dx.doi.org/10.1001/archderm.144.3.392] [PMID: 18347298]
[51]
James, K.A.; Culton, D.A.; Diaz, L.A. Diagnosis and clinical features of pemphigus foliaceus. Dermatol. Clin., 2011, 29(3), 405-412.
[52]
Yatim, A.; Bohelay, G.; Grootenboer-Mignot, S.; Prost-Squarcioni, C.; Alexandre, M.; Le Roux-Villet, C.; Martin, A.; Maubec, E.; Caux, F. Paraneoplastic pemphigus revealed by anti-programmed death-1 pembrolizumab therapy for cutaneous squamous cell carcinoma complicating hidradenitis suppurativa. Front. Med., 2019, 6, 249.
[http://dx.doi.org/10.3389/fmed.2019.00249] [PMID: 31750309]
[53]
Criado, P.R.; Criado, R.F.; Aoki, V.; Belda, W., Jr; Halpern, I.; Landman, G.; Vasconcellos, C. Dermatitis herpetiformis: relevance of the physical examination to diagnosis suspicion. Can. Fam. Physician, 2012, 58(8), 843-847.
[PMID: 22893336]
[54]
Chen, S.; Mattei, P.; Fischer, M.; Gay, J.D.; Milner, S.M.; Price, L.A. Linear IgA bullous dermatosis. Eplasty, 2013, 13, ic49.
[PMID: 23882302]
[55]
Kasperkiewicz, M.; Ellebrecht, C.T.; Takahashi, H.; Yamagami, J.; Zillikens, D.; Payne, A.S.; Amagai, M. Pemphigus. Nat. Rev. Dis. Primers, 2017, 3(1), 17026.
[http://dx.doi.org/10.1038/nrdp.2017.26] [PMID: 28492232]
[56]
Wang, Q.; Kuang, H.; Su, Y.; Sun, Y.; Feng, J.; Guo, R.; Chan, K. Naturally derived anti-inflammatory compounds from Chinese medicinal plants. J. Ethnopharmacol., 2013, 146(1), 9-39.
[http://dx.doi.org/10.1016/j.jep.2012.12.013] [PMID: 23274744]
[57]
(a) Sharma, C.; Al Kaabi, J.M.; Nurulain, S.M.; Goyal, S.N.; Kamal, M.A.; Ojha, S. Polypharmacological properties and therapeutic potential of β-caryophyllene: a dietary phytocannabinoid of pharmaceutical promise. Curr. Pharm. Des., 2016, 22(21), 3237-3264. http://dx.doi.org/10.2174/1381612822666160311115226 PMID: 26965491(b) DineshKumar et al. A review of immunomodulators in Indian healthcare system; J. Microbiolol. Immunol., 2012, 45(3), p. 165-184
[58]
Nestle, F.O.; Di Meglio, P.; Qin, J.Z.; Nickoloff, B.J. Skin immune sentinels in health and disease. Nat. Rev. Immunol., 2009, 9(10), 679-691.
[http://dx.doi.org/10.1038/nri2622] [PMID: 19763149]
[59]
Masopust, D.; Soerens, A.G. Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol., 2019, 37(1), 521-546.
[http://dx.doi.org/10.1146/annurev-immunol-042617-053214] [PMID: 30726153]
[60]
Mueller, S.N.; Mackay, L.K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol., 2016, 16(2), 79-89.
[http://dx.doi.org/10.1038/nri.2015.3] [PMID: 26688350]
[61]
Briganti, S.; Picardo, M. Antioxidant activity, lipid peroxidation and skin diseases. What’s new. J. Eur. Acad. Dermatol. Venereol., 2003, 17(6), 663-669.
[http://dx.doi.org/10.1046/j.1468-3083.2003.00751.x] [PMID: 14761133]
[62]
Asif, H. Monograph of apium graveolens Linn. J. Med. Plants Res., 2011, 5(8), 1494-1496.
[63]
Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Czop, M.; Sakipova, Z.; Głowniak, K.; Kukula-Koch, W. Achillea millefolium L. and Achillea biebersteinii Afan. hydroglycolic extracts–bioactive ingredients for cosmetic use. Molecules, 2020, 25(15), 3368.
[http://dx.doi.org/10.3390/molecules25153368] [PMID: 32722270]
[64]
Vázquez, B.; Avila, G.; Segura, D.; Escalante, B. Antiinflammatory activity of extracts from Aloe vera gel. J. Ethnopharmacol., 1996, 55(1), 69-75.
[http://dx.doi.org/10.1016/S0378-8741(96)01476-6] [PMID: 9121170]
[65]
Kapoor, B.; Kaur, G.; Gupta, M.; Gupta, R. Indian medicinal plants useful in treatment of gout: A review for current status and future prospective. Asian J. Pharm. Clin. Res., 2017, 10(11), 407-416.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i11.20170]
[66]
Biella, C.A.; Salvador, M.J.; Dias, D.A.; Dias-Baruffi, M.; Pereira-Crott, L.S. Evaluation of immunomodulatory and anti-inflammatory effects and phytochemical screening of Alternanthera tenella Colla (Amaranthaceae) aqueous extracts. Mem. Inst. Oswaldo Cruz, 2008, 103(6), 569-577.
[http://dx.doi.org/10.1590/S0074-02762008000600010] [PMID: 18949327]
[67]
Rajkumar, M.; Sringeswara, A.; Rajanna, M. Ex-situ conservation of medicinal plants at university of agricultural sciences, Bangalore, Karnataka. Recent Res. Sci. Technol., 2011, 3(4)
[68]
Kumar, D. A review of immunomodulators in the Indian traditional health care system. J. Microbiol., Immunol. Infect., 2012, 45(3), 165-184.
[http://dx.doi.org/10.1016/j.jmii.2011.09.030]
[69]
Pereira, R.L.C.; Ibrahim, T.; Lucchetti, L.; da Silva, A.J.R.; de Moraes, V.L.G. Immunosuppressive and anti-inflammatory effects of methanolic extract and the polyacetylene isolated from Bidens pilosa L. Immunopharmacology, 1999, 43(1), 31-37.
[http://dx.doi.org/10.1016/S0162-3109(99)00039-9] [PMID: 10437654]
[70]
Furgiuele, A.; Cosentino, M.; Ferrari, M.; Marino, F. Immunomodulatory potential of cannabidiol in multiple sclerosis: A systematic review. J. Neuroimmune Pharmacol., 2021, 16(2), 251-269.
[http://dx.doi.org/10.1007/s11481-021-09982-7] [PMID: 33492630]
[71]
Parbat, A.Y. Ethnopharmacological review of traditional medicinal plants as immunomodula-tor. World J. Biol. Pharma. Health Sci., 2021, 6(2), 043-055.
[72]
Costa, J.F.O.; David, J.P.L.; David, J.M.; Giulietti, A.M.; Queiroz, L.P.; Santos, R.R.; Soares, M.B.P. Immunomodulatory activity of extracts from cordia superba cham. and cordia rufescens A. DC. (Boraginaceae), plant species native from Brazilian Semi-arid. Rev. Bras. Farmacogn., 2008, 18(1), 11-15.
[http://dx.doi.org/10.1590/S0102-695X2008000100004]
[73]
Yang, M.L.; Kuo, P.C.; Hwang, T.L.; Wu, T.S. Anti-inflammatory principles from Cordyceps sinensis. J. Nat. Prod., 2011, 74(9), 1996-2000.
[http://dx.doi.org/10.1021/np100902f] [PMID: 21848266]
[74]
Ghosh, P. Botanical description, phytochemical constituents and pharmacological properties of Euphorbia hirta Linn: A review. Int. J. Health Sci. Res., 2019, 9(3), 273-286.
[75]
Khristi, V.; Patel, V. Therapeutic potential of Hibiscus rosa sinensis: A review. Int. J. Nutr. Dietet., 2016, 4(2), 105-123.
[76]
Shantilal, S.; Vaghela, J.S.; Sisodia, S. Review on immunomodulation and immunomodulatory activity of some medicinal plant. Eur. J. Biomed., 2018, 5(8), 163-174.
[77]
Verma, S.; Singh, S. Current and future status of herbal medicines. Vet. World, 2008, 2(2), 347.
[http://dx.doi.org/10.5455/vetworld.2008.347-350]
[78]
Chhabra, S. Th17/IL-17, Immunometabolism and Psoriatic Disease: A Pathological Trifecta; Intechopen, 2022.
[79]
Tsepkolenko, A.; Tsepkolenko, V.; Dash, S.; Mishra, A.; Bader, A.; Melerzanov, A.; Giri, S. The regenerative potential of skin and the immune system. Clin. Cosmet. Investig. Dermatol., 2019, 12, 519-532.
[http://dx.doi.org/10.2147/CCID.S196364] [PMID: 31410045]
[80]
Kellogg, J.J.; Todd, D.A.; Egan, J.M.; Raja, H.A.; Oberlies, N.H.; Kvalheim, O.M.; Cech, N.B. Biochemometrics for natural products research: Comparison of data analysis approaches and application to identification of bioactive compounds. J. Nat. Prod., 2016, 79(2), 376-386.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01014] [PMID: 26841051]
[81]
Nothias, L.F.; Nothias-Esposito, M.; da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A.; Leyssen, P.; Touboul, D.; Costa, J.; Paolini, J.; Alexandrov, T.; Litaudon, M.; Dorrestein, P.C. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J. Nat. Prod., 2018, 81(4), 758-767.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00737] [PMID: 29498278]
[82]
Venkatesan, G.K. Review on medicinal potential of alkaloids and saponins. Pharamacologyonline, 2019, 1, 1-20.
[83]
Carter, R.B. Topical capsaicin in the treatment of cutaneous disorders. Drug Dev. Res., 1991, 22(2), 109-123.
[http://dx.doi.org/10.1002/ddr.430220202]
[84]
Wu, Q.; Bai, P.; Guo, H.; Guo, M.S.S.; Xia, Y.; Xia, Y.; Gao, X.; Wang, X.; Wu, J.; Dong, T.T.X.; Tsim, K.W.K. Capsaicin, a phytochemical from chili pepper, alleviates the ultraviolet irradiation-induced decline of collagen in dermal fibroblast via blocking the generation of reactive oxygen species. Front. Pharmacol., 2022, 13, 872912.
[http://dx.doi.org/10.3389/fphar.2022.872912] [PMID: 35370728]
[85]
Bagood, M.D.; Isseroff, R.R. TRPV1: Role in skin and skin diseases and potential target for improving wound healing. Int. J. Mol. Sci., 2021, 22(11), 6135.
[86]
Philips, N.; Keller, T.; Hendrix, C.; Hamilton, S.; Arena, R.; Tuason, M.; Gonzalez, S. Regulation of the extracellular matrix remodeling by lutein in dermal fibroblasts, melanoma cells, and ultraviolet radiation exposed fibroblasts. Arch. Dermatol. Res., 2007, 299(8), 373-379.
[http://dx.doi.org/10.1007/s00403-007-0779-0] [PMID: 17710425]
[87]
El Midaoui, A.; Ghzaiel, I.; Vervandier-Fasseur, D.; Ksila, M.; Zarrouk, A.; Nury, T.; Khallouki, F.; El Hessni, A.; Ibrahimi, S.O.; Latruffe, N.; Couture, R.; Kharoubi, O.; Brahmi, F.; Hammami, S.; Masmoudi-Kouki, O.; Hammami, M.; Ghrairi, T.; Vejux, A.; Lizard, G. Saffron (Crocus sativus L.): A source of nutrients for health and for the treatment of neuropsychiatric and age-related diseases. Nutrients, 2022, 14(3), 597.
[http://dx.doi.org/10.3390/nu14030597] [PMID: 35276955]
[88]
Pashirzad, M.; Shafiee, M.; Avan, A.; Ryzhikov, M.; Fiuji, H.; Bahreyni, A.; Khazaei, M.; Soleimanpour, S.; Hassanian, S.M. Therapeutic potency of crocin in the treatment of inflammatory diseases: Current status and perspective. J. Cell. Physiol., 2019, 234(9), 14601-14611.
[http://dx.doi.org/10.1002/jcp.28177] [PMID: 30673132]
[89]
John, J. Therapeutic potential of Withania somnifera: A report on phyto- pharmacological properties. Int. J. Pharm. Sci. Res., 2014, 5(6), 2131-2148.
[90]
Pastorino, G.; Cornara, L.; Soares, S.; Rodrigues, F.; Oliveira, M.B.P.P. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother. Res., 2018, 32(12), 2323-2339.
[http://dx.doi.org/10.1002/ptr.6178] [PMID: 30117204]
[91]
Chen, H. The protective effects of 18β-Glycyrrhetinic acid on Imiquimod-Induced psoriasis in mice via suppression of mTOR/STAT3 signaling. J. Immunol. Res., 2020, 2020
[92]
Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 2018, 10(11), 1618.
[http://dx.doi.org/10.3390/nu10111618] [PMID: 30400131]
[93]
Sharma, R.R.; Deep, A.; Abdullah, S.T. Herbal products as skincare therapeutic agents against ultraviolet radiation-induced skin disorders. J. Ayurveda Integr. Med., 2022, 13(1), 100500.
[http://dx.doi.org/10.1016/j.jaim.2021.07.016] [PMID: 34973886]
[94]
Tyagi, V.; Farooq, U.; Awasthi, G. phytochemical analysis and evaluation of anti-inflammatory activity of bigno-nia venusta (Ker Gawl.) Miers flower extracts. UJPAH, 2020, 1(28), 1-9.
[95]
Cates, T. Clean Skin from Within: The Spa Doctor's Two-Week Program to Glowing, Naturally Youthful Skin; Fair Winds Press, 2017.
[96]
Torres-Contreras, A.M.; Garcia-Baeza, A.; Vidal-Limon, H.R.; Balderas-Renteria, I.; Ramírez-Cabrera, M.A.; Ramirez-Estrada, K. Plant secondary metabolites against skin photodamage: Mexican plants, a potential source of uv-radiation protectant molecules. Plants, 2022, 11(2), 220.
[http://dx.doi.org/10.3390/plants11020220] [PMID: 35050108]
[97]
Dharunya, G.; Duraipandy, N.; Lakra, R.; Korapatti, P.S.; Jayavel, R.; Kiran, M.S. Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy. Biomed. Mater., 2016, 11(4), 045011.
[http://dx.doi.org/10.1088/1748-6041/11/4/045011] [PMID: 27509047]
[98]
Gianfaldoni, S.; Wollina, U.; Tirant, M.; Tchernev, G.; Lotti, J.; Satolli, F.; Rovesti, M.; França, K.; Lotti, T. Herbal compounds for the treatment of vitiligo: A review. Open Access Maced. J. Med. Sci., 2018, 6(1), 203-207.
[http://dx.doi.org/10.3889/oamjms.2018.048] [PMID: 29484024]
[99]
Jalalmanesh, S.; Mansouri, P.; Rajabi, M.; Monji, F. Therapeutic effects of turmeric topical cream in vitiligo: A randomized, double-blind, placebo-controlled pilot study. J. Cosmet. Dermatol., 2022, 21(10), 4454-4461.
[http://dx.doi.org/10.1111/jocd.14814] [PMID: 35104042]
[100]
Demento, S.L.; Siefert, A.L.; Bandyopadhyay, A.; Sharp, F.A.; Fahmy, T.M. Pathogen-associated molecular patterns on biomaterials: A paradigm for engineering new vaccines. Trends Biotechnol., 2011, 29(6), 294-306.
[http://dx.doi.org/10.1016/j.tibtech.2011.02.004] [PMID: 21459467]
[101]
Shadi, T.Z.; Talal, A.Z. A review of four common medicinal plants used to treat eczema. J. Med. Plants Res., 2015, 9(24), 702-711.
[http://dx.doi.org/10.5897/JMPR2015.5831]
[102]
Sharma, K.; Mittal, A.; Chauhan, N. Aloe vera as penetration enhancer. Int. J. Drug Dev. Res., 2015, 7(1), 31-34.
[103]
Mohajerani, F. Medicinal plants as a source of future anti-pruritic drugs: A comprehensive review. Bol. Latinoam. Caribe Plantas Med. Aromat., 2019, 18(1)
[104]
Van Wyk, B-E.; Wink, M. Medicinal plants of the world. 2018: Cabi. Trak, N.H.D.T.H. and M.F.H.D.D. Chauhan, Skin Care Secrets from Herbal World; Notion Press, 2022.
[105]
Han, R.; Blencke, H.M.; Cheng, H.; Li, C. The antimicrobial effect of CEN1HC-Br against Propionibacterium acnes and its therapeutic and anti-inflammatory effects on acne vulgaris. Peptides, 2018, 99, 36-43.
[http://dx.doi.org/10.1016/j.peptides.2017.11.001] [PMID: 29108811]
[106]
Chomnawang, M.T.; Surassmo, S.; Nukoolkarn, V.S.; Gritsanapan, W. Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. J. Ethnopharmacol., 2005, 101(1-3), 330-333.
[http://dx.doi.org/10.1016/j.jep.2005.04.038] [PMID: 16009519]
[107]
Gunter, N.V.; Teh, S.S.; Lim, Y.M.; Mah, S.H. Natural xanthones and skin inflammatory diseases: Multitargeting mechanisms of action and potential application. Front. Pharmacol., 2020, 11, 594202.
[http://dx.doi.org/10.3389/fphar.2020.594202] [PMID: 33424605]
[108]
Rajendran, P.; Rengarajan, T.; Nandakumar, N.; Divya, H.; Nishigaki, I. Mangiferin in cancer chemoprevention and treatment: pharmacokinetics and molecular targets. J. Recept. Signal Transduct. Res., 2015, 35(1), 76-84.
[http://dx.doi.org/10.3109/10799893.2014.931431] [PMID: 24984103]
[109]
Rajendran, P.; Ekambaram, G.; Sakthisekaran, D.; Nishigaki, I.; Nishigaki, Y.; Jayakumar, T.; Vetriselvi, J. Immunomodulatory effect of mangiferin in experimental animals with benzo (a) pyrene-induced lung carcinogenesis. Int. J. Biomed. Sci., 2013, 9(2), 68-74.
[http://dx.doi.org/10.59566/IJBS.2013.9068] [PMID: 23847456]
[110]
Saviano, A.; Raucci, F.; Casillo, G.M.; Mansour, A.A.; Piccolo, V.; Montesano, C.; Smimmo, M.; Vellecco, V.; Capasso, G.; Boscaino, A.; Summa, V.; Mascolo, N.; Iqbal, A.J.; Sorrentino, R.; d’Emmanuele di Villa Bianca, R.; Bucci, M.; Brancaleone, V.; Maione, F. Anti-inflammatory and immunomodulatory activity of Mangifera indica L. reveals the modulation of COX-2/mPGES-1 axis and Th17/Treg ratio. Pharmacol. Res., 2022, 182, 106283.
[http://dx.doi.org/10.1016/j.phrs.2022.106283] [PMID: 35662629]
[111]
Saviano, A. Dissection of anti-inflammatory and immunomodulatory activity of Mangifera indica L. reveals the modulation of mPGES-1/PPARγ axis and Th17/Treg ratio. Authorea Preprints, 2021, 2021, 36580738.
[http://dx.doi.org/10.22541/au.164011793.36580738/v1]
[112]
Martins, A.M.; Gomes, A.L.; Vilas Boas, I.; Marto, J.; Ribeiro, H.M. Cannabis-based products for the treatment of skin inflammatory diseases: A timely review. Pharmaceuticals, 2022, 15(2), 210.
[http://dx.doi.org/10.3390/ph15020210] [PMID: 35215320]
[113]
Milando, R.; Friedman, A. Cannabinoids: Potential role in inflammatory and neoplastic skin diseases. Am. J. Clin. Dermatol., 2019, 20(2), 167-180.
[http://dx.doi.org/10.1007/s40257-018-0410-5] [PMID: 30542832]
[114]
Villa-Rivera, M.G.; Ochoa-Alejo, N. Chili pepper carotenoids: Nutraceutical properties and mechanisms of action. Molecules, 2020, 25(23), 5573.
[http://dx.doi.org/10.3390/molecules25235573] [PMID: 33260997]
[115]
Basha, N.J.; Basavarajaiah, S.M.; Baskaran, S.; Kumar, P. A comprehensive insight on the biological potential of embelin and its derivatives. Nat. Prod. Res., 2022, 36(12), 3054-3068.
[http://dx.doi.org/10.1080/14786419.2021.1955361] [PMID: 34304655]
[116]
Vogt, V. Biocontrol activity of medicinal plants from Argentina. In: Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants; Springer, 2015.
[http://dx.doi.org/10.1007/978-3-319-13401-7_20]
[117]
Acharya, S. Phytochemical and Biological Investigations of Nyctanthes Arbortristis, Tinospora Tomentosa & Musa Sapientum Var. Sylvestris; East West University, 2012.
[118]
Chaiyana, W.; Anuchapreeda, S.; Punyoyai, C.; Neimkhum, W.; Lee, K-H.; Lin, W-C.; Lue, S-C.; Viernstein, H.; Mueller, M. Ocimum sanctum Linn. as a natural source of skin anti-ageing compounds. Ind. Crops Prod., 2019, 127, 217-224.
[http://dx.doi.org/10.1016/j.indcrop.2018.10.081]
[119]
Chaikul, P.; Kanlayavattanakul, M.; Somkumnerd, J.; Lourith, N. Phyllanthus emblica L. (amla) branch: A safe and effective ingredient against skin aging. J. Tradit. Complement. Med., 2021, 11(5), 390-399.
[http://dx.doi.org/10.1016/j.jtcme.2021.02.004] [PMID: 34522633]
[120]
Ramaiyan, B. Spinach (Spinacia oleracea L.). In: Antioxidants in vegetables and nuts-Properties and health benefits; Springer, 2020.
[121]
Kumar, M.; Chandran, D.; Tomar, M.; Bhuyan, D.J.; Grasso, S.; Sá, A.G.A.; Carciofi, B.A.M.; Radha; Dhumal, S.; Singh, S.; Senapathy, M.; Changan, S.; Dey, A.; Pandiselvam, R.; Mahato, D.K.; Amarowicz, R.; Rajalingam, S.; Vishvanathan, M.; Saleena, L.A.K.; Mekhemar, M. Valorization potential of tomato (Solanum lycopersicum L.) seed: Nutraceutical quality, food properties, safety aspects, and application as a health-promoting ingredient in foods. Horticulturae, 2022, 8(3), 265.
[http://dx.doi.org/10.3390/horticulturae8030265]
[122]
Amoah, S.; Sandjo, L.; Kratz, J.; Biavatti, M. Rosmarinic acid–pharmaceutical and clinical aspects. Planta Med., 2016, 82(5), 388-406.
[http://dx.doi.org/10.1055/s-0035-1568274] [PMID: 26845712]
[123]
Insanu, M. Phytochemical compounds and pharmacological activities of Vitis vinifera L.: An updated review. Biointerface Res. Appl. Chem., 2021, 11(5), 13829-13849.
[124]
Koirala Sharma, B. Effect of zingiber officinale rhizome extracts and [6]-gingerol on the activity and expression of mmp-2,-9 and timp-1, 2 involved in vascular leakage in an in vitro model of dengue virus-3 infection. 2018. Available from: https://catalog.nnl.gov.np/handle/123456789/449
[125]
Cavet, M.E.; Harrington, K.L.; Vollmer, T.R.; Ward, K.W.; Zhang, J.Z. Anti-inflammatory and anti-oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells. Mol. Vis., 2011, 17, 533-542.
[PMID: 21364905]
[126]
Sendker, J.; Böker, I.; Lengers, I.; Brandt, S.; Jose, J.; Stark, T.; Hofmann, T.; Fink, C.; Abdel-Aziz, H.; Hensel, A. Phytochemical characterization of low molecular weight constituents from marshmallow roots ( althaea officinalis ) and inhibiting effects of the aqueous extract on human hyaluronidase-1. J. Nat. Prod., 2017, 80(2), 290-297.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00670] [PMID: 28128955]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy