Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Anti-Tumor Activity of Indole: A Review

Author(s): Momen R.F. Mohamed*, Mai E. Shoman*, Taha F. S. Ali and Gamal El-Din A. Abuo-Rahma*

Volume 21, Issue 16, 2024

Published on: 08 March, 2024

Page: [3332 - 3348] Pages: 17

DOI: 10.2174/0115701808288928240226104445

Price: $65

Abstract

Generally, heterocyclic compounds are included in a large class of pharmacologically active compounds. The indole scaffold in this category is widely distributed in nature and present in many active compounds, especially anti-cancer agents. Due to its unique physicochemical and biological properties, the indole platform has been considered a favorable scaffold in anti-cancer drug design and development. Various indole compounds (synthetic, semisynthetic, and natural) show remarkable anti-proliferative activity. According to the recent literature, this review describes the role of indole scaffolds as anti-cancer agents. Indole was reported to induce anti-tumor activity through multiple mechanisms, for example, Epidermal Growth Factor Receptors (EGFR), histone deacetylase (HDAC), kinase, DNA-topoisomerases, and tubulin inhibition. The current review focuses on some indole compounds with amazing effects against different types of cancers as there are too many FDA-approved drugs, for example, osimertinib, alectinib, and anlotinib in NSCLC treatment, panobinostat in multiple myeloma, midostaurin in acute myeloid leukemia treatment, etc. Moreover, several compounds are still in clinical trials to treat different cancer types. Additionally, there are some oxindole derivatives with potent inhibition against different types of tumors, such as ovarian cancer, colorectal cancer, and prostate cancer. Different series of oxindoles are promising and recommended for further studies due to their remarkable inhibition of tumor cells. Accordingly, the collection of data on a pharmacologically significant motif might aid researchers in further employing indoles in developing novel anti-cancer drugs with potentially fewer side effects and higher potency against this rapidly spreading disease.

Keywords: Indole, oxindoles, anti-proliferative, tubulin polymerization inhibitors, EGFR kinase inhibitors, casein kinase.

Graphical Abstract
[1]
Jemal, A.; Bray, F.; Ferlay, J. Global cancer statistics. CA Cancer J. Clin., 1999, 49, 33-64.
[2]
Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem., 2019, 183, 111691.
[http://dx.doi.org/10.1016/j.ejmech.2019.111691] [PMID: 31536895]
[3]
Gao, F.; Zhang, X.; Wang, T.; Xiao, J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem., 2019, 165, 59-79.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.017] [PMID: 30660827]
[4]
Rashid, H.; Xu, Y.; Muhammad, Y.; Wang, L.; Jiang, J. Research advances on anticancer activities of matrine and its derivatives: An up-dated overview. Eur. J. Med. Chem., 2019, 161, 205-238.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.037]
[5]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[6]
Gholap, S.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem., 2016, 110, 13-31.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.017] [PMID: 26807541]
[7]
Ahmad, S.; Alam, O.; Naim, M.J.; Shaquiquzzaman, M.; Alam, M.M.; Iqbal, M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship; Elsevier Masson SAS, 2018, p. 157.
[8]
Tantawy, M.A.; Nafie, M.S.; Elmegeed, G.A.; Ali, I.A.I. Auspicious role of the steroidal heterocyclic derivatives as a platform for anti-cancer drugs. Bioorg. Chem., 2017, 73, 128-146.
[http://dx.doi.org/10.1016/j.bioorg.2017.06.006] [PMID: 28668650]
[9]
de Sá Alves, F.; Barreiro, E.; Manssour Fraga, C. From nature to drug discovery: The indole scaffold as a ‘privileged structure’. Mini Rev. Med. Chem., 2009, 9(7), 782-793.
[http://dx.doi.org/10.2174/138955709788452649] [PMID: 19519503]
[10]
Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.; Boubaker, T.; Ofial, A.R.; Mayr, H. Nucleophilic reactivities of indoles. J. Org. Chem., 2006, 71(24), 9088-9095.
[http://dx.doi.org/10.1021/jo0614339] [PMID: 17109534]
[11]
Sravanthi, T.V.; Manju, S.L. Indoles: A promising scaffold for drug development. Eur. J. Pharm. Sci., 2016, 91, 1-10.
[http://dx.doi.org/10.1016/j.ejps.2016.05.025] [PMID: 27237590]
[12]
de Candia, M.; Zaetta, G.; Denora, N.; Tricarico, D.; Majellaro, M.; Cellamare, S.; Altomare, C.D. New azepino[4,3-b]indole derivatives as nanomolar selective inhibitors of human butyrylcholinesterase showing protective effects against NMDA-induced neurotoxicity. Eur. J. Med. Chem., 2017, 125, 288-298.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.037] [PMID: 27688184]
[13]
Purgatorio, R.; de Candia, M.; Catto, M.; Carrieri, A.; Pisani, L.; De Palma, A.; Toma, M.; Ivanova, O.A.; Voskressensky, L.G.; Altomare, C.D. Investigating 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole as scaffold of butyrylcholinesterase-selective inhibitors with additional neuroprotective activities for Alzheimer’s disease. Eur. J. Med. Chem., 2019, 177, 414-424.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.062] [PMID: 31158754]
[14]
Dadashpour, S.; Emami, S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur. J. Med. Chem., 2018, 150, 9-29.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.065] [PMID: 29505935]
[15]
Jordan, M.A.; Himes, R.H. Comparison of the effects of vinblastine, vincristine, vindesine, and vinepidine on microtubule dynamics and cell proliferation in vitro. Cancer Res., 1985, 45(6), 2741-2747.
[16]
Keglevich, P.; Hazai, L.; Kalaus, G.; Szántay, C. Modifications on the basic skeletons of vinblastine and vincristine. Molecules, 2012, 17(5), 5893-5914.
[http://dx.doi.org/10.3390/molecules17055893] [PMID: 22609781]
[17]
Almagro, L.; Fernández-Pérez, F.; Pedreño, M. Indole alkaloids from Catharanthus roseus: Bioproduction and their effect on human health. Molecules, 2015, 20(2), 2973-3000.
[http://dx.doi.org/10.3390/molecules20022973] [PMID: 25685907]
[18]
Sidhu, J.S.; Singla, R. Mayank; Jaitak, V. Indole derivatives as anticancer agents for breast cancer therapy: A review. Anticancer. Agents Med. Chem., 2015, 16(2), 160-173.
[http://dx.doi.org/10.2174/1871520615666150520144217]
[19]
Chadha, N.; Silakari, O. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view. Eur. J. Med. Chem., 2017, 134, 159-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.003] [PMID: 28412530]
[20]
Sherer, C.; Snape, T.J. Heterocyclic scaffolds as promising anticancer agents against tumours of the central nervous system: Exploring the scope of indole and carbazole derivatives. Eur. J. Med. Chem., 2015, 97(1), 552-560.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.007] [PMID: 25466446]
[21]
El-sayed, M.T.; Hamdy, N.A.; Osman, D.A.; Ahmed, K.M. Indoles as anticancer agents. Adv. Mod. Oncol. Res., 2015, 1(1), 20-35.
[http://dx.doi.org/10.18282/amor.v1.i1.12]
[22]
Roussel, P.A. The Fischer indole synthesis. J. Chem. Educ., 1953, 30(3), 122-125.
[http://dx.doi.org/10.1021/ed030p122]
[23]
Tao, L.L.; Jiang, J.; Pan, Y.C.; Yang, X.; Li, B.L. SO3H-functionalized ionic liquids-catalyzed facile and efficient procedure for fischer indole synthesis under ultrasound irradiation. Adv. Mat. Res., 2013, 661, 150-153.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.661.150]
[24]
Taylor, P. Synthetic communications : An international journal for rapid communication of synthetic organic chemistry; Eff. Organ. Synthe, 2012, pp. 37-41.
[25]
Kumar, S. Ritika, A brief review of the biological potential of indole derivatives. Future J. Pharma. Sci., 2020, 6(1), 121.
[http://dx.doi.org/10.1186/s43094-020-00141-y]
[26]
Ferreira, S.H.; Moncada, S.; Vane, J.R. Indomethacin and aspirin abolish prostaglandin release from the spleen. Nat. New Biol., 1971, 231(25), 237-239.
[http://dx.doi.org/10.1038/newbio231237a0] [PMID: 5284362]
[27]
James, J.S. Delavirdine (Rescriptor) approved. AIDS treatment News, 1997, (269), 1-3.
[28]
Lobay, D. History and folk use. Integr. Med., 2015, 14(3), 40-46.
[PMID: 26770146]
[29]
Kelloway, J.S. Zafirlukast: The first leukotriene-receptor antagonist approved for the treatment of asthma. Ann. Pharmacother., 1997, 31(9), 1012-1021.
[http://dx.doi.org/10.1177/106002809703100912] [PMID: 9296243]
[30]
Frajese, G.V.; Pozzi, F.; Frajese, G. Tadalafil in the treatment of erectile dysfunction; an overview of the clinical evidence. Clin. Interv. Aging, 2006, 1(4), 439-449.
[http://dx.doi.org/10.2147/ciia.2006.1.4.439] [PMID: 18046921]
[31]
Sachs, G.S.; Lafer, B.; Stoll, A.L.; Banov, M.; Thibault, A.B.; Tohen, M.; Rosenbaum, J.F. A double-blind trial of bupropion versus desipramine for bipolar depression. J. Clin. Psychiatry, 1994, 55(9), 391-393.
[http://dx.doi.org/10.1002/hup] [PMID: 7929019]
[32]
Blier, P.; Bergeron, R. The use of pindolol to potentiate antidepressant medication. J. Clin. Psychiatry, 1998, 59, 16-23.
[PMID: 9635544]
[33]
Yee, A.J.; Raje, N.S. Panobinostat and multiple myeloma in 2018. Oncologist, 2018, 23(5), 516-517.
[http://dx.doi.org/10.1634/theoncologist.2017-0644] [PMID: 29445026]
[34]
Rasmussen, T.A.; Tolstrup, M.; Brinkmann, C.R.; Olesen, R.; Erikstrup, C.; Solomon, A.; Winckelmann, A.; Palmer, S.; Dinarello, C.; Buzon, M.; Lichterfeld, M.; Lewin, S.R.; Østergaard, L.; Søgaard, O.S. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV, 2014, 1(1), e13-e21.
[http://dx.doi.org/10.1016/S2352-3018(14)70014-1] [PMID: 26423811]
[35]
Greig, S.L. Osimertinib: First global approval. Drugs, 2016, 76(2), 263-273.
[http://dx.doi.org/10.1007/s40265-015-0533-4] [PMID: 26729184]
[36]
Fillet, G.; Bonnet, C. Sunitinib malate and multiplereceptor tyrosine kinases inhibitors:are they also novel drugs forchronic and neurophatic pain? J. Clin. Oncol., 2007, 25(19), 2857-2858.
[http://dx.doi.org/10.1200/JCO.2007.11.6004] [PMID: 17602093]
[37]
Kinoshita, K.; Asoh, K.; Furuichi, N.; Ito, T.; Kawada, H.; Hara, S.; Ohwada, J.; Miyagi, T.; Kobayashi, T.; Takanashi, K.; Tsukaguchi, T.; Sakamoto, H.; Tsukuda, T.; Oikawa, N. Design and synthesis of a highly selective, orally active and potent anaplastic lymphoma kinase inhibitor (CH5424802). Bioorg. Med. Chem., 2012, 20(3), 1271-1280.
[http://dx.doi.org/10.1016/j.bmc.2011.12.021] [PMID: 22225917]
[38]
Lin, B.; Song, X.; Yang, D.; Bai, D.; Yao, Y.; Lu, N. Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRβ and FGFR1. Gene, 2018, 654, 77-86.
[http://dx.doi.org/10.1016/j.gene.2018.02.026] [PMID: 29454091]
[39]
Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; Lo-Coco, F.; Klisovic, R.B.; Wei, A.; Sierra, J.; Sanz, M.A.; Brandwein, J.M.; de Witte, T.; Niederwieser, D.; Appelbaum, F.R.; Medeiros, B.C.; Tallman, M.S.; Krauter, J.; Schlenk, R.F.; Ganser, A.; Serve, H.; Ehninger, G.; Amadori, S.; Larson, R.A.; Döhner, H. Midostaurin plus chemotherapy for acute myeloid leukemia with a flt3 mutation. N. Engl. J. Med., 2017, 377(5), 454-464.
[http://dx.doi.org/10.1056/NEJMoa1614359] [PMID: 28644114]
[40]
Herbst, R.S.; Oh, Y.; Wagle, A.; Lahn, M. Enzastaurin, a protein kinase Cbeta- selective inhibitor, and its potential application as an anti-cancer agent in lung cancer. Clin. Cancer Res., 2007, 13(15), 4641s-4646s.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0538] [PMID: 17671157]
[41]
Yuan; Liang; Yi; Chen; Li; Wu; Sun, Koumine promotes ROS production to suppress hepatocellular carcinoma cell proliferation via NF-κB and ERK/p38 MAPK signaling. Biomolecules, 2019, 9(10), 559.
[http://dx.doi.org/10.3390/biom9100559]
[42]
Guinchard, X.; Valle, Y.; Fourier, J.; Cedex, G. Total synthesis of marine sponge bis(indole) alkaloids of the topsentin class. J. Org. Chem., 2007, 72(10), 3972-3975.
[43]
Greenwell, M.; Rahman, P.K.S.M. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(11), 4103-4112.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.6(10).4103-12] [PMID: 26594645]
[44]
Ashraf, M.A. Phytochemicals as potential anticancer drugs: Time to ponder nature’s bounty. BioMed Res. Int., 2020, 2020, 1-7.
[http://dx.doi.org/10.1155/2020/8602879] [PMID: 32076618]
[45]
Li Petri, G.; Cascioferro, S.; El Hassouni, B.; Carbone, D.; Parrino, B.; Cirrincione, G.; Peters, G.J.; Diana, P.; Giovannetti, E. Biological evaluation of the antiproliferative and anti-migratory activity of a series of 3-(6-Phenylimidazo[2,1- b][1,3,4]thiadiazol-2-yl)-1 H -indole derivatives against pancreatic cancer cells. Anticancer Res., 2019, 39(7), 3615-3620.
[http://dx.doi.org/10.21873/anticanres.13509] [PMID: 31262887]
[46]
Lee, C.T.; Huang, Y.W.; Yang, C.H.; Huang, K.S. Drug delivery systems and combination therapy by using vinca alkaloids. Curr. Top. Med. Chem., 2015, 15(15), 1491-1500.
[http://dx.doi.org/10.2174/1568026615666150414120547] [PMID: 25877096]
[47]
Dhuguru, J.; Skouta, R. Role of indole scaffolds as pharmacophores in the development of anti-lung cancer agents. Molecules, 2020, 25(7), 1615.
[http://dx.doi.org/10.3390/molecules25071615] [PMID: 32244744]
[48]
Du, Z.; Lovly, C.M. Mechanisms of receptor tyrosine kinase activation in cancer. Mole. Can., 2018, 58, 1-13.
[49]
Nicholson, R.I.; Gee, J.M.W.; Harper, M.E. EGFR and cancer prognosis. Eur. J. Cancer, 2001, 37, 9.
[http://dx.doi.org/10.1016/S0959-8049(01)00231-3]
[50]
Engelman, J.A. The role of phosphoinositide 3-kinase pathway inhibitors in the treatment of lung cancer. Clin. Cancer Res., 2007, 13(15), 4637s-4640s.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0653] [PMID: 17671156]
[51]
Brognard, J.; Clark, A.S.; Ni, Y.; Dennis, P.A. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res., 2001, 61(10), 3986-3997.
[PMID: 11358816]
[52]
Zhao, W.Z.B.; Xiao, Z.; Qi, J.; Luo, R.; Lan, Z.; Zhang, Y.; Hu, X.; Tang, Q.; Zheng, P.; Xu, S. Design, synthesis and biological evaluation of AZD9291 derivatives as selective and potent EGFRL858R/T790M inhibitors. Eur. J. Med. Chem., 2019, 163, 367-380.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.069]
[53]
Wang, Y. Novel ALK inhibitor AZD3463 inhibits neuroblastoma growth by overcoming crizotinib resistance and inducing apoptosis. Eur. J. Med. Chem., 2016, 1-10.
[http://dx.doi.org/10.1038/srep19423]
[54]
Soda, M. Identification of the transforming EML4: ALK fusion gene in non-small-cell lung cancer. Nature, 2007, 448(7153), 561-566.
[http://dx.doi.org/10.1038/nature05945]
[55]
Sakamoto, H.; Tsukaguchi, T.; Hiroshima, S.; Kodama, T.; Kobayashi, T.; Fukami, T.A.; Oikawa, N.; Tsukuda, T.; Ishii, N.; Aoki, Y. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell, 2011, 19(5), 679-690.
[http://dx.doi.org/10.1016/j.ccr.2011.04.004] [PMID: 21575866]
[56]
McKeage, K. Alectinib: A review of its use in advanced ALK-rearranged non-small cell lung cancer. Drugs, 2015, 75(1), 75-82.
[http://dx.doi.org/10.1007/s40265-014-0329-y] [PMID: 25428710]
[57]
Newton, A.C.; Newton, A.C. Protein kinase C: Structure, function, and regulation. J. Biol. Chem., 1995, 270(48), 28495-28498.
[http://dx.doi.org/10.1074/jbc.270.48.28495]
[58]
Cheng, Y.; Wang, Q.; Li, K.; Shi, J.; Liu, Y.; Wu, L.; Han, B.; Chen, G.; He, J.; Wang, J.; Lou, D.; Yu, H.; Qin, H.; Li, X-L. Overall survival (OS) update in ALTER 1202: Anlotinib as third-line or further-line treatment in relapsed Small-Cell Lung Cancer (SCLC). Ann. Oncol., 2019, 30, 1-711.
[http://dx.doi.org/10.1093/annonc/mdz264.002]
[59]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[http://dx.doi.org/10.1038/nrc2607]
[60]
Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70, 369-413.
[61]
Parker, M.W.; Botchan, M.R.; Berger, J.M.; Parker, M.W.; Botchan, M.R.; Berger, J.M. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit. Rev. Biochem. Mol. Biol., 2017, 52(2), 107-144.
[http://dx.doi.org/10.1080/10409238.2016.1274717]
[62]
Zidar, N.; Secci, D.; Tomašič, T. Dalla via l. synthesis, antiproliferative effect, and topoisomerase ii inhibitory activity of 3-methyl-2-phenyl-1h-indoles. ACS Med. Chem. Lett., 2020, 11(5), 691-697.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00557]
[63]
Cea, M.; Soncini, D.; Fruscione, F.; Raffaghello, L.; Garuti, A.; Emionite, L.; Moran, E.; Magnone, M.; Zoppoli, G.; Reverberi, D.; Caffa, I.; Salis, A.; Cagnetta, A.; Bergamaschi, M.; Casciaro, S.; Pierri, I.; Damonte, G.; Ansaldi, F.; Gobbi, M.; Pistoia, V.; Ballestrero, A.; Patrone, F.; Bruzzone, S.; Nencioni, A. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells. PLoS One, 2011, 6(7), e22739.
[http://dx.doi.org/10.1371/journal.pone.0022739] [PMID: 21818379]
[64]
Gregoretti, I.; Lee, Y.M.; Goodson, H.V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol., 2004, 338(1), 17-31.
[http://dx.doi.org/10.1016/j.jmb.2004.02.006] [PMID: 15050820]
[65]
Fouladi, M. Histone deacetylase inhibitors in cancer therapy. Cancer Invest., 2006, 24(5), 521-527.
[http://dx.doi.org/10.1080/07357900600814979] [PMID: 16939962]
[66]
Johnstone, R.W. Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer. Nat. Rev. Drug Discov., 2002, 1(4), 287-299.
[http://dx.doi.org/10.1038/nrd772] [PMID: 12120280]
[67]
Grant, S.; Easley, C.; Kirkpatrick, P. Vorinostat. Nat. Rev. Drug Discov., 2007, 6(1), 21-22.
[http://dx.doi.org/10.1038/nrd2227] [PMID: 17269160]
[68]
Poole, R.M. Belinostat: First global approval. Drugs, 2014, 74(13), 1543-1554.
[http://dx.doi.org/10.1007/s40265-014-0275-8] [PMID: 25134672]
[69]
Shum, J.; Leung, P.K.; Lo, K.K. Luminescent ruthenium(ii) polypyridine complexes for a wide variety of biomolecular and cellular applications. Inorg. Chem., 2019, 58(4), 2231-2247.
[http://dx.doi.org/10.1021/acs.inorgchem.8b02979]
[70]
Tzogani, K.; van Hennik, P.; Walsh, I.; De Graeff, P.; Folin, A.; Sjöberg, J.; Salmonson, T.; Bergh, J.; Laane, E.; Ludwig, H.; Gisselbrecht, C.; Pignatti, F. EMA Review of Panobinostat (FarydakM) for the treatment of adult patients with relapsed and/or refractory multiple myeloma. Oncologist, 2018, 23(5), 631-636.
[http://dx.doi.org/10.1634/theoncologist.2017-0301] [PMID: 29192015]
[71]
Zhao, B.; He, T. Chidamide, a histone deacetylase inhibitor, functions as a tumor inhibitor by modulating the ratio of Bax/Bcl-2 and P21 in pancreatic cancer. Oncol. Rep., 2015, 33(1), 304-310.
[http://dx.doi.org/10.3892/or.2014.3595] [PMID: 25384499]
[72]
Shelke, J.J. Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Bone, 2008, 23(1), 1-7.
[http://dx.doi.org/10.1016/j.phrs.2007.01.009.Cruciferous]
[73]
Dai, Y.; Guo, Y.; Guo, J.; Pease, L.J.; Li, J.; Marcotte, P.A.; Glaser, K.B.; Tapang, P.; Albert, D.H.; Richardson, P.L.; Davidsen, S.K.; Michaelides, M.R. Indole amide hydroxamic acids as potent inhibitors of histone deacetylases. Bioorg. Med. Chem. Lett., 2003, 13(11), 1897-1901.
[http://dx.doi.org/10.1016/S0960-894X(03)00301-9] [PMID: 12749893]
[74]
Giannini, G.; Marzi, M.; Marzo, M.D.; Battistuzzi, G.; Pezzi, R.; Brunetti, T.; Cabri, W.; Vesci, L.; Pisano, C. Exploring bis-(indolyl)methane moiety as an alternative and innovative CAP group in the design of histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(10), 2840-2843.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.101] [PMID: 19359173]
[75]
Naaz, F.; Haider, M.R.; Shafi, S.; Yar, M.S. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains. Eur. J. Med. Chem., 2019, 171, 310-331.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.025] [PMID: 30953881]
[76]
Kaur, R.; Kaur, G.; Gill, R.K.; Soni, R.; Bariwal, J. Recent developments in tubulin polymerization inhibitors: An overview. Eur. J. Med. Chem., 2014, 87, 89-124.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.051] [PMID: 25240869]
[77]
Li, L.; Jiang, S.; Li, X.; Liu, Y.; Su, J.; Chen, J. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site. Eur. J. Med. Chem., 2018, 151, 482-494.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.011] [PMID: 29649743]
[78]
Hu, M. Synthesis and molecular docking studies of novel indole: Pyrimidine hybrids as tubulin polymerization inhibitors; Design, 2015, pp. 1491-1500.
[http://dx.doi.org/10.1111/cbdd.12616]
[79]
Wienecke, A.; Bacher, G. Indibulin, a novel microtubule inhibitor, discriminates between mature neuronal and nonneuronal tubulin. Cancer Res., 2009, 69(1), 171-177.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1342] [PMID: 19118000]
[80]
Colley, H.E. An orally bioavailable, indole-3-glyoxylamide based series of tubulin polymerization inhibitors showing tumor growth inhi-bition in a mouse xenograft model of head and neck cancer. J. Med. Chem., 2015, 58(23), 9309-9333.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01312]
[81]
Cerchiaro, G.; Ferreira, A.M.C. Oxindoles and copper complexes with oxindole-derivatives as potential pharmacological agents. J. Braz. Chem. Soc., 2006, 17(8), 1473-1485.
[http://dx.doi.org/10.1590/S0103-50532006000800003]
[82]
Kaur, M.; Singh, M.; Chadha, N.; Silakari, O. Oxindole: A chemical prism carrying plethora of therapeutic benefits; Elsevier Ltd, 2016, p. 123.
[83]
Dreifuss, A.A.; Bastos-Pereira, A.L.; Ávila, T.V.; Soley, B.S.; Rivero, A.J.; Aguilar, J.L.; Acco, A. Antitumoral and antioxidant effects of a hydroalcoholic extract of cat’s claw (Uncaria tomentosa) (Willd. Ex Roem. & Schult) in an in vivo carcinosarcoma model. J. Ethnopharmacol., 2010, 130(1), 127-133.
[http://dx.doi.org/10.1016/j.jep.2010.04.029] [PMID: 20435132]
[84]
Millemaggi, A.; Taylor, R.J.K. 3-Alkenyl-oxindoles : Natural products, pharmaceuticals, and recent synthetic advances in tandem / telescoped approaches. In: Euro. J. Org. Chem; , 2010; 2010, pp. (24)4527-4547.
[http://dx.doi.org/10.1002/ejoc.201000643]
[85]
Bernard, W.; Yulin, J.; Robert, A.; Jaume, B.; Teresa, V. Oxindole alkaloids from neolaugeria resinosa. Phytochemistry, 1993, 32(6), 1587-1590.
[86]
tamio, U.; Masafumi, I. Self-germination inhibitors fromColletotrichum fragariae. J. Chem. Ecol., 1996, 22, 2111-2122.
[87]
Chen, Y.; Fan, C.L.; Wang, Y.; Zhang, X.Q. Chemical constituents from roots of Isatis indigotica. Zhongguo Zhong Yao Za Zhi., 2018, 43(10), 2091-2096.
[88]
Song, Z.; Chen, C.; Liu, J.; Wen, X.; Sun, H. European journal of medicinal chemistry dihydro-3 h -indol-3-ylidene) acetate derivatives as anti-proliferative agents through ros-induced cell apoptosis. Eur. J. Med. Chem., 2016, 124, 809-819.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.005] [PMID: 27643639]
[89]
Yagnam, S.; Reddy, E.R.; Trivedi, R.; Giribabu, L.; Rathod, B.; Shetty, R. Synthesis, characterization, electrochemical and antimicrobial evaluation. Appl. Org. Chem., 2019, 33(4), 4817.
[http://dx.doi.org/10.1002/aoc.4817]
[90]
Sun, H.; Zhang, Y.; Ding, W.; Zhao, X.; Song, X.; Wang, D.; Li, Y.; Han, K.; Yang, Y.; Ma, Y.; Wang, R.; Wang, D.; Yu, P. Inhibitory ac-tivity evaluation and mechanistic studies of tetracyclic oxindole derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem., 2016, 123, 365-378.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.044] [PMID: 27487567]
[91]
Kaur, M.; Singh, M.; Silakari, O. Oxindole-based SYK and JAK3 dual inhibitors for rheumatoid arthritis: designing, synthesis and biologi-cal. Future Med. Chem., 2017, 9, 1193-1211.
[92]
Zaryanova, E.V.; Lozinskaya, N.A.; Beznos, O.V.; Volkova, M.S.; Chesnokova, N.B.; Zefirov, N.S. Oxindole-based intraocular pressure reducing agents. Bioorg. Med. Chem. Lett., 2017, 27(16), 3787-3793.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.065] [PMID: 28687205]
[93]
Suthar, S.K.; Bansal, S.; Narkhede, N.; Guleria, M.; Alex, A.T.; Joseph, A. Design. Chem. Pharm. Bull., 2017, 65(9), 833-839.
[http://dx.doi.org/10.1248/cpb.c17-00301] [PMID: 28867710]
[94]
Guo, J.; Zhao, F.; Yin, W.; Zhu, M.; Hao, C.; Pang, Y.; Wu, T.; Wang, J.; Zhao, D.; Li, H.; Cheng, M. Design, synthesis, structure-activity relationships study and X-ray crystallography of 3-substituted-indolin-2-one-5-carboxamide derivatives as PAK4 inhibitors. Eur. J. Med. Chem., 2018, 155, 197-209.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.051] [PMID: 29886323]
[95]
Yousuf, M.; Mukherjee, D.; Dey, S.; Chatterjee, S.; Pal, A.; Sarkar, B.; Pal, C.; Adhikari, S. Synthesis and biological evaluation of polyhy-droxylated oxindole derivatives as potential antileishmanial agent. Bioorg. Med. Chem. Lett., 2018, 28(6), 1056-1062.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.023] [PMID: 29478704]
[96]
Yurttaş, L.; Ertaş, M.; Cankılıç, M.Y.; Demirayak, Ş. Synthesis and antimycobacterial activity evaluation of isatin-derived 3-[(4-aryl-2-thiazolyl])hydrazone]-1h-indol-2,3-diones. ACTA Pharma. Sci., 2017, 55(1), 51.
[http://dx.doi.org/10.23893/1307-2080.APS.0554]
[97]
Hirata, Y. Novel oxindole: Curcumin hybrid compound for antioxidative stress and neuroprotection. ACS Chem. Neurosci., 2020, 11(1), 76-85.
[http://dx.doi.org/10.1021/acschemneuro.9b00619]
[98]
Chander, S.; Tang, C.; Penta, A.; Wang, P.; Bhagwat, D.P. Bioorganic chemistry hit optimization studies of 3-hydroxy-indolin-2-one ana-logs as potential anti-HIV-1 agents. Bioorg. Chem., 2018, 79, 212-222.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.027]
[99]
Mashhoon, N.; DeMaggio, A.J.; Tereshko, V.; Bergmeier, S.C.; Egli, M.; Hoekstra, M.F.; Kuret, J. Crystal structure of a conformation-selective casein kinase-1 inhibitor. J. Biol. Chem., 2000, 275(26), 20052-20060.
[http://dx.doi.org/10.1074/jbc.M001713200] [PMID: 10749871]
[100]
Föh, K.J. State-dependent block of voltage-gated sodium channels by the casein-kinase 1 inhibitor IC261. Invest. New Drugs, 2017, 35(3), 277-289.
[http://dx.doi.org/10.1007/s10637-017-0429-0]
[101]
Va, R.T. Casein kinase 1 epsilon regulates glioblastoma cell survival. Sci. Rep., 2018, 8(1), 13621.
[http://dx.doi.org/10.1038/s41598-018-31864-x]
[102]
Cheong, J.K. IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1 d/e and Wnt/b -catenin independent inhibi-tion of mitotic spindle formation. Oncogene, 2011, 30(22), 2558-2569.
[http://dx.doi.org/10.1038/onc.2010.627]
[103]
Brockschmidt, C. Anti-apoptotic and growth-stimulatory functions of CK1 delta and epsilon in ductal adenocarcinoma of the pancreas are inhibited by IC261 in vitro and in vivo. Gut, 2008, 57(6), 799-806.
[http://dx.doi.org/10.1136/gut.2007.123695]
[104]
Yang, W.S.; Stockwell, B.R. Inhibition of casein kinase 1-epsilon induces cancer-cell-selective, PERIOD2-dependent growth arrest. Genome Biol., 2008, 9(6), 92.
[http://dx.doi.org/10.1186/gb-2008-9-6-r92]
[105]
Kumar, G.B.; Nayak, V.L.; Sayeed, I.B.; Reddy, V.S.; Shaik, A.B.; Mahesh, R.; Baig, M.F.; Shareef, M.A.; Ravikumar, A.; Kamal, A. De-sign, synthesis of phenstatin/isocombretastatin-oxindole conjugates as antimitotic agents. Bioorg. Med. Chem., 2016, 24(8), 1729-1740.
[http://dx.doi.org/10.1016/j.bmc.2016.02.047] [PMID: 26970659]
[106]
Sharma, P.; Thummuri, D.; Reddy, T.S.; Senwar, K.R.; Naidu, V.G.M.; Srinivasulu, G.; Bharghava, S.K.; Shankaraiah, N. New (E)-1-alkyl-1H-benzo[d]imidazol-2-yl)methylene)indolin-2-ones: Synthesis, in vitro cytotoxicity evaluation and apoptosis inducing studies. Eur. J. Med. Chem., 2016, 122, 584-600.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.019]
[107]
Prajapti, S.K.; Nagarsenkar, A.; Guggilapu, S.D.; Gupta, K.K.; Allakonda, L.; Jeengar, M.K.; Naidu, V.G.M.; Babu, B.N. Synthesis and biological evaluation of oxindole linked indolyl-pyrimidine derivatives as potential cytotoxic agents. Bioorg. Med. Chem. Lett., 2016, 26(13), 3024-3028.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.019] [PMID: 27210438]
[108]
Adiga, S.K. European journal of medicinal chemistry synthesis, anti-proliferative and genotoxicity studies of 6-chloro-5- (2-. Eur. J. Med. Chem., 2016, 121, 221-231.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.028]
[109]
Jia, K.; Lv, X.; Xing, D.; Che, J.; Liu, D.; Thumar, N.J.; Dong, S.; Hu, W. Synthesis and biological evaluation of 3-amino-3-hydroxymethyloxindoles as potential anti-cancer agents. RSC Advances, 2017, 7(38), 23265-23271.
[http://dx.doi.org/10.1039/C6RA27536B]
[110]
Tokala, R.; Thatikonda, S.; Sana, S.; Vanteddu, U.S.; Godugu, C. Design and synthesis of DNA-interactive β-carboline-oxindole hybrids as cytotoxic and apoptosis inducing agents. ChemMedChem, 2018, 13(18), 1909-1922.
[http://dx.doi.org/10.1002/cmdc.201800402]
[111]
Fareed, M.R. New multi-targeted antiproliferative agents: Design and synthesis of ic261-based oxindoles as potential tubulin, CK1 and EGFR inhibitors. Pharmaceuticals, 2021, 14(11), 1114.

© 2024 Bentham Science Publishers | Privacy Policy