Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Optimizing Intranasal Amisulpride Loaded Nanostructured Lipid Carriers: Formulation, Development, and Characterization Parameters

Author(s): Manar Adnan Tamer and Hanan Jalal Kassab*

Volume 13, Issue 2, 2025

Published on: 06 March, 2024

Page: [287 - 302] Pages: 16

DOI: 10.2174/0122117385301604240226111533

Price: $65

Abstract

Background: Nanostructured lipid carriers (NLCs) are lipid-based nanoparticles composed of a mixture of solid and liquid lipids, which are stabilized by the outer surface of a surfactant.

Objectives: This research aimed to prepare intranasal nanostructured lipid carriers loaded with amisulpride to enhance its dissolution and bioavailability using different formulation compositions.

Methods: Amisulpride nanostructured lipid carriers were formulated using ultra-sonication methods. Solid lipids like stearic acid, palmitic acid, and glyceryl monostearate were used, while liquid lipids like oleic acid, Imwitor 988, and isopropyl myristate were employed. Surfactants used were cremophor®EL, tween 80, and span 20 with different co-surfactants: Transcutol HP, triacetin, and propylene glycol in different ratios. The key metrics used in this study's evaluation were particle size, polydispersity index, zeta potential, entrapment efficiency, and loading efficiency. The formulations with the best characteristics were also subjected to an in-vitro release test.

Results: The results showed a significant shift in some evaluation criteria with a non-significant change in other characterizations upon switching between different types and ratios of compositions. A biphasic release pattern was also observed. The optimum formula F19 was found to have 68.309±0.38 nm, 0.2408±0.004, -20.64±0.11 mV, 95.75±0.26 and 18.07±0.36, respectively. It was safe on the sheep nasal membrane.

Conclusion: The right combination of the formulation compositions based on studying the effect of each factor on the main formulation characteristics can serve as the basis for a successful intranasal amisulpride-loaded nanostructured lipid carrier.

Keywords: Amisulpride, intranasal, nanostructured lipid carriers, particle size, polydispersity index, zeta potential, entrapment efficiency percentage, drug loading percentage.

Graphical Abstract
[1]
S SS, Misran M. Optimization and characterization of fatty acid esters (FAES) based nanostructured lipid carrier (NLC) by box-behnken analysis. Sains Malays 2022; 51(7): 2119-28.
[http://dx.doi.org/10.17576/jsm-2022-5107-14]
[2]
Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 2018; 133: 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[3]
Khan S, Sharma A, Jain V. An overview of nanostructured lipid carriers and its application in drug delivery through different routes. Adv Pharm Bull 2023; 13(3): 446-60.
[http://dx.doi.org/10.34172/apb.2023.056] [PMID: 37646052]
[4]
Elmowafy M, Al-Sanea MM. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm J 2021; 29(9): 999-1012.
[http://dx.doi.org/10.1016/j.jsps.2021.07.015]
[5]
Viegas C, Patrício AB, Prata JM, Nadhman A, Chintamaneni PK, Fonte P. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review. Pharmaceutics 2023; 15(6): 1593.
[http://dx.doi.org/10.3390/pharmaceutics15061593] [PMID: 37376042]
[6]
Shah S, Patel AA, Pandya V, et al. Breaking barriers: Intranasal delivery of brexpiprazole-nanostructured lipid carriers targets the brain for effective schizophrenia treatment. J Drug Deliv Sci Technol 2023; 90: 105160.
[http://dx.doi.org/10.1016/j.jddst.2023.105160]
[7]
Alatawi HM, Alhwiti SS, Alsharif KA, et al. Nanostructured lipid carriers (NLCs) as effective drug delivery systems: Methods of preparation and their therapeutic applications. Recent Pat Nanotechnol 2024; 18(2): 179-89.
[http://dx.doi.org/10.2174/1872210517666230120142439] [PMID: 38197417]
[8]
Hauss DJ. Oral lipid-based formulations. Adv Drug Deliv Rev 2007; 59(7): 667-76.
[http://dx.doi.org/10.1016/j.addr.2007.05.006] [PMID: 17618704]
[9]
Blanco-Llamero C, Fonseca J, Durazzo A, et al. Nutraceuticals and food-grade lipid nanoparticles: From natural sources to a circular bioeconomy approach. Foods 2022; 11(15): 2318.
[http://dx.doi.org/10.3390/foods11152318] [PMID: 35954085]
[10]
Ahmad J, Rizwanullah M, Amin S, Warsi MH, Ahmad MZ, Barkat MA. Nanostructured lipid carriers (NLCs): Nose-to-brain delivery and theranostic application. Curr Drug Metab 2020; 21(14): 1136-43.
[http://dx.doi.org/10.2174/1389200221666200719003304] [PMID: 32682366]
[11]
Mohammadi-Samani S, Ghasemiyeh P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res Pharm Sci 2018; 13(4): 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[12]
Javed S, Mangla B, Almoshari Y, Sultan MH, Ahsan W. Nanostructured lipid carrier system: A compendium of their formulation development approaches, optimization strategies by quality by design, and recent applications in drug delivery. Nanotechnol Rev 2022; 11(1): 1744-77.
[http://dx.doi.org/10.1515/ntrev-2022-0109]
[13]
Zhao XL, Yang CR, Yang KL, Li KX, Hu HY, Chen DW. Preparation and characterization of nanostructured lipid carriers loaded traditional Chinese medicine, zedoary turmeric oil. Drug Dev Ind Pharm 2010; 36(7): 773-80.
[http://dx.doi.org/10.3109/03639040903485716] [PMID: 20136496]
[14]
Alavian F, Shams N. Oral and intra-nasal administration of nanoparticles in the cerebral ischemia treatment in animal experiments: Considering its advantages and disadvantages. Curr Clin Pharmacol 2020; 15(1): 20-9.
[http://dx.doi.org/10.2174/22123938OTkzpOTU1TcVY] [PMID: 31272358]
[15]
Ahmad E, Feng Y, Qi J, et al. Evidence of nose-to-brain delivery of nanoemulsions: cargoes but not vehicles. Nanoscale 2017; 9(3): 1174-83.
[http://dx.doi.org/10.1039/C6NR07581A] [PMID: 28009915]
[16]
Schoemaker H, Claustre Y, Fage D, et al. Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity. J Pharmacol Exp Ther 1997; 280(1): 83-97.
[PMID: 8996185]
[17]
Perrault G, Depoortere R, Morel E, Sanger DJ, Scatton B. Psychopharmacological profile of amisulpride: an antipsychotic drug with presynaptic D2/D3 dopamine receptor antagonist activity and limbic selectivity. J Pharmacol Exp Ther 1997; 280(1): 73-82.
[PMID: 8996184]
[18]
Möller HJ. Management of the negative symptoms of schizophrenia: new treatment options. CNS Drugs 2003; 17(11): 793-823.
[http://dx.doi.org/10.2165/00023210-200317110-00003] [PMID: 12921492]
[19]
Gamal W, Fahmy RH, Mohamed MI. Development of novel amisulpride-loaded liquid self-nanoemulsifying drug delivery systems via dual tackling of its solubility and intestinal permeability. Drug Dev Ind Pharm 2017; 43(9): 1530-8.
[http://dx.doi.org/10.1080/03639045.2017.1322607] [PMID: 28447878]
[20]
Habib AS, Kranke P, Bergese SD, et al. Amisulpride for the rescue treatment of postoperative nausea or vomiting in patients failing prophylaxis. Anesthesiology 2019; 130(2): 203-12.
[http://dx.doi.org/10.1097/ALN.0000000000002509] [PMID: 30475232]
[21]
Khan S, Shaharyar M, Fazil M, Hassan MQ, Baboota S, Ali J. Tacrolimus-loaded nanostructured lipid carriers for oral delivery-in vivo bioavailability enhancement. Eur J Pharm Biopharm 2016; 109: 149-57.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.011] [PMID: 27793753]
[22]
Rajab NA, Jawad MS. Impact of lipid type and ratio in rizatriptan benzoate nanostructured lipid carrier. Int J Drug Deliv Technol 2023; 13(1): 112-9.
[http://dx.doi.org/10.25258/ijddt.13.1.17]
[23]
Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull Fac Pharm Cairo Univ 2015; 53(2): 147-59.
[http://dx.doi.org/10.1016/j.bfopcu.2015.10.001]
[24]
Poonia N, Kharb R, Lather V, Pandita D. Nanostructured lipid carriers: Versatile oral delivery vehicle. Future Sci OA 2016; 2(3): FSO135.
[http://dx.doi.org/10.4155/fsoa-2016-0030] [PMID: 28031979]
[25]
Nasr A, Gardouh A, Ghonaim H, Abdelghany EL, Ghorab M. Effect of oils, surfactants and cosurfactants on phase behavior and physicochemical properties of self-nanoemulsifying drug delivery system (SNEDDS) for irbesartan and olmesartan. Int J Appl Pharm 2016; 8(1): 13-24.
[http://dx.doi.org/10.22159/ijap.2016v8i1.10530]
[26]
Al-Sarraf MA, Hussein AA, Al-Sarraf ZA. Comparison between conventional gel and nanostructured lipid carrier gel of zaltoprofen: Preparation and in-vitro/ex-vivo evaluation. Int J Drug Deliv Tech 2021; 11(3): 988-95.
[http://dx.doi.org/10.25258/ijddt.11.3.57]
[27]
Salih ZT, Al-Gawhari F. Improvement of entrapment and ocular permeability of ganciclovir nanostructured lipid carriers using various conditions of preparations. Int J Drug Deliv Technol 2023; 13(1): 341-6.
[http://dx.doi.org/10.25258/ijddt.13.1.55]
[28]
Rajab NA, Jawad MS. Preparation and evaluation of rizatriptan benzoate loaded nanostructured lipid carrier using diff erent surfactant/co-surfactant systems. Int J Drug Deliv Technol 2023; 13(1): 120-6.
[http://dx.doi.org/10.25258/ijddt.13.1.18]
[29]
Abed HN, Hussein AA. Formulation and in-vitro evaluation of dabigatran etexilate loaded nanostructured lipid carriers. J Glob Pharma Technol 2019; 11(03)
[30]
Karami S, Rostamizadeh K, Shademani N, Parsa M. Synthesis and investigation of the curcumin-loaded magnetic lipid nanoparticles and their cytotoxicity assessment on human breast carcinoma cell line. Jundishapur J Nat Pharm Prod 2020; 15(2): e91886.
[http://dx.doi.org/10.5812/jjnpp.91886]
[31]
Baig MS, Owida H, Njoroge W, Siddiqui A-R, Yang Y. Development and evaluation of cationic nanostructured lipid carriers for ophthalmic drug delivery of besifloxacin. J Drug Deliv Sci Technol 2020; 55: 101496.
[http://dx.doi.org/10.1016/j.jddst.2019.101496]
[32]
Mallappa DP, Chelsea FR, Ratnakar RP, Panchakshari GA, Shivamurthi MV, Uppinangady BS. Development and characterization of mucoadhesive buccal gel containing lipid nanoparticles of triamcinolone acetonide. Indian J Pharm Educ Res 2020; 54(3s): s505-11.
[http://dx.doi.org/10.5530/ijper.54.3s.149]
[33]
Tamer MA, Kassab HJ. The development of a brain targeted mucoadhesive amisulpride loaded nanostructured lipid carrier. Farmacia 2023; 71(5): 1032-44.
[http://dx.doi.org/10.31925/farmacia.2023.5.18]
[34]
Ala Allah A, Hussein A. Darifenacin Hydrobromide loaded nanostructured lipid carrier for oral administration. Iraqi J Pharm Sci 2018; 27(1): 53-68.
[http://dx.doi.org/10.31351/vol27iss1pp53-68]
[35]
Sabri LA, Hussein AA. Comparison between conventional and supersaturable self-nanoemulsion loaded with nebivolol: Preparation and in-vitro/ex-vivo evaluation. Iraqi J Pharm Sci 2020; 29(1): 216-25.
[http://dx.doi.org/10.31351/vol29iss1pp216-225]
[36]
Hashim AA, Rajab NA. Anastrozole loaded nanostructured lipid carriers: Preparation and evaluation. Iraqi J Pharm Sci 2021; 30(2): 185-95.
[http://dx.doi.org/10.31351/vol30iss2pp185-195]
[37]
Jogani VV, Shah PJ, Mishra P, Mishra AK, Misra AR. Intranasal mucoadhesive microemulsion of tacrine to improve brain targeting. Alzheimer Dis Assoc Disord 2008; 22(2): 116-24.
[http://dx.doi.org/10.1097/WAD.0b013e318157205b] [PMID: 18525282]
[38]
Elsenosy FM, Abdelbary GA, Elshafeey AH, Elsayed I, Fares AR. Brain targeting of duloxetine HCL via intranasal delivery of loaded cubosomal gel: In vitro characterization, ex vivo permeation, and in vivo biodistribution studies. Int J Nanomedicine 2020; 15: 9517-37.
[http://dx.doi.org/10.2147/IJN.S277352] [PMID: 33324051]
[39]
Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S. Preparation and characteristics of monostearin nanostructured lipid carriers. Int J Pharm 2006; 314(1): 83-9.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.040] [PMID: 16563671]
[40]
Aultonm M. pharmaceuticsthe science of dosage form design. (2nd ed.). Livingstone 2002; pp. 414-8.
[41]
Tang F, Zhang Y, Lin S, Guo Z. Solubility and micronization of ganciclovir. In: Advanced Materials Research. 2012; pp. 1421-6.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.393-395.1421]
[42]
Lee YC, Dalton C, Regler B, Harris D. Drug solubility in fatty acids as a formulation design approach for lipid-based formulations: A technical note. Drug Dev Ind Pharm 2018; 44(9): 1551-6.
[http://dx.doi.org/10.1080/03639045.2018.1483395] [PMID: 29873584]
[43]
Cao Y, Marra M, Anderson BD. Predictive relationships for the effects of triglyceride ester concentration and water uptake on solubility and partitioning of small molecules into lipid vehicles. J Pharm Sci 2004; 93(11): 2768-79.
[http://dx.doi.org/10.1002/jps.20126] [PMID: 15389678]
[44]
Chen CC, Tsai TH, Huang ZR, Fang JY. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm 2010; 74(3): 474-82.
[http://dx.doi.org/10.1016/j.ejpb.2009.12.008] [PMID: 20060469]
[45]
Mehnert W, Mäder K. Solid lipid nanoparticles. Adv Drug Deliv Rev 2012; 64: 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021] [PMID: 11311991]
[46]
Monteiro LM, Löbenberg R, Cotrim PC, Barros de Araujo GL, Bou-Chacra N. Buparvaquone nanostructured lipid carrier: development of an affordable delivery system for the treatment of leishmaniases. BioMed Res Int 2017; 2017: 1-11.
[http://dx.doi.org/10.1155/2017/9781603] [PMID: 28255558]
[47]
Hejri A, Khosravi A, Gharanjig K, Hejazi M. Optimisation of the formulation of β-carotene loaded nanostructured lipid carriers prepared by solvent diffusion method. Food Chem 2013; 141(1): 117-23.
[http://dx.doi.org/10.1016/j.foodchem.2013.02.080] [PMID: 23768336]
[48]
Subramaniam B, Siddik ZH, Nagoor NH. Optimization of nanostructured lipid carriers: understanding the types, designs, and parameters in the process of formulations. J Nanopart Res 2020; 22(6): 141.
[http://dx.doi.org/10.1007/s11051-020-04848-0]
[49]
Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci 2012; 47(1): 139-51.
[http://dx.doi.org/10.1016/j.ejps.2012.05.010]
[50]
Rathod VR, Shah DA, Dave RH. Systematic implementation of quality-by-design (QbD) to develop NSAID-loaded nanostructured lipid carriers for ocular application: preformulation screening studies and statistical hybrid-design for optimization of variables. Drug Dev Ind Pharm 2020; 46(3): 443-55.
[http://dx.doi.org/10.1080/03639045.2020.1724135] [PMID: 32037896]
[51]
Mehnert W, Mäder K. Solid lipid nanoparticles: Production, characterization and applications Adv Drug Deliv Rev 2001; 47((2-3)): 165-96.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3]
[52]
Pizzol C, Filippin-Monteiro F, Restrepo J, et al. Influence of surfactant and lipid type on the physicochemical properties and biocompatibility of solid lipid nanoparticles. Int J Environ Res Public Health 2014; 11(8): 8581-96.
[http://dx.doi.org/10.3390/ijerph110808581] [PMID: 25141003]
[53]
Gidwani B, Vyas A. Preparation, characterization, and optimization of altretamine-loaded solid lipid nanoparticles using box-behnken design and response surface methodology. Artif Cells Nanomed Biotechnol 2016; 44(2): 571-80.
[http://dx.doi.org/10.3109/21691401.2014.971462] [PMID: 25363752]
[54]
Yu S, Tan G, Liu D, Yang X, Pan W. Nanostructured lipid carrier (NLC)-based novel hydrogels as potential carriers for nepafenac applied after cataract surgery for the treatment of inflammation: design, characterization and in vitro cellular inhibition and uptake studies. RSC Advances 2017; 7(27): 16668-77.
[http://dx.doi.org/10.1039/C7RA00552K]
[55]
Wang G, Yu B, Wu Y, Huang B, Yuan Y, Liu CS. Controlled preparation and antitumor efficacy of vitamin E TPGS-functionalized PLGA nanoparticles for delivery of paclitaxel. Int J Pharm 2013; 446(1-2): 24-33.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.004] [PMID: 23402977]
[56]
Zhao P, Li L, Zhou S, et al. TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance. Mater Sci Eng C 2018; 84: 108-17.
[http://dx.doi.org/10.1016/j.msec.2017.11.040] [PMID: 29519418]
[57]
Han SM, Baek JS, Kim MS, Hwang SJ, Cho CW. Surface modification of paclitaxel-loaded liposomes using d-α-tocopheryl polyethylene glycol 1000 succinate: Enhanced cellular uptake and cytotoxicity in multidrug resistant breast cancer cells. Chem Phys Lipids 2018; 213: 39-47.
[http://dx.doi.org/10.1016/j.chemphyslip.2018.03.005] [PMID: 29550143]
[58]
Dagtepe P, Chikan V. Quantized ostwald ripening of colloidal nanoparticles. J Phys Chem C 2010; 114(39): 16263-9.
[http://dx.doi.org/10.1021/jp105071a]
[59]
Sheskey PJ, Cook WG, Gable CG. Handbook ofpharmaceutical excipients. (8th ed.). London: APhA/Pharmaceutical Press 2017; pp. 413-639.
[60]
Astley C, Houacine C, Zaabalawi A, et al. Nanostructured lipid carriers deliver resveratrol, restoring attenuated dilation in small coronary arteries, via the AMPK pathway. Biomedicines 2021; 9(12): 1852.
[http://dx.doi.org/10.3390/biomedicines9121852] [PMID: 34944670]
[61]
Abed HN, Hussein AA. Ex-vivo absorption study of a novel dabigatran etexilate loaded nanostructured lipid carrier using non-everted intestinal SAC model. Iraqi J Pharm Sci 2019; 28(2): 37-45.
[http://dx.doi.org/10.31351/vol28iss2pp37-45]
[62]
Yousaf R, Khan MI, Akhtar MF, et al. Development and in vitro evaluation of chitosan and glyceryl monostearate based matrix lipid polymer hybrid nanoparticles (LPHNPs) for oral delivery of itraconazole Heliyon 2023; 9(3): e14281.
[63]
Madan J, Dua K, Khude PA. Development and evaluation of solid lipid nanoparticles of mometasone furoate for topical delivery. Int J Pharm Investig 2014; 4(2): 60-4.
[http://dx.doi.org/10.4103/2230-973X.133047] [PMID: 25006550]
[64]
Merck MJ, O’Neil , Smith A, Patricia EH, Budavari S. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. (15th ed.). Royal Society of Chemistry 2013; p. 502.
[65]
Sherif AY, Harisa GI, Shahba AA, Alanazi FK, Qamar W. Optimization of gefitinib-loaded nanostructured lipid carrier as a biomedical tool in the treatment of metastatic lung cancer. Molecules 2023; 28(1): 448.
[http://dx.doi.org/10.3390/molecules28010448] [PMID: 36615641]
[66]
Czajkowska-Kośnik A, Szymańska E, Czarnomysy R, et al. Nanostructured lipid carriers engineered as topical delivery of etodolac: Optimization and cytotoxicity studies. Materials 2021; 14(3): 596.
[http://dx.doi.org/10.3390/ma14030596] [PMID: 33514018]
[67]
Sivadasu Praveen, Gowda DV, Srivastava Atul, Ali Riyaz, Osmani M . Formulation and evaluation of nanostructured lipid carrier (NLC) for glimepiride. Pharm Lett 2016; 8(7): 251-6.
[68]
Das S, Ng WK, Kanaujia P, Kim S, Tan RBH. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: Effects of process variables. Colloids Surf B Biointerfaces 2011; 88(1): 483-9.
[http://dx.doi.org/10.1016/j.colsurfb.2011.07.036] [PMID: 21831615]
[69]
Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J Control Release 2003; 86(1): 33-48.
[http://dx.doi.org/10.1016/S0168-3659(02)00320-6] [PMID: 12490371]
[70]
Gorain B, Choudhury H, Pandey M, Kesharwani P. Paclitaxel loaded vitamin E-TPGS nanoparticles for cancer therapy. Mater Sci Eng C 2018; 91: 868-80.
[http://dx.doi.org/10.1016/j.msec.2018.05.054] [PMID: 30033322]
[71]
Tran TH, Ramasamy T, Truong DH, Choi HG, Yong CS, Kim JO. Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oral bioavailability enhancement. AAPS PharmSciTech 2014; 15(6): 1509-15.
[http://dx.doi.org/10.1208/s12249-014-0175-y] [PMID: 25035071]
[72]
Elmowafy M, Shalaby K, Badran MM, Ali HM, Abdel-Bakky MS, Ibrahim HM. Multifunctional carbamazepine loaded nanostructured lipid carrier (NLC) formulation. Int J Pharm 2018; 550(1-2): 359-71.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.062] [PMID: 30179701]
[73]
Ling Tan JS, Roberts CJ, Billa N. Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm Dev Technol 2019; 24(4): 504-12.
[http://dx.doi.org/10.1080/10837450.2018.1515225] [PMID: 30132723]
[74]
Egerton R. Physical principles of electron microscopy: An introduction to TEM, SEM and AEM. Cham: Springer 2016; pp. 16-147.
[http://dx.doi.org/10.1007/978-3-319-39877-8]
[75]
Angelo T, El-Sayed N, Jurisic M, et al. Effect of physical stimuli on hair follicle deposition of clobetasol-loaded Lipid Nanocarriers. Sci Rep 2020; 10(1): 176.
[http://dx.doi.org/10.1038/s41598-019-56760-w] [PMID: 31932640]
[76]
Barakat NS, Omar SA, Ahmed A A E. Carbamazepine uptake into rat brain following intra-olfactory transport. J Pharm Pharmacol 2010; 58(1): 63-72.
[http://dx.doi.org/10.1211/jpp.58.1.0008] [PMID: 16393465]
[77]
Jadhav SA, Landge SB, Choudhari PM, Solanki PV, Bembalkar SR, Mathad VT. Stress degradation behavior of paliperidone, an antipsychotic drug, and development of suitable stability-indicating RP-LC method. Chromatogr Res Int 2011; 2011: 1-10.
[http://dx.doi.org/10.4061/2011/256812]
[78]
Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN®) dispersions. Int J Pharm 1998; 168: 221-9.
[79]
Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003; 24(23): 4283-300.
[http://dx.doi.org/10.1016/S0142-9612(03)00331-4] [PMID: 12853260]
[80]
Freitas C, Müller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Eur J Pharm Biopharm 1999; 47(2): 125-32.
[http://dx.doi.org/10.1016/S0939-6411(98)00074-5] [PMID: 10234536]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy