Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Research Article

In silico Evaluation of NO-Sartans against SARS-CoV-2

Author(s): Negar Omidkhah, Farzin Hadizadeh*, Razieh Ghodsi*, Prashant Kesharwani and Amirhossein Sahebkar*

Volume 21, Issue 6, 2024

Published on: 05 March, 2024

Article ID: e050324227669 Pages: 32

DOI: 10.2174/0115701638279362240223070810

Price: $65

conference banner
Abstract

Introduction: Numerous clinical trials are currently investigating the potential of nitric oxide (NO) as an antiviral agent against coronaviruses, including SARS-CoV-2. Additionally, some researchers have reported positive effects of certain Sartans against SARS-CoV-2.

Method: Considering the impact of NO-Sartans on the cardiovascular system, we have compiled information on the general structure, synthesis methods, and biological studies of synthesized NOSartans. In silico evaluation of all NO-Sartans and approved sartans against three key SARS-CoV- -2 targets, namely Mpro (PDB ID: 6LU7), NSP16 (PDB ID: 6WKQ), and ACE-2 (PDB ID: 1R4L), was performed using MOE.

Results: Almost all NO-Sartans and approved sartans demonstrated promising results in inhibiting these SARS-CoV-2 targets. Compound 36 (CLC-1280) showed the best docking scores against the three evaluated targets and was further evaluated using molecular dynamics (MD) simulations.

Conclusion: Based on our in silico studies, CLC-1280 (a Valsartan dinitrate) has the potential to be considered as an inhibitor of the SARS-CoV-2 virus. However, further in vitro and in vivo evaluations are necessary for the drug development process.

Keywords: Nitric oxide, NO-sartans, COVID-19, SARS-CoV-2, cardiovascular system, RNA.

Graphical Abstract
[1]
Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal. J Heart Lung Transplant 2020; 39(5): 405-7.
[http://dx.doi.org/10.1016/j.healun.2020.03.012] [PMID: 32362390]
[2]
Ahamad S, Kanipakam H, Birla S, Ali MS, Gupta D. Screening Malaria-box compounds to identify potential inhibitors against SARS-CoV-2 Mpro, using molecular docking and dynamics simulation studies. Eur J Pharmacol 2021; 890: 173664.
[http://dx.doi.org/10.1016/j.ejphar.2020.173664] [PMID: 33131721]
[3]
Dutta M, Tareq AM, Rakib A, et al. Phytochemicals from Leucas zeylanica targeting main protease of SARS-CoV-2: Chemical profiles, molecular docking, and molecular dynamics simulations. Biology 2021; 10(8): 789.
[http://dx.doi.org/10.3390/biology10080789] [PMID: 34440024]
[4]
Nunes VS, Paschoal DF, Costa LAS, Santos HFD. Antivirals virtual screening to SARS-CoV-2 non-structural proteins. J Biomol Struct Dyn 2021; 1-15.
[PMID: 33949279]
[5]
Yadav R, Chaudhary JK, Jain N, et al. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells 2021; 10(4): 821.
[http://dx.doi.org/10.3390/cells10040821] [PMID: 33917481]
[6]
Luan J, Lu Y, Jin X, Zhang L. Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochem Biophys Res Commun 2020; 526(1): 165-9.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.047] [PMID: 32201080]
[7]
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. cell 2020; 181(2): 271-80.
[8]
Malone B, Chen J, Wang Q, et al. Structural basis for backtracking by the SARS-CoV-2 replication–transcription complex. Proc Natl Acad Sci USA 2021; 118(19): e2102516118.
[http://dx.doi.org/10.1073/pnas.2102516118] [PMID: 33883267]
[9]
Yan L, Ge J, Zheng L, Zhang Y, Gao Y, Wang T. Cryo-EM structure of an extended SARS-CoV-2 replication and transcription complex reveals an intermediate state in cap synthesis. Cell 2021; 184(1): 184-93.
[10]
Vidanapathirana AK, Psaltis PJ, Bursill CA, Abell AD, Nicholls SJ. Cardiovascular bioimaging of nitric oxide: Achievements, challenges, and the future. Med Res Rev 2021; 41(1): 435-63.
[http://dx.doi.org/10.1002/med.21736] [PMID: 33075148]
[11]
Förstermann U, Sessa WC. Nitric oxide synthases: Regulation and function. Eur Heart J 2012; 33(7): 829-837, 837a-837d.
[http://dx.doi.org/10.1093/eurheartj/ehr304] [PMID: 21890489]
[12]
Omidkhah N, Ghodsi R. NO-HDAC dual inhibitors. Eur J Med Chem 2022; 227: 113934.
[http://dx.doi.org/10.1016/j.ejmech.2021.113934] [PMID: 34700268]
[13]
Hirst DG, Robson T. Nitric oxide physiology and pathology. Methods Mol Biol 2011; 704: 1-13.
[http://dx.doi.org/10.1007/978-1-61737-964-2_1] [PMID: 21161625]
[14]
Shefa U, Yeo SG, Kim M-S, Song IO. Role of gasotransmitters in oxidative stresses, neuroinflammation, and neuronal repair. BioMed Research International 2017; 2017
[15]
Garthwaite J. Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 2008; 27(11): 2783-802.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06285.x] [PMID: 18588525]
[16]
Wang S, Zhang J, Theel S, Barb JJ, Munson PJ, Danner RL. Nitric oxide activation of Erk1/2 regulates the stability and translation of mRNA transcripts containing CU-rich elements. Nucleic Acids Res 2006; 34(10): 3044-56.
[http://dx.doi.org/10.1093/nar/gkl386] [PMID: 16757573]
[17]
Kuwano Y, Rabinovic A, Srikantan S, Gorospe M, Demple B. Analysis of nitric oxide-stabilized mRNAs in human fibroblasts reveals HuR-dependent heme oxygenase 1 upregulation. Mol Cell Biol 2009; 29(10): 2622-35.
[http://dx.doi.org/10.1128/MCB.01495-08] [PMID: 19289500]
[18]
Fang W, Jiang J, Su L, et al. The role of NO in COVID-19 and potential therapeutic strategies. Free Radic Biol Med 2021; 163: 153-62.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.12.008] [PMID: 33347987]
[19]
Hedenstierna G, Chen L, Hedenstierna M, Lieberman R, Fine DH. Nitric oxide dosed in short bursts at high concentrations may protect against COVID 19. Nitric Oxide 2020; 103: 1-3.
[http://dx.doi.org/10.1016/j.niox.2020.06.005] [PMID: 32590117]
[20]
Mir JM, Maurya RC. Nitric oxide boosters as defensive agents against COVID-19 infection: An opinion. J Biomol Struct Dyn 2020; 1-7.
[PMID: 33251965]
[21]
Alvarez RA, Berra L, Gladwin MT. Home nitric oxide therapy for COVID-19. American Thoracic Society 2020.
[http://dx.doi.org/10.1164/rccm.202005-1906ED]
[22]
Lee A, Butt W. Nitric oxide: A new role in intensive care. Crit Care Resusc 2020; 22(1): 72-9.
[http://dx.doi.org/10.51893/2020.1.sr1] [PMID: 32102645]
[23]
Hottz ED, Azevedo-Quintanilha IG, Palhinha L, et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 2020; 136(11): 1330-41.
[http://dx.doi.org/10.1182/blood.2020007252] [PMID: 32678428]
[24]
Korhonen R, Lahti A, Kankaanranta H, Moilanen E. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 2005; 4(4): 471-9.
[http://dx.doi.org/10.2174/1568010054526359] [PMID: 16101524]
[25]
Bohlen HG. Nitric oxide and the cardiovascular system. Compr Physiol 2015; 5(2): 808-23.
[PMID: 25880514]
[26]
Xi-zhi JG, Thomas PG, Eds. New fronts emerge in the influenza cytokine storm Seminars in immunopathology. Springer 2017.
[27]
Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med 2012; 52(3): 556-92.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.002] [PMID: 22154653]
[28]
Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 2003; 54(4): 469-87.
[PMID: 14726604]
[29]
Wolak T, Kalaora R, Hatan M, Yarkoni S, Greenberg D, Bortey E, et al. Inhaled nitric oxide for the treatment of COVID-19 and other viral pneumonias in adults. TP92 TP092 clinical advances IN SARS-COV-2 and COVID-19: American Thoracic Society 2021; 3849.
[30]
Razzaghi M, Kamani E. Role low-power blue laser with a wavelength of 405 nm in increasing the level of nitric oxide in increasing the resistance of cells to the virus (COVID-19) and its effect on virus (COVID-19) mortality in vitro. OSP Journal of Case Reports 2020; 2(3): 1-2.
[31]
Cespuglio R, Strekalova T, Spencer PS, et al. SARS-CoV-2 infection and sleep disturbances: nitric oxide involvement and therapeutic opportunity. Sleep 2021; 44(3): zsab009.
[http://dx.doi.org/10.1093/sleep/zsab009] [PMID: 33538311]
[32]
Mir JM, Maurya RC. Nitric oxide as a therapeutic option for COVID-19 treatment: A concise perspective. New J Chem 2021; 45(4): 1774-84.
[http://dx.doi.org/10.1039/D0NJ03823G]
[33]
Green SJ. COVID-19 accelerates endothelial dysfunction and nitric oxide deficiency. Microbes Infect 2020; 22(4-5): 149-50.
[http://dx.doi.org/10.1016/j.micinf.2020.05.006] [PMID: 32425647]
[34]
Akaberi D, Krambrich J, Ling J, et al. Mitigation of the replication of SARS-CoV-2 by nitric oxide in vitro. Redox Biol 2020; 37: 101734.
[http://dx.doi.org/10.1016/j.redox.2020.101734] [PMID: 33007504]
[35]
Marks GS, McLaughlin BE, Jimmo SL, Poklewska-Koziell M, Brien JF, Nakatsu K. Time-dependent increase in nitric oxide formation concurrent with vasodilation induced by sodium nitroprusside, 3-morpholinosydnonimine, and S-nitroso-N-acetylpenicillamine but not by glyceryl trinitrate. Drug Metab Dispos 1995; 23(11): 1248-52.
[PMID: 8591726]
[36]
Tejvir S, McKaya G. Potential role of Nitric Oxide (NO) and Silver/Silver Nanoparticles in the treatment of COVID-19 Infections. Int J Mol Sci 2023; 24(24): 17162.
[37]
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562-9.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[38]
Stefano GB, Esch T, Kream RM. Potential immunoregulatory and antiviral/SARS-CoV-2 activities of nitric oxide. Med Sci Monit 2020; 26: e925679-1.
[http://dx.doi.org/10.12659/MSM.925679] [PMID: 32454510]
[39]
He J, Hu L, Huang X, et al. Potential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: Insights from structures of protease and inhibitors. Int J Antimicrob Agents 2020; 56(2): 106055.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106055] [PMID: 32534187]
[40]
Andreou A, Trantza S, Filippou D, Sipsas N, Tsiodras S. The potential role of copper and N-acetylcysteine (NAC) in a combination of candidate antiviral treatments against SARS-CoV-2. in vivo 2020; 34(3): 1567-88.
[41]
Lundberg JO. Nitric oxide and the paranasal sinuses. Anat Rec 2008; 291(11): 1479-84.
[http://dx.doi.org/10.1002/ar.20782] [PMID: 18951492]
[42]
Scadding G. Nitric oxide in the airways. Curr Opin Otolaryngol Head Neck Surg 2007; 15(4): 258-63.
[http://dx.doi.org/10.1097/MOO.0b013e32825b0763] [PMID: 17620900]
[43]
Pedersen J, Hedegaard ER, Simonsen U, Krüger M, Infanger M, Grimm D. Current and future treatments for persistent pulmonary hypertension in the newborn. Basic Clin Pharmacol Toxicol 2018; 123(4): 392-406.
[http://dx.doi.org/10.1111/bcpt.13051] [PMID: 29855164]
[44]
Barnes M, Brisbois EJ. Clinical use of inhaled nitric oxide: Local and systemic applications. Free Radic Biol Med 2020; 152: 422-31.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.11.029] [PMID: 31785330]
[45]
Yu B, Ichinose F, Bloch DB, Zapol WM. Inhaled nitric oxide. Br J Pharmacol 2019; 176(2): 246-55.
[http://dx.doi.org/10.1111/bph.14512] [PMID: 30288739]
[46]
Chen L, Liu P, Gao H, et al. Inhalation of nitric oxide in the treatment of severe acute respiratory syndrome: A rescue trial in Beijing. Clin Infect Dis 2004; 39(10): 1531-5.
[http://dx.doi.org/10.1086/425357] [PMID: 15546092]
[47]
Arabi YM, Arifi AA, Balkhy HH, et al. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med 2014; 160(6): 389-397.
[http://dx.doi.org/10.7326/M13-2486] [PMID: 24474051]
[48]
Gehring U, Gruzieva O, Agius RM, et al. Air pollution exposure and lung function in children: The ESCAPE project. Environ Health Perspect 2013; 121(11-12): 1357-64.
[http://dx.doi.org/10.1289/ehp.1306770] [PMID: 24076757]
[49]
Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA 2020; 323(14): 1406-7.
[http://dx.doi.org/10.1001/jama.2020.2565] [PMID: 32083643]
[50]
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med 2020; 8(5): 475-81.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[51]
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y. Bin Cao Clinical features of patients infected with. 2019; 497-506.
[52]
Gianni S, Fakhr BS, Morais CCA, Di Fenza R, Larson G, Pinciroli R. Nitric oxide gas inhalation to prevent COVID-2019 in healthcare providers. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.05.20054544]
[53]
Tsui PT, Kwok ML, Yuen H, Lai ST. Severe acute respiratory syndrome: Clinical outcome and prognostic correlates. Emerg Infect Dis 2003; 9(9): 1064-9.
[http://dx.doi.org/10.3201/eid0909.030362] [PMID: 14519241]
[54]
Berlin I, Thomas D, Le Faou AL, Cornuz J. COVID-19 and Smoking. Nicotine Tob Res 2020; 22(9): 1650-2.
[http://dx.doi.org/10.1093/ntr/ntaa059] [PMID: 32242236]
[55]
Abbas SH, El-Hafeez AAA, Shoman ME, Montano MM, Hassan HA. New Quinoline/Chalcone hybrids as anti-cancer agents: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Bioorg Chem 2018.
[PMID: 30428415]
[56]
Adusumilli NC, Zhang D, Friedman JM, Friedman AJ. Harnessing nitric oxide for preventing, limiting and treating the severe pulmonary consequences of COVID-19. Nitric Oxide 2020; 103: 4-8.
[http://dx.doi.org/10.1016/j.niox.2020.07.003] [PMID: 32681986]
[57]
Pieretti JC, Pelegrino MT, Nascimento MHM, Tortella GR, Rubilar O, Seabra AB. Small molecules for great solutions: Can nitric oxide-releasing nanomaterials overcome drug resistance in chemotherapy? Biochem Pharmacol 2020; 176: 113740.
[http://dx.doi.org/10.1016/j.bcp.2019.113740] [PMID: 31786262]
[58]
Akiyama T, Hirata T, Fujimoto T, Hatakeyama S, Yamazaki R, Nomura T. The natural-mineral-based novel nanomaterial ifmc increases intravascular nitric oxide without its intake: Implications for COVID-19 and beyond. Nanomaterials 2020; 10(9): 1699.
[http://dx.doi.org/10.3390/nano10091699] [PMID: 32872395]
[59]
Saravi B, Li Z, Lang CN, et al. The tissue renin-angiotensin system and its role in the pathogenesis of major human diseases: Quo vadis? Cells 2021; 10(3): 650.
[http://dx.doi.org/10.3390/cells10030650] [PMID: 33804069]
[60]
Laghlam D, Jozwiak M, Nguyen LS. Renin–angiotensin–aldosterone system and immunomodulation: A state-of-the-art review. Cells 2021; 10(7): 1767.
[http://dx.doi.org/10.3390/cells10071767] [PMID: 34359936]
[61]
Wu CH, Mohammadmoradi S, Chen JZ, Sawada H, Daugherty A, Lu HS. Renin-angiotensin system and cardiovascular functions. Arterioscler Thromb Vasc Biol 2018; 38(7): e108-16.
[http://dx.doi.org/10.1161/ATVBAHA.118.311282] [PMID: 29950386]
[62]
Xu Y, Rong J, Zhang Z. The emerging role of angiotensinogen in cardiovascular diseases. J Cell Physiol 2021; 236(1): 68-78.
[http://dx.doi.org/10.1002/jcp.29889] [PMID: 32572956]
[63]
Ferrario CM. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J Renin Angiotensin Aldosterone Syst 2006; 7(1): 3-14.
[http://dx.doi.org/10.3317/jraas.2006.003] [PMID: 17083068]
[64]
Almeida LF, Tofteng SS, Madsen K, Jensen BL. Role of the renin–angiotensin system in kidney development and programming of adult blood pressure. Clin Sci 2020; 134(6): 641-56.
[http://dx.doi.org/10.1042/CS20190765] [PMID: 32219345]
[65]
Simões e Silva AC, Miranda AS, Rocha NP, Teixeira AL. Renin angiotensin system in liver diseases: Friend or foe? World J Gastroenterol 2017; 23(19): 3396-406.
[http://dx.doi.org/10.3748/wjg.v23.i19.3396] [PMID: 28596676]
[66]
Tan WSD, Liao W, Zhou S, Mei D, Wong WSF. Targeting the renin–angiotensin system as novel therapeutic strategy for pulmonary diseases. Curr Opin Pharmacol 2018; 40: 9-17.
[http://dx.doi.org/10.1016/j.coph.2017.12.002] [PMID: 29288933]
[67]
Rüster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol 2006; 17(11): 2985-91.
[http://dx.doi.org/10.1681/ASN.2006040356] [PMID: 17035613]
[68]
Lu H, Balakrishnan A, Howatt DA, et al. Comparative effects of different modes of renin angiotensin system inhibition on hypercholesterolaemia-induced atherosclerosis. Br J Pharmacol 2012; 165(6): 2000-8.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01712.x] [PMID: 22014125]
[69]
Lu H, Cassis LA, Kooi CWV, Daugherty A. Structure and functions of angiotensinogen. Hypertens Res 2016; 39(7): 492-500.
[http://dx.doi.org/10.1038/hr.2016.17] [PMID: 26888118]
[70]
Ito M, Oliverio MI, Mannon PJ, et al. Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci 1995; 92(8): 3521-5.
[http://dx.doi.org/10.1073/pnas.92.8.3521] [PMID: 7724593]
[71]
Forrester SJ, Booz GW, Sigmund CD, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev 2018; 98(3): 1627-738.
[http://dx.doi.org/10.1152/physrev.00038.2017] [PMID: 29873596]
[72]
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev 2017.
[PMID: 29351514]
[73]
Simões e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1-7) and M as receptor axis in inflammation and fibrosis. Br J Pharmacol 2013; 169(3): 477-92.
[http://dx.doi.org/10.1111/bph.12159] [PMID: 23488800]
[74]
Nehme A, Zouein FA, Zayeri ZD, Zibara K. An update on the tissue renin angiotensin system and its role in physiology and pathology. J Cardiovasc Dev Dis 2019; 6(2): 14.
[http://dx.doi.org/10.3390/jcdd6020014] [PMID: 30934934]
[75]
Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev 2006; 86(3): 747-803.
[http://dx.doi.org/10.1152/physrev.00036.2005] [PMID: 16816138]
[76]
Zaman MA, Oparil S, Calhoun DA. Drugs targeting the renin–angiotensin–aldosterone system. Nat Rev Drug Discov 2002; 1(8): 621-36.
[http://dx.doi.org/10.1038/nrd873] [PMID: 12402502]
[77]
Conlin PR, Angiotensin II. Angiotensin II antagonists in the treatment of hypertension: More similarities than differences. J Clin Hypertens 2000; 2(4): 253-7.
[PMID: 11416657]
[78]
Mathur G, Noronha B, Rodrigues E, Davis G. The role of angiotensin II type 1 receptor blockers in the prevention and management of diabetes mellitus. Diabetes Obes Metab 2007; 9(5): 617-29.
[http://dx.doi.org/10.1111/j.1463-1326.2006.00644.x] [PMID: 17697055]
[79]
Perret-Guillaume C, Joly L, Jankowski P, Benetos A. Benefits of the RAS blockade: Clinical evidence before the ONTARGET study. J Hypertens 2009; 27: S3-7.
[http://dx.doi.org/10.1097/01.hjh.0000354511.14086.f1] [PMID: 19491620]
[80]
Millatt LJ, Abdel-Rahman EM, Siragy HM. Angiotensin II and nitric oxide: A question of balance. Regul Pept 1999; 81(1-3): 1-10.
[http://dx.doi.org/10.1016/S0167-0115(99)00027-0] [PMID: 10395403]
[81]
Hall CN, Garthwaite J. What is the real physiological NO concentration in vivo? Nitric Oxide 2009; 21(2): 92-103.
[http://dx.doi.org/10.1016/j.niox.2009.07.002] [PMID: 19602444]
[82]
Ambe K, Watanabe H, Takahashi S, Nakagawa T, Sasaki J. Production and physiological role of NO in the oral cavity. Jpn Dent Sci Rev 2016; 52(1): 14-21.
[http://dx.doi.org/10.1016/j.jdsr.2015.08.001] [PMID: 28408951]
[83]
Pucci F, Annoni F, dos Santos RAS, Taccone FS, Rooman M. Quantifying renin-angiotensin-system alterations in COVID-19. Cells 2021; 10(10): 2755.
[http://dx.doi.org/10.3390/cells10102755] [PMID: 34685735]
[84]
Lundström A, Ziegler L, Havervall S, et al. Soluble angiotensin-converting enzyme 2 is transiently elevated in COVID-19 and correlates with specific inflammatory and endothelial markers. J Med Virol 2021; 93(10): 5908-16.
[http://dx.doi.org/10.1002/jmv.27144] [PMID: 34138483]
[85]
van Lier D, Kox M, Santos K, van der Hoeven H, Pillay J, Pickkers P. Increased blood angiotensin converting enzyme 2 activity in critically ill COVID-19 patients. ERJ Open Res 2021; 7(1): 00848-2020.
[http://dx.doi.org/10.1183/23120541.00848-2020] [PMID: 33738305]
[86]
Osman IO, Melenotte C, Brouqui P, et al. Expression of ACE2, Soluble ACE2, Angiotensin I, Angiotensin II and Angiotensin-(1-7) Is Modulated in COVID-19 Patients. Front Immunol 2021; 12: 625732.
[http://dx.doi.org/10.3389/fimmu.2021.625732] [PMID: 34194422]
[87]
Henry BM, Benoit JL, Berger BA, et al. Coronavirus disease 2019 is associated with low circulating plasma levels of angiotensin 1 and angiotensin 1,7. J Med Virol 2021; 93(2): 678-80.
[http://dx.doi.org/10.1002/jmv.26479] [PMID: 32880990]
[88]
Files DC, Gibbs KW, Schaich CL, et al. A pilot study to assess the circulating renin-angiotensin system in COVID-19 acute respiratory failure. Am J Physiol Lung Cell Mol Physiol 2021; 321(1): L213-8.
[http://dx.doi.org/10.1152/ajplung.00129.2021] [PMID: 34009036]
[89]
Rieder M, Wirth L, Pollmeier L, et al. Serum ACE2, angiotensin II, and aldosterone levels are unchanged in patients with COVID-19. Am J Hypertens 2021; 34(3): 278-81.
[http://dx.doi.org/10.1093/ajh/hpaa169] [PMID: 33043967]
[90]
Arnold RH. COVID-19–does this disease kill due to imbalance of the renin angiotensin system (RAS) caused by genetic and gender differences in the response to viral ACE 2 attack? Heart Lung Circ 2020; 29(7): 964-72.
[http://dx.doi.org/10.1016/j.hlc.2020.05.004] [PMID: 32564908]
[91]
Mascolo A, Scavone C, Rafaniello C, et al. Renin-angiotensin system and Coronavirus disease 2019: A narrative review. Front Cardiovasc Med 2020; 7: 143.
[http://dx.doi.org/10.3389/fcvm.2020.00143] [PMID: 32850989]
[92]
Wiese OJ, Allwood BW, Zemlin AE. COVID-19 and the renin-angiotensin system (RAS): A spark that sets the forest alight? Med Hypotheses 2020; 144: 110231.
[http://dx.doi.org/10.1016/j.mehy.2020.110231] [PMID: 33254538]
[93]
Lu J, Sun PD. High affinity binding of SARS-CoV-2 spike protein enhances ACE2 carboxypeptidase activity. J Biol Chem 2020; 295(52): 18579-88.
[http://dx.doi.org/10.1074/jbc.RA120.015303] [PMID: 33122196]
[94]
Serfozo P, Wysocki J, Gulua G, et al. Ang II (angiotensin II) conversion to angiotensin-(1-7) in the circulation is POP (prolyloligopeptidase)-dependent and ACE2 (angiotensin-converting enzyme 2)-independent. Hypertension 2020; 75(1): 173-82.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.14071] [PMID: 31786979]
[95]
Wenzel UO, Kintscher U. ACE2 and SARS-CoV-2: Tissue or Plasma, Good or Bad? Am J Hypertens 2021; 34(3): 274-7.
[http://dx.doi.org/10.1093/ajh/hpaa175] [PMID: 33151267]
[96]
Narula S, Yusuf S, Chong M, et al. Plasma ACE2 and risk of death or cardiometabolic diseases: A case-cohort analysis. Lancet 2020; 396(10256): 968-76.
[http://dx.doi.org/10.1016/S0140-6736(20)31964-4] [PMID: 33010842]
[97]
Paz Ocaranza M, Riquelme JA, García L, et al. Counter-regulatory renin–angiotensin system in cardiovascular disease. Nat Rev Cardiol 2020; 17(2): 116-29.
[http://dx.doi.org/10.1038/s41569-019-0244-8] [PMID: 31427727]
[98]
Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pöhlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol 2014; 88(2): 1293-307.
[http://dx.doi.org/10.1128/JVI.02202-13] [PMID: 24227843]
[99]
Burns K, Cheng M, Lee T, McGeer A, Sweet D, Tran K, et al. Sustained Dysregulation of the Plasma Renin-angiotensin System in Acute COVID-19 2021. Available from: https://assets.researchsquare.com/files/rs-125380/v1/2ab238ff-47ce-4e00-ad1a-132b974c3891.pdf?c=1631870405
[http://dx.doi.org/10.21203/rs.3.rs-125380/v1]
[100]
Williams PB. Renin angiotensin system inhibition as treatment for COVID-19? EClinicalMedicine 2021; 37: 101023.
[http://dx.doi.org/10.1016/j.eclinm.2021.101023] [PMID: 34278280]
[101]
Albashir AAD. Renin-angiotensin-aldosterone system (RAAS) inhibitors and coronavirus disease 2019 (COVID-19). South Med J 2021; 114(1): 51-6.
[http://dx.doi.org/10.14423/SMJ.0000000000001200] [PMID: 33398362]
[102]
LaClair HJ, Khosrodad N, Sule AA, Koehler T, Krishnamoorthy G. Effect of ACE inhibitors and angiotensin receptor blockers on in-hospital mortality and length of stay in hospitalized COVID-19 patients. Vascul Pharmacol 2021; 141: 106902.
[http://dx.doi.org/10.1016/j.vph.2021.106902] [PMID: 34363963]
[103]
Puskarich MA, Cummins NW, Ingraham NE, et al. A multi-center phase II randomized clinical trial of losartan on symptomatic outpatients with COVID-19. EClinicalMedicine 2021; 37: 100957.
[http://dx.doi.org/10.1016/j.eclinm.2021.100957] [PMID: 34195577]
[104]
Bengtson CD, Montgomery RN, Nazir U, et al. An open label trial to assess safety of losartan for treating worsening respiratory illness in COVID-19. Front Med 2021; 8: 630209.
[http://dx.doi.org/10.3389/fmed.2021.630209] [PMID: 33681257]
[105]
Nejat R, Sadr AS, Freitas BT, Crabtree J, Pegan SD, Tripp RA. Losartan promotes cell survival following SARS-CoV-2 infection in vitro. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.12.27.424507]
[106]
Nejat R, Shahir Sadr A, Najafi D. Erythropoietin in COVID-19-Induced neuroinflammation; EPO plus losartan might be promising. Journal of Biostatistics and Epidemiology 2020; 6(2): 143-61.
[http://dx.doi.org/10.18502/jbe.v6i2.4879]
[107]
Duarte M, Pelorosso FG, Nicolosi L, Salgado MV, Vetulli H, Aquieri A. Telmisartan for treatment of COVID-19 patients: An open randomized clinical trial. Preliminary report. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.08.04.20167205]
[108]
Liu F, Li L, Xu M, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol 2020; 127: 104370.
[http://dx.doi.org/10.1016/j.jcv.2020.104370] [PMID: 32344321]
[109]
Tan C, Huang Y, Shi F, et al. C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. J Med Virol 2020; 92(7): 856-62.
[http://dx.doi.org/10.1002/jmv.25871] [PMID: 32281668]
[110]
Michel MC, Foster C, Brunner HR, Liu L. A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol Rev 2013; 65(2): 809-48.
[http://dx.doi.org/10.1124/pr.112.007278] [PMID: 23487168]
[111]
Kow CS, Hasan SS. The potential benefit of telmisartan to protect overweight COPD patients from the acquisition of COVID-19. Obesity 2020.
[112]
Gommans DHF, Nas J, Pinto-Sietsma SJ, et al. Rationale and design of the PRAETORIAN-COVID trial: A double-blind, placebo-controlled randomized clinical trial with valsartan for PRevention of Acute rEspiraTORy dIstress syndrome in hospitAlized patieNts with SARS-CoV-2 Infection Disease. Am Heart J 2020; 226: 60-8.
[http://dx.doi.org/10.1016/j.ahj.2020.05.010] [PMID: 32512291]
[113]
Vitiello A, La Porta R, Ferrara F. Scientific hypothesis and rational pharmacological for the use of sacubitril/valsartan in cardiac damage caused by COVID-19. Med Hypotheses 2021; 147: 110486.
[http://dx.doi.org/10.1016/j.mehy.2021.110486] [PMID: 33460992]
[114]
Mostafa MA. Role of Zidovudine and Candesartan in the Novel SARS-CoV-2 Treatment Trials; Theoretical Study. AIJR Preprints 2020.
[115]
Elkahloun AG, Saavedra JM. Candesartan could ameliorate the COVID-19 cytokine storm. Biomed Pharmacother 2020; 131: 110653.
[http://dx.doi.org/10.1016/j.biopha.2020.110653] [PMID: 32942152]
[116]
Lukito AA, Widysanto A, Lemuel TAY, et al. Candesartan as a tentative treatment for COVID-19: A prospective non-randomized open-label study. Int J Infect Dis 2021; 108: 159-66.
[http://dx.doi.org/10.1016/j.ijid.2021.05.019] [PMID: 34038766]
[117]
Food, Administration D. FDA updates and press announcements on angiotensin II receptor blocker (ARB) recalls (valsartan, losartan, and irbesartan). food and drug administration 2019. Available from: https://www fda gov/drugs/drug-safety-and-availability/fda-updates-and-press-announcementsangiotensin-ii-receptor-blocker-arb-recalls-valsartan-losartan.
[118]
Breschi MC, Calderone V, Digiacomo M, et al. NO-sartans: A new class of pharmacodynamic hybrids as cardiovascular drugs. J Med Chem 2004; 47(23): 5597-600.
[http://dx.doi.org/10.1021/jm049681p] [PMID: 15509155]
[119]
Gilmer JF, Moriarty LM, Lally MN, Clancy JM. Isosorbide-based aspirin prodrugs. Eur J Pharm Sci 2002; 16(4-5): 297-304.
[http://dx.doi.org/10.1016/S0928-0987(02)00124-0] [PMID: 12208460]
[120]
Krege JH, Hodgin JB, Hagaman JR, Smithies O. A noninvasive computerized tail-cuff system for measuring blood pressure in mice. Hypertension 1995; 25(5): 1111-5.
[http://dx.doi.org/10.1161/01.HYP.25.5.1111] [PMID: 7737724]
[121]
Breschi MC, Calderone V, Digiacomo M, et al. New NO-releasing pharmacodynamic hybrids of losartan and its active metabolite: Design, synthesis, and biopharmacological properties. J Med Chem 2006; 49(8): 2628-39.
[http://dx.doi.org/10.1021/jm0600186] [PMID: 16610806]
[122]
Li YQ, Ji H, Zhang YH, et al. WB1106, a novel nitric oxide-releasing derivative of telmisartan, inhibits hypertension and improves glucose metabolism in rats. Eur J Pharmacol 2007; 577(1-3): 100-8.
[http://dx.doi.org/10.1016/j.ejphar.2007.08.008] [PMID: 17822696]
[123]
Muscará MN, McKnight W, Lovren F, Triggle CR, Cirino G, Wallace JL. Antihypertensive properties of a nitric oxide-releasing naproxen derivative in two-kidney, one-clip rats. Am J Physiol Heart Circ Physiol 2000; 279(2): H528-35.
[http://dx.doi.org/10.1152/ajpheart.2000.279.2.H528] [PMID: 10924050]
[124]
Wallace JL, McKnight W, Del Soldato P, Baydoun AR, Cirino G. Anti-thrombotic effects of a nitric oxide-releasing, gastric-sparing aspirin derivative. J Clin Invest 1995; 96(6): 2711-8.
[http://dx.doi.org/10.1172/JCI118338] [PMID: 8675638]
[125]
Ignarro LJ, Kadowitz PJ. The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol 1985; 25(1): 171-91.
[http://dx.doi.org/10.1146/annurev.pa.25.040185.001131] [PMID: 2988418]
[126]
Gohlke P, Lamberty V, Kuwer I, et al. Long-term low-dose angiotensin converting enzyme inhibitor treatment increases vascular cyclic guanosine 3′,5′-monophosphate. Hypertension 1993; 22(5): 682-7.
[http://dx.doi.org/10.1161/01.HYP.22.5.682] [PMID: 8225528]
[127]
Benson SC, Pershadsingh HA, Ho CI, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension 2004; 43(5): 993-1002.
[http://dx.doi.org/10.1161/01.HYP.0000123072.34629.57] [PMID: 15007034]
[128]
Schupp M, Clemenz M, Gineste R, et al. Molecular characterization of new selective peroxisome proliferator-activated receptor γ modulators with angiotensin receptor blocking activity. Diabetes 2005; 54(12): 3442-52.
[http://dx.doi.org/10.2337/diabetes.54.12.3442] [PMID: 16306360]
[129]
Young ME, Radda GK, Leighton B. Nitric oxide stimulates glucose transport and metabolism in rat skeletal muscle in vitro. Biochem J 1997; 322(1): 223-8.
[http://dx.doi.org/10.1042/bj3220223] [PMID: 9078265]
[130]
Sainz J, Wangensteen R, Rodríguezgómez I, et al. Antioxidant enzymes and effects of tempol on the development of hypertension induced by nitric oxide inhibition. Am J Hypertens 2005; 18(6): 871-7.
[http://dx.doi.org/10.1016/j.amjhyper.2004.12.022] [PMID: 15925750]
[131]
de Oliveira CF, Nathan LP, Metze K, et al. Effect of Ca2+ channel blockers on arterial hypertension and heart ischaemic lesions induced by chronic blockade of nitric oxide in the rat. Eur J Pharmacol 1999; 373(2-3): 195-200.
[http://dx.doi.org/10.1016/S0014-2999(99)00267-8] [PMID: 10414439]
[132]
Zhang YC, Zhou JP, Wu XM, Pan WH. Synthesis and antitumor activity of nitric oxide releasing derivatives of AT1 antagonist. Chin Chem Lett 2009; 20(3): 302-5.
[http://dx.doi.org/10.1016/j.cclet.2008.11.012]
[133]
Deshayes F, Nahmias C. Angiotensin receptors: A new role in cancer? Trends Endocrinol Metab 2005; 16(7): 293-9.
[http://dx.doi.org/10.1016/j.tem.2005.07.009] [PMID: 16061390]
[134]
Fujita M, Hayashi I, Yamashina S, Itoman M, Majima M. Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasis. Biochem Biophys Res Commun 2002; 294(2): 441-7.
[http://dx.doi.org/10.1016/S0006-291X(02)00496-5] [PMID: 12051731]
[135]
Egami K, Murohara T, Shimada T, et al. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J Clin Invest 2003; 112(1): 67-75.
[http://dx.doi.org/10.1172/JCI16645] [PMID: 12840060]
[136]
Miyajima A, Kosaka T, Asano T, et al. Angiotensin II type I antagonist prevents pulmonary metastasis of murine renal cancer by inhibiting tumor angiogenesis. Cancer Res 2002; 62(15): 4176-9.
[PMID: 12154013]
[137]
Kerwin JF Jr, Heller M. The arginine-nitric oxide pathway: A target for new drugs. Med Res Rev 1994; 14(1): 23-74.
[http://dx.doi.org/10.1002/med.2610140103] [PMID: 7508539]
[138]
Janczuk AJ, Jia Q, Xian M, Wen Z, Wang PG, Cai T. NO donors with anticancer activity. Expert Opin Ther Pat 2002; 12(6): 819-26.
[http://dx.doi.org/10.1517/13543776.12.6.819]
[139]
Zhang Y, Zhou J, Pan W, Wu X, Wang S. Synthesis and biological study of 3-butyl-1-(2, 6-dichlorophenyl)-1H-[1, 2, 4] triazol-5 (4H)-one derivatives as anti-hypertension drugs. Lett Drug Des Discov 2010; 7(1): 18-22.
[http://dx.doi.org/10.2174/157018010789869370]
[140]
Villarroya M, Herrero CJ, Ruíz-Nuño A, et al. PF9404C, a new slow NO donor with beta receptor blocking properties. Br J Pharmacol 1999; 128(8): 1713-22.
[http://dx.doi.org/10.1038/sj.bjp.0702992] [PMID: 10588927]
[141]
Knorr M, Hausding M, Schulz E, et al. Characterization of new organic nitrate hybrid drugs covalently bound to valsartan and cilostazol. Pharmacology 2012; 90(3-4): 193-204.
[http://dx.doi.org/10.1159/000339861] [PMID: 23038657]
[142]
Schuhmacher S, Schulz E, Oelze M, et al. A new class of organic nitrates: investigations on bioactivation, tolerance and cross-tolerance phenomena. Br J Pharmacol 2009; 158(2): 510-20.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00303.x] [PMID: 19563531]
[143]
Koenig A, Roegler C, Lange K, Daiber A, Glusa E, Lehmann J. NO donors. Part 16: Investigations on structure–activity relationships of organic mononitrates reveal 2-nitrooxyethylammoniumnitrate as a high potent vasodilator. Bioorg Med Chem Lett 2007; 17(21): 5881-5.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.046] [PMID: 17855086]
[144]
Daiber A, Oelze M, Coldewey M, et al. Oxidative stress and mitochondrial aldehyde dehydrogenase activity: a comparison of pentaerythritol tetranitrate with other organic nitrates. Mol Pharmacol 2004; 66(6): 1372-82.
[http://dx.doi.org/10.1124/mol.104.002600] [PMID: 15331769]
[145]
Yahiro E, Miura S, Suematsu Y, et al. Addition of a nitric oxide donor to an angiotensin II type 1 receptor blocker may cancel its blood pressure-lowering effects. Int Heart J 2015; 56(6): 656-60.
[http://dx.doi.org/10.1536/ihj.15-200] [PMID: 26549290]
[146]
Fogli S, Nieri P, Cristina Breschi M. The role of nitric oxide in anthracycline toxicity and prospects for pharmacologic prevention of cardiac damage. FASEB J 2004; 18(6): 664-75.
[http://dx.doi.org/10.1096/fj.03-0724rev] [PMID: 15054088]
[147]
Davis KL, Martin E, Turko IV, Murad F. Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol 2001; 41(1): 203-36.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.203] [PMID: 11264456]
[148]
Laurindo FR, da Luz PL, Uint L, Rocha TF, Jaeger RG, Lopes EA. Evidence for superoxide radical-dependent coronary vasospasm after angioplasty in intact dogs. Circulation 1991; 83(5): 1705-15.
[http://dx.doi.org/10.1161/01.CIR.83.5.1705] [PMID: 1850666]
[149]
Turko IV, Murad F. Protein nitration in cardiovascular diseases. Pharmacol Rev 2002; 54(4): 619-34.
[http://dx.doi.org/10.1124/pr.54.4.619] [PMID: 12429871]
[150]
Miura S, Karnik SS, Saku K. Review: Angiotensin II type 1 receptor blockers: Class effects versus molecular effects. J Renin Angiotensin Aldosterone Syst 2011; 12(1): 1-7.
[http://dx.doi.org/10.1177/1470320310370852] [PMID: 20603272]
[151]
Miura S, Fujino M, Hanzawa H, et al. Molecular mechanism underlying inverse agonist of angiotensin II type 1 receptor. J Biol Chem 2006; 281(28): 19288-95.
[http://dx.doi.org/10.1074/jbc.M602144200] [PMID: 16690611]
[152]
Miura S, Saku K. Recent progress in the treatment of cardiovascular disease using olmesartan. Clin Exp Hypertens 2014; 36(7): 441-6.
[http://dx.doi.org/10.3109/10641963.2013.846363] [PMID: 24164503]
[153]
Kiya Y, Miura SI, Fujino M, Imaizumi S, Karnik SS, Saku K. Clinical and pharmacotherapeutic relevance of the double-chain domain of the angiotensin II type 1 receptor blocker olmesartan. Clin Exp Hypertens 2010; 32(2): 129-36.
[http://dx.doi.org/10.3109/10641960903254430] [PMID: 20374187]
[154]
Zhang Y, Xu J, Li Y, Yao H, Wu X. Design, synthesis and pharmacological evaluation of novel NO-releasing benzimidazole hybrids as potential antihypertensive candidate. Chem Biol Drug Des 2015; 85(5): 541-8.
[http://dx.doi.org/10.1111/cbdd.12442] [PMID: 25283264]
[155]
Chu H, Hu B, Huang X, et al. Host and viral determinants for efficient SARS-CoV-2 infection of the human lung. Nat Commun 2021; 12(1): 134.
[http://dx.doi.org/10.1038/s41467-020-20457-w] [PMID: 33420022]
[156]
Sawicki SG, Sawicki DL, Siddell SG. A contemporary view of coronavirus transcription. J Virol 2007; 81(1): 20-9.
[http://dx.doi.org/10.1128/JVI.01358-06] [PMID: 16928755]
[157]
Vuong W, Khan MB, Fischer C, Arutyunova E, Lamer T, Shields J. Feline coronavirus drug inhibits the main protease of SARSCoV-2 and blocks virus replication. Nat Commun 2020; 11(1): 1-8.
[PMID: 31911652]
[158]
Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH. An overview of severe acute respiratory syndrome–coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J Med Chem 2016; 59(14): 6595-628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[159]
Drag M, Salvesen GS. Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 2010; 9(9): 690-701.
[http://dx.doi.org/10.1038/nrd3053] [PMID: 20811381]
[160]
Powers JC, Asgian JL, Ekici ÖD, James KE. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 2002; 102(12): 4639-750.
[http://dx.doi.org/10.1021/cr010182v] [PMID: 12475205]
[161]
Shamsi A, Mohammad T, Anwar S, et al. Potential drug targets of SARS-CoV-2: From genomics to therapeutics. Int J Biol Macromol 2021; 177: 1-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.071] [PMID: 33577820]
[162]
Olubiyi OO, Olagunju M, Keutmann M, Loschwitz J, Strodel B. High throughput virtual screening to discover inhibitors of the main protease of the coronavirus SARS-CoV-2. Molecules 2020; 25(14): 3193.
[http://dx.doi.org/10.3390/molecules25143193] [PMID: 32668701]
[163]
Loschwitz J, Jäckering A, Keutmann M, et al. Novel inhibitors of the main protease enzyme of SARS-CoV-2 identified via molecular dynamics simulation-guided in vitro assay. Bioorg Chem 2021; 111: 104862.
[http://dx.doi.org/10.1016/j.bioorg.2021.104862] [PMID: 33862474]
[164]
Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020; 582(7811): 289-93.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[165]
Wang F, Chen C, Tan W, Yang K, Yang H. Structure of main protease from human coronavirus NL63: insights for wide spectrum anti-coronavirus drug design. Sci Rep 2016; 6(1): 22677.
[http://dx.doi.org/10.1038/srep22677] [PMID: 26948040]
[166]
Ren Z, Yan L, Zhang N, et al. The newly emerged SARS-Like coronavirus HCoV-EMC also has an “Achilles’ heel”: current effective inhibitor targeting a 3C-like protease. Protein Cell 2013; 4(4): 248-50.
[http://dx.doi.org/10.1007/s13238-013-2841-3] [PMID: 23549610]
[167]
Yang H, Xie W, Xue X, et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 2005; 3(10): e324.
[http://dx.doi.org/10.1371/journal.pbio.0030324] [PMID: 16128623]
[168]
Xue X, Yu H, Yang H, et al. Structures of two coronavirus main proteases: Implications for substrate binding and antiviral drug design. J Virol 2008; 82(5): 2515-27.
[http://dx.doi.org/10.1128/JVI.02114-07] [PMID: 18094151]
[169]
Estrada E. COVID-19 and SARS-CoV-2. Modeling the present, looking at the future. Phys Rep 2020; 869: 1-51.
[http://dx.doi.org/10.1016/j.physrep.2020.07.005] [PMID: 32834430]
[170]
Mahalapbutr P, Kongtaworn N, Rungrotmongkol T. Structural insight into the recognition of S-adenosyl-L-homocysteine and sinefungin in SARS-CoV-2 Nsp16/Nsp10 RNA cap 2′-O-Methyltransferase. Comput Struct Biotechnol J 2020; 18: 2757-65.
[http://dx.doi.org/10.1016/j.csbj.2020.09.032] [PMID: 33020707]
[171]
Singh R, Bhardwaj VK, Sharma J, Purohit R, Kumar S. In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors. J Tradit Complement Med 2021.
[PMID: 34099976]
[172]
Menachery VD, Debbink K, Baric RS. Coronavirus non-structural protein 16: Evasion, attenuation, and possible treatments. Virus Res 2014; 194: 191-9.
[http://dx.doi.org/10.1016/j.virusres.2014.09.009] [PMID: 25278144]
[173]
Aouadi W, Blanjoie A, Vasseur JJ, Debart F, Canard B, Decroly E. Binding of the methyl donor S-adenosyl-l-methionine to Middle East respiratory syndrome coronavirus 2′-O-methyltransferase nsp16 promotes recruitment of the allosteric activator nsp10. J Virol 2017; 91(5): e02217-16.
[http://dx.doi.org/10.1128/JVI.02217-16] [PMID: 28031370]
[174]
Klosterman SJ, Subbarao KV, Kang S, et al. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog 2011; 7(7): e1002137.
[http://dx.doi.org/10.1371/journal.ppat.1002137] [PMID: 21829347]
[175]
Decroly E, Debarnot C, Ferron F, et al. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog 2011; 7(5): e1002059.
[http://dx.doi.org/10.1371/journal.ppat.1002059] [PMID: 21637813]
[176]
Özdemir M, Köksoy B, Ceyhan D, Sayın K, Erçağ E, Bulut M. Design and in silico study of the novel coumarin derivatives against SARS-CoV-2 main enzymes. J Biomol Struct Dyn 2020; 1-16.
[PMID: 33357038]
[177]
Omotuyi IO, Nash O, Ajiboye BO, et al. Aframomum melegueta secondary metabolites exhibit polypharmacology against SARS-CoV-2 drug targets: In vitro validation of furin inhibition. Phytother Res 2021; 35(2): 908-19.
[http://dx.doi.org/10.1002/ptr.6843] [PMID: 32964551]
[178]
Viswanathan T, Arya S, Chan SH, et al. Structural basis of RNA cap modification by SARS-CoV-2. Nat Commun 2020; 11(1): 3718.
[http://dx.doi.org/10.1038/s41467-020-17496-8] [PMID: 32709886]
[179]
Menachery VD, Yount BL Jr, Josset L, et al. Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2′-o-methyltransferase activity. J Virol 2014; 88(8): 4251-64.
[http://dx.doi.org/10.1128/JVI.03571-13] [PMID: 24478444]
[180]
Rosas-Lemus M, Minasov G, Shuvalova L, et al. High-resolution structures of the SARS-CoV-2 2′- O -methyltransferase reveal strategies for structure-based inhibitor design. Sci Signal 2020; 13(651): eabe1202.
[http://dx.doi.org/10.1126/scisignal.abe1202] [PMID: 32994211]
[181]
El Hassab MA, Ibrahim TM, Al-Rashood ST, Alharbi A, Eskandrani RO, Eldehna WM. In silico identification of novel SARS-COV-2 2′-O-methyltransferase (nsp16) inhibitors: Structure-based virtual screening, molecular dynamics simulation and MM-PBSA approaches. J Enzyme Inhib Med Chem 2021; 36(1): 727-36.
[http://dx.doi.org/10.1080/14756366.2021.1885396] [PMID: 33685335]
[182]
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res 2020; 126(10): 1456-74.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[183]
Bian J, Li Z. Angiotensin-converting enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator. Acta Pharm Sin B 2021; 11(1): 1-12.
[http://dx.doi.org/10.1016/j.apsb.2020.10.006] [PMID: 33072500]
[184]
Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W. A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature 2020; 579: 270-3.
[185]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[186]
Lambert DW, Yarski M, Warner FJ, et al. Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 2005; 280(34): 30113-9.
[http://dx.doi.org/10.1074/jbc.M505111200] [PMID: 15983030]
[187]
Guney C, Akar F. Epithelial and endothelial expressions of ACE2: SARS-CoV-2 entry routes. J Pharm Pharm Sci 2021; 24: 84-93.
[http://dx.doi.org/10.18433/jpps31455] [PMID: 33626315]
[188]
Warner FJ, Smith AI, Hooper NM, Turner AJ. Angiotensin-converting enzyme-2: A molecular and cellular perspective. Cell Mol Life Sci 2004; 61(21): 2704-13.
[http://dx.doi.org/10.1007/s00018-004-4240-7] [PMID: 15549171]
[189]
Upreti S, Prusty JS, Pandey SC, Kumar A, Samant M. Identification of novel inhibitors of angiotensin-converting enzyme 2 (ACE-2) receptor from Urtica dioica to combat coronavirus disease 2019 (COVID-19). Mol Divers 2021; 25(3): 1795-809.
[http://dx.doi.org/10.1007/s11030-020-10159-2] [PMID: 33398633]
[190]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94(7): e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[191]
Mehdipour AR, Hummer G. Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike. Proc Natl Acad Sci 2021; 118(19): e2100425118.
[http://dx.doi.org/10.1073/pnas.2100425118] [PMID: 33903171]
[192]
Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E. Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 2010; 6(2): 459-66.
[http://dx.doi.org/10.1021/ct900549r] [PMID: 26617301]
[193]
Turner P. XMGRACE, Version 51 19 Center for Coastal and Land-Margin Research. Beaverton, OR: Oregon Graduate Institute of Science and Technology 2005.
[194]
Hollingsworth SA, Dror RO. Molecular dynamics simulation for all. Neuron 2018; 99(6): 1129-43.
[http://dx.doi.org/10.1016/j.neuron.2018.08.011] [PMID: 30236283]
[195]
Al-Khafaji K, Al-Duhaidahawi D, Taskin Tok T. Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2. J Biomol Struct Dyn 2021; 39(9): 3387-95.
[PMID: 32364041]
[196]
Yadav R, Hasan S, Mahato S, et al. Molecular docking, DFT analysis, and dynamics simulation of natural bioactive compounds targeting ACE2 and TMPRSS2 dual binding sites of spike protein of SARS CoV-2. J Mol Liq 2021; 342: 116942.
[http://dx.doi.org/10.1016/j.molliq.2021.116942] [PMID: 34305216]
[197]
Razzaghi-Asl N, Hashemi N. Identification of potential antileishmanial agents via structure-based molecular simulations. J Mol Graph Model 2022; 110: 108039.
[http://dx.doi.org/10.1016/j.jmgm.2021.108039] [PMID: 34736055]
[198]
Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel 1995; 8(2): 127-34.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[199]
Mintz J, Vedenko A, Rosete O, et al. Current advances of nitric oxide in cancer and anticancer therapeutics. Vaccines 2021; 9(2): 94.
[http://dx.doi.org/10.3390/vaccines9020094] [PMID: 33513777]
[200]
Martelli A, Rapposelli S, Calderone V. NO-releasing hybrids of cardiovascular drugs. Curr Med Chem 2006; 13(6): 609-25.
[http://dx.doi.org/10.2174/092986706776055634] [PMID: 16529554]
[201]
Münzel T, Daiber A, Gori T. Nitrate therapy. Circulation 2011; 123(19): 2132-44.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.981407] [PMID: 21576678]
[202]
Gori T, Daiber A. Non-hemodynamic effects of organic nitrates and the distinctive characteristics of pentaerithrityl tetranitrate. Am J Cardiovasc Drugs 2009; 9(1): 7-15.
[http://dx.doi.org/10.1007/BF03256591] [PMID: 19178128]
[203]
Zhou SN, Lu JX, Wang XQ, et al. S-nitrosylation of prostacyclin synthase instigates nitrate cross-tolerance in vivo. Clin Pharmacol Ther 2019; 105(1): 201-9.
[http://dx.doi.org/10.1002/cpt.1094] [PMID: 29672839]
[204]
Infante T, Costa D, Napoli C. Novel insights regarding nitric oxide and cardiovascular diseases. Angiology 2021; 72(5): 411-25.
[http://dx.doi.org/10.1177/0003319720979243] [PMID: 33478246]
[205]
Tudoran C, Tudoran M, Lazureanu VE, et al. Evidence of pulmonary hypertension after SARS-CoV-2 infection in subjects without previous significant cardiovascular pathology. J Clin Med 2021; 10(2): 199.
[http://dx.doi.org/10.3390/jcm10020199] [PMID: 33430492]
[206]
Taz TA, Ahmed K, Paul BK, Al-Zahrani FA, Mahmud SMH, Moni MA. Identification of biomarkers and pathways for the SARS-CoV-2 infections that make complexities in pulmonary arterial hypertension patients. Brief Bioinform 2021; 22(2): 1451-65.
[http://dx.doi.org/10.1093/bib/bbab026] [PMID: 33611340]
[207]
Onohuean H, Al-kuraishy HM, Al-Gareeb AI, Qusti S, Alshammari EM, Batiha GES. COVID-19 and development of heart failure: Mystery and truth. Naunyn Schmiedebergs Arch Pharmacol 2021; 394(10): 2013-21.
[http://dx.doi.org/10.1007/s00210-021-02147-6] [PMID: 34480616]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy