Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Advances in the Synthesis and Bioactivity of Polysaccharide Selenium Nanoparticles: A Review

Author(s): Shiying Ye, Shaowei Sun, Jiye Cai and Jinhuan Jiang*

Volume 24, Issue 16, 2024

Published on: 29 February, 2024

Page: [1535 - 1554] Pages: 20

DOI: 10.2174/0113895575302440240219053006

Price: $65

conference banner
Abstract

Selenium, an essential trace element of the human body, is pivotal in human health and disease prevention. Nevertheless, the narrow therapeutic index of selenium, where the toxic and therapeutic doses are close, limits its clinical utility. Significantly, nanoscale selenium synthesized by different methods using polysaccharides as stabilizers has low toxicity properties and exhibits excellent bioactivity. Its biological activities, such as anti-tumor, anti-inflammatory, antioxidant, antibacterial, and immune function enhancement, are improved compared with traditional organic and inorganic selenium compounds, conferring greater potential for application in biomedicine. Therefore, this review evaluates the advancements in various synthesis methodologies for polysaccharide selenium nanoparticles (Se NPs) and their biological activities. It aims to provide a comprehensive theoretical basis and research directions for the future development of highly efficient, minimally toxic, and biocompatible polysaccharide-Se NPs and the application of polysaccharide-Se NPs in biomedicine.

Keywords: Selenium nanoparticles, polysaccharides, synthesis methods, anti-tumor, anti-inflammatory, antibacterial.

« Previous
Graphical Abstract
[1]
Rayman, M.P. Selenium and human health. Lancet, 2012, 379(9822), 1256-1268.
[http://dx.doi.org/10.1016/S0140-6736(11)61452-9] [PMID: 22381456]
[2]
Mateus, M.P.B.; Tavanti, R.F.R.; Tavanti, T.R.; Santos, E.F.; Jalal, A.; Reis, A.R. Selenium biofortification enhances ROS scavenge system increasing yield of coffee plants. Ecotoxicol. Environ. Saf., 2021, 209, 111772.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111772] [PMID: 33316726]
[3]
Ye, R.; Huang, J.; Wang, Z.; Chen, Y.; Dong, Y. Trace element selenium effectively alleviates intestinal diseases. Int. J. Mol. Sci., 2021, 22(21), 11708.
[http://dx.doi.org/10.3390/ijms222111708] [PMID: 34769138]
[4]
Lahhob, Q.; Al-Sanaf, E.; Mohammed, Y.; Jaber, J.; Kareem, M.; Malik, A.; Budaiwi, K.; Abdul-Jabbar, H.; Kadham, J.; Al-Zahra, F. Mineral and trace elements, dietary sources, biological effects, deficiency, and toxicity: A review, 2023, 536-555.
[http://dx.doi.org/10.22034/ecc.2023.381964.1594]
[5]
Avery, J.; Hoffmann, P. Selenium, selenoproteins, and immunity. Nutrients, 2018, 10(9), 1203.
[http://dx.doi.org/10.3390/nu10091203] [PMID: 30200430]
[6]
Zhong, Y.; Jin, Y.; Zhang, Q.; Mao, B.; Tang, X.; Huang, J.; Guo, R.; Zhao, J.; Cui, S.; Chen, W. Comparison of selenium-enriched lactobacillusparacasei, selenium-enriched yeast, and selenite for the alleviation of DSS-induced colitis in mice. Nutrients, 2022, 14(12), 2433.
[http://dx.doi.org/10.3390/nu14122433] [PMID: 35745163]
[7]
Zhu, X.; Lu, Y. Selenium supplementation can slow the development of naphthalene cataract. Curr. Eye Res., 2012, 37(3), 163-169.
[http://dx.doi.org/10.3109/02713683.2011.639123] [PMID: 22273266]
[8]
Winther, K.H.; Rayman, M.P.; Bonnema, S.J.; Hegedüs, L. Selenium in thyroid disorders: Essential knowledge for clinicians. Nat. Rev. Endocrinol., 2020, 16(3), 165-176.
[http://dx.doi.org/10.1038/s41574-019-0311-6] [PMID: 32001830]
[9]
Lei, P.; Ayton, S.; Bush, A.I. The essential elements of Alzheimer’s disease. J. Biol. Chem., 2021, 296, 100105.
[http://dx.doi.org/10.1074/jbc.REV120.008207] [PMID: 33219130]
[10]
Tuo, Q.Z.; Masaldan, S.; Southon, A.; Mawal, C.; Ayton, S.; Bush, A.I.; Lei, P.; Belaidi, A.A. Characterization of selenium compounds for anti-ferroptotic activity in neuronal cells and after cerebral ischemia–reperfusion injury. Neurotherapeutics, 2021, 18(4), 2682-2691.
[http://dx.doi.org/10.1007/s13311-021-01111-9] [PMID: 34498224]
[11]
Jenkins, D.J.A.; Kitts, D.; Giovannucci, E.L.; Sahye-Pudaruth, S.; Paquette, M.; Blanco Mejia, S.; Patel, D.; Kavanagh, M.; Tsirakis, T.; Kendall, C.W.C.; Pichika, S.C.; Sievenpiper, J.L. Selenium, antioxidants, cardiovascular disease, and all-cause mortality: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr., 2020, 112(6), 1642-1652.
[http://dx.doi.org/10.1093/ajcn/nqaa245] [PMID: 33053149]
[12]
Cai, Z.; Zhang, J.; Li, H. Selenium, aging and aging-related diseases. Aging Clin. Exp. Res., 2019, 31(8), 1035-1047.
[http://dx.doi.org/10.1007/s40520-018-1086-7] [PMID: 30511318]
[13]
Alcolea, V.; Pérez-Silanes, S. Selenium as an interesting option for the treatment of Chagas disease: A review. Eur. J. Med. Chem., 2020, 206, 112673.
[http://dx.doi.org/10.1016/j.ejmech.2020.112673] [PMID: 32810750]
[14]
Ahsan, A.; Liu, Z.; Su, R.; Liu, C.; Liao, X.; Su, M. Potential chemotherapeutic effect of selenium for improved canceration of esophageal cancer. Int. J. Mol. Sci., 2022, 23(10), 5509.
[http://dx.doi.org/10.3390/ijms23105509] [PMID: 35628320]
[15]
Pang, K.L.; Chin, K.Y. Emerging anticancer potentials of selenium on osteosarcoma. Int. J. Mol. Sci., 2019, 20(21), 5318.
[http://dx.doi.org/10.3390/ijms20215318] [PMID: 31731474]
[16]
Li, X.; Wang, X.; Liu, G.; Xu, Y.; Wu, X.; Yi, R.; Jin, F.; Sa, C.; Su, X. Antioxidant stress and anticancer activity of peptide-chelated selenium in vitro. Int. J. Mol. Med., 2021, 48(2), 153.
[http://dx.doi.org/10.3892/ijmm.2021.4986] [PMID: 34165159]
[17]
Kuršvietienė, L.; Mongirdienė, A.; Bernatonienė, J.; Šulinskienė, J.; Stanevičienė, I. Selenium anticancer properties and impact on cellular redox status. Antioxidants, 2020, 9(1), 80.
[http://dx.doi.org/10.3390/antiox9010080] [PMID: 31963404]
[18]
Demircan, K.; Sun, Q.; Bengtsson, Y.; Seemann, P.; Vallon-Christersson, J.; Malmberg, M.; Saal, L.H.; Rydén, L.; Minich, W.B.; Borg, Å.; Manjer, J.; Schomburg, L. Autoimmunity to selenoprotein P predicts breast cancer recurrence. Redox Biol., 2022, 53, 102346.
[http://dx.doi.org/10.1016/j.redox.2022.102346] [PMID: 35636018]
[19]
Constantinescu-Aruxandei, D.; Frîncu, R.; Capră, L.; Oancea, F. Selenium analysis and speciation in dietary supplements based on next-generation selenium ingredients. Nutrients, 2018, 10(10), 1466.
[http://dx.doi.org/10.3390/nu10101466] [PMID: 30304813]
[20]
MacFarquhar, J.K.; Broussard, D.L.; Melstrom, P.; Hutchinson, R.; Wolkin, A.; Martin, C.; Burk, R.F.; Dunn, J.R.; Green, A.L.; Hammond, R.; Schaffner, W.; Jones, T.F. Acute selenium toxicity associated with a dietary supplement. Arch. Intern. Med., 2010, 170(3), 256-261.
[http://dx.doi.org/10.1001/archinternmed.2009.495] [PMID: 20142570]
[21]
Reszka, E.; Jablonska, E.; Gromadzinska, J.; Wasowicz, W. Relevance of selenoprotein transcripts for selenium status in humans. Genes Nutr., 2012, 7(2), 127-137.
[http://dx.doi.org/10.1007/s12263-011-0246-6] [PMID: 21898179]
[22]
Falandysz, J.; Lipka, K. Selenium in mushrooms Rocz. Panstw. Zakl. Hig., 2006, 57(3), 217-233.
[PMID: 17193742]
[23]
Nuttall, K.L. Evaluating selenium poisoning. Ann. Clin. Lab. Sci., 2006, 36(4), 409-420.
[PMID: 17127727]
[24]
Herrero Latorre, C.; Barciela García, J.; García Martín, S.; Peña Crecente, R.M. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: A review. Anal. Chim. Acta, 2013, 804, 37-49.
[http://dx.doi.org/10.1016/j.aca.2013.09.054] [PMID: 24267061]
[25]
K. Pyrzy?ska, Determination of Selenium Species in Environmental Samples. Mikrochim. Acta, 2002, 140(1-2), 55-62.
[http://dx.doi.org/10.1007/s00604-001-0899-8]
[26]
Das, D.; Sen, K. Effect of organo-selenium anticancer drugs on nitrite induced methemoglobinemia: A spectroscopic study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 245, 118946.
[http://dx.doi.org/10.1016/j.saa.2020.118946] [PMID: 32979808]
[27]
Spallholz, J.E. On the nature of selenium toxicity and carcinostatic activity. Free Radic. Biol. Med., 1994, 17(1), 45-64.
[http://dx.doi.org/10.1016/0891-5849(94)90007-8] [PMID: 7959166]
[28]
Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in food and the human body: A review. Sci. Total Environ., 2008, 400(1-3), 115-141.
[http://dx.doi.org/10.1016/j.scitotenv.2008.06.024] [PMID: 18657851]
[29]
Moreda-Piñeiro, J.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. In vivo and in vitro testing for selenium and selenium compounds bioavailability assessment in foodstuff. Crit. Rev. Food Sci. Nutr., 2017, 57(4), 805-833.
[http://dx.doi.org/10.1080/10408398.2014.934437] [PMID: 25897564]
[30]
Fadeel, B. Hide and seek: Nanomaterial interactions with the immune system. Front. Immunol., 2019, 10, 133.
[http://dx.doi.org/10.3389/fimmu.2019.00133] [PMID: 30774634]
[31]
Quesada-González, D.; Merkoçi, A. Nanomaterial-based devices for point-of-care diagnostic applications. Chem. Soc. Rev., 2018, 47(13), 4697-4709.
[http://dx.doi.org/10.1039/C7CS00837F] [PMID: 29770813]
[32]
Fan, Z.; Zhu, P.; Zhu, Y.; Wu, K.; Li, C.Y.; Cheng, H. Engineering long-circulating nanomaterial delivery systems. Curr. Opin. Biotechnol., 2020, 66, 131-139.
[http://dx.doi.org/10.1016/j.copbio.2020.07.006] [PMID: 32795661]
[33]
Kang, M.S.; Lee, H.; Jeong, S.J.; Eom, T.J.; Kim, J.; Han, D.W. State of the art in carbon nanomaterials for photoacoustic imaging. Biomedicines, 2022, 10(6), 1374.
[http://dx.doi.org/10.3390/biomedicines10061374] [PMID: 35740396]
[34]
Li, J.; Webster, T.J.; Tian, B. Functionalized nanomaterial assembling and biosynthesis using the extremophile deinococcus radiodurans for multifunctional applications. Small, 2019, 15(20), 1900600.
[http://dx.doi.org/10.1002/smll.201900600] [PMID: 30925017]
[35]
Reagen, S.; Zhao, J.X. Analysis of nanomaterials on biological and environmental systems and new analytical methods for improved detection. Int. J. Mol. Sci., 2022, 23(11), 6331.
[http://dx.doi.org/10.3390/ijms23116331] [PMID: 35683010]
[36]
Geoffrion, L.D.; Hesabizadeh, T.; Medina-Cruz, D.; Kusper, M.; Taylor, P.; Vernet-Crua, A.; Chen, J.; Ajo, A.; Webster, T.J.; Guisbiers, G. Naked selenium nanoparticles for antibacterial and anticancer treatments. ACS Omega, 2020, 5(6), 2660-2669.
[http://dx.doi.org/10.1021/acsomega.9b03172] [PMID: 32095689]
[37]
Wang, S.; Chen, Y.; Han, S.; Liu, Y.; Gao, J.; Huang, Y.; Sun, W.; Wang, J.; Wang, C.; Zhao, J. Selenium nanoparticles alleviate ischemia reperfusion injury-induced acute kidney injury by modulating GPx-1/NLRP3/Caspase-1 pathway. Theranostics, 2022, 12(8), 3882-3895.
[http://dx.doi.org/10.7150/thno.70830] [PMID: 35664065]
[38]
Ullah, A.; Yin, X.; Wang, F.; Xu, B.; Mirani, Z.A.; Xu, B.; Chan, M.W.H.; Ali, A.; Usman, M.; Ali, N.; Naveed, M. Biosynthesis of selenium nanoparticles (viabacillus subtilis bsn313), and their isolation, characterization, and bioactivities. Molecules, 2021, 26(18), 5559.
[http://dx.doi.org/10.3390/molecules26185559] [PMID: 34577029]
[39]
Ikram, M.; Javed, B.; Raja, N.I.; Mashwani, Z.R. Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. Int. J. Nanomedicine, 2021, 16, 249-268.
[http://dx.doi.org/10.2147/IJN.S295053] [PMID: 33469285]
[40]
Zambonino, M.C.; Quizhpe, E.M.; Jaramillo, F.E.; Rahman, A.; Santiago Vispo, N.; Jeffryes, C.; Dahoumane, S.A. Green synthesis of selenium and tellurium nanoparticles: Current trends, biological properties and biomedical applications. Int. J. Mol. Sci., 2021, 22(3), 989.
[http://dx.doi.org/10.3390/ijms22030989] [PMID: 33498184]
[41]
Amiri, H.; Hashemy, S.I.; Sabouri, Z.; Javid, H.; Darroudi, M. Green synthesized selenium nanoparticles for ovarian cancer cell apoptosis. Res. Chem. Intermed., 2021, 47(6), 2539-2556.
[http://dx.doi.org/10.1007/s11164-021-04424-8]
[42]
Hosseini Bafghi, M.; Zarrinfar, H.; Darroudi, M.; Zargar, M.; Nazari, R. Green synthesis of selenium nanoparticles and evaluate their effect on the expression of ERG3, ERG11 and FKS1 antifungal resistance genes in Candida albicans and Candida glabrata. Lett. Appl. Microbiol., 2022, 74(5), 809-819.
[http://dx.doi.org/10.1111/lam.13667] [PMID: 35138666]
[43]
Zhang, J.S.; Gao, X.Y.; Zhang, L.D.; Bao, Y.P. Biological effects of a nano red elemental selenium. Biofactors, 2001, 15(1), 27-38.
[http://dx.doi.org/10.1002/biof.5520150103] [PMID: 11673642]
[44]
Zhang, J.; Wang, H.; Bao, Y.; Zhang, L. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice. Life Sci., 2004, 75(2), 237-244.
[http://dx.doi.org/10.1016/j.lfs.2004.02.004] [PMID: 15120575]
[45]
Peng, D.; Zhang, J.; Liu, Q.; Taylor, E.W. Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J. Inorg. Biochem., 2007, 101(10), 1457-1463.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.06.021] [PMID: 17664013]
[46]
Huang, B.; Zhang, J.; Hou, J.; Chen, C. Free radical scavenging efficiency of Nano-Se in vitro. Free Radic. Biol. Med., 2003, 35(7), 805-813.
[http://dx.doi.org/10.1016/S0891-5849(03)00428-3] [PMID: 14583345]
[47]
Hosnedlova, B.; Kepinska, M.; Skalickova, S.; Fernandez, C.; Ruttkay-Nedecky, B.; Peng, Q.; Baron, M.; Melcova, M.; Opatrilova, R.; Zidkova, J.; Bjørklund, G.; Sochor, J.; Kizek, R. Nano-selenium and its nanomedicine applications: A critical review. Int. J. Nanomedicine, 2018, 13, 2107-2128.
[http://dx.doi.org/10.2147/IJN.S157541] [PMID: 29692609]
[48]
Skalickova, S.; Milosavljevic, V.; Cihalova, K.; Horky, P.; Richtera, L.; Adam, V. Selenium nanoparticles as a nutritional supplement. Nutrition, 2017, 33, 83-90.
[http://dx.doi.org/10.1016/j.nut.2016.05.001] [PMID: 27356860]
[49]
Li, D.; Zhou, C.; Zou, N.; Wu, Y.; Zhang, J.; An, Q.; Li, J.Q.; Pan, C. Nanoselenium foliar application enhances biosynthesis of tea leaves in metabolic cycles and associated responsive pathways. Environ. Pollut., 2021, 273, 116503.
[http://dx.doi.org/10.1016/j.envpol.2021.116503] [PMID: 33486255]
[50]
Surai, P.F.; Kochish, I.I. Food for thought: Nano-selenium in poultry nutrition and health. Anim. Health Res. Rev., 2020, 21(2), 103-107.
[http://dx.doi.org/10.1017/S1466252320000183] [PMID: 33355068]
[51]
Zhang, J.; Wang, H.; Yan, X.; Zhang, L. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci., 2005, 76(10), 1099-1109.
[http://dx.doi.org/10.1016/j.lfs.2004.08.015] [PMID: 15620574]
[52]
Fu, L.; Yan, X.; Ruan, X.; Lin, J.; Wang, Y. Differential protein expression of Caco-2 cells treated with selenium nanoparticles compared with sodium selenite and selenomethionine. Nanoscale Res. Lett., 2014, 9(1), 589.
[http://dx.doi.org/10.1186/1556-276X-9-589] [PMID: 25426004]
[53]
Zhang, J.; Wang, X.; Xu, T. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: Comparison with se-methylselenocysteine in mice. Toxicol. Sci., 2008, 101(1), 22-31.
[http://dx.doi.org/10.1093/toxsci/kfm221] [PMID: 17728283]
[54]
Xing, C.; Yin, P.; Peng, Z.; Zhang, H. Engineering mono‐chalcogen nanomaterials for omnipotent anticancer applications: Progress and challenges. Adv. Healthc. Mater., 2020, 9(14), 2000273.
[http://dx.doi.org/10.1002/adhm.202000273] [PMID: 32537940]
[55]
Menon, S.; Shanmugam, V.K. Chemopreventive mechanism of action by oxidative stress and toxicity induced surface decorated selenium nanoparticles. J. Trace Elem. Med. Biol., 2020, 62, 126549.
[http://dx.doi.org/10.1016/j.jtemb.2020.126549] [PMID: 32731109]
[56]
Khurana, A.; Tekula, S.; Saifi, M.A.; Venkatesh, P.; Godugu, C. Therapeutic applications of selenium nanoparticles. Biomed. Pharmacother., 2019, 111, 802-812.
[http://dx.doi.org/10.1016/j.biopha.2018.12.146] [PMID: 30616079]
[57]
Huang, T.; Holden, J.A.; Heath, D.E.; O’Brien-Simpson, N.M.; O’Connor, A.J. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale, 2019, 11(31), 14937-14951.
[http://dx.doi.org/10.1039/C9NR04424H] [PMID: 31363721]
[58]
Kazemi, M.; Akbari, A.; Zarrinfar, H.; Soleimanpour, S.; Sabouri, Z.; Khatami, M.; Darroudi, M. Evaluation of antifungal and photocatalytic activities of gelatin-stabilized selenium oxide nanoparticles. J. Inorg. Organomet. Polym. Mater., 2020, 30(8), 3036-3044.
[http://dx.doi.org/10.1007/s10904-020-01462-4]
[59]
Jin, Y.; He, Y.; Liu, L.; Tao, W.; Wang, G.; Sun, W.; Pei, X.; Xiao, Z.; Wang, H.; Wang, M. Effects of supranutritional selenium nanoparticles on immune and antioxidant capacity in sprague-dawley rats. Biol. Trace Elem. Res., 2021, 199(12), 4666-4674.
[http://dx.doi.org/10.1007/s12011-021-02601-9] [PMID: 33512662]
[60]
Husseini, H.H.; Zainulabdeen, J.A. The effect of selenium nanoparticles with fenugreek extract on oxidative stress related to polycystic ovary syndrome. Eurasian Chem. Commun., 2023, 5, 371-381.
[http://dx.doi.org/10.22034/ecc.2023.369594.1551]
[61]
Bi, S.S.; Jin, H.T.; Talukder, M.; Ge, J.; Zhang, C.; Lv, M.W.; Yaqoob Ismail, M.A.; Li, J.L. The protective effect of nnano-selenium against cadmium-induced cerebellar injury via the heat shock protein pathway in chicken. Food Chem. Toxicol., 2021, 154, 112332.
[http://dx.doi.org/10.1016/j.fct.2021.112332] [PMID: 34118349]
[62]
Ge, J.; Guo, K.; Zhang, C.; Talukder, M.; Lv, M.W.; Li, J.Y.; Li, J.L. Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-kB/IκB pathway in heart. Sci. Total Environ., 2021, 773, 145442.
[http://dx.doi.org/10.1016/j.scitotenv.2021.145442] [PMID: 33940727]
[63]
Ge, J.; Liu, L.L.; Cui, Z.G.; Talukder, M.; Lv, M.W.; Li, J.Y.; Li, J.L. Comparative study on protective effect of different selenium sources against cadmium-induced nephrotoxicity via regulating the transcriptions of selenoproteome. Ecotoxicol. Environ. Saf., 2021, 215, 112135.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112135] [PMID: 33780782]
[64]
Peng, Y.; Li, H.; Shen, K.; Pan, W.; Zhang, J.; Zhou, D. Nano-selenium alleviating the lipid metabolism disorder of LMH cells induced by potassium dichromate via down-regulating ACACA and FASN. Environ. Sci. Pollut. Res. Int., 2021, 28(48), 69426-69435.
[http://dx.doi.org/10.1007/s11356-021-14775-9] [PMID: 34302249]
[65]
Wang, N.; Tan, H.Y.; Li, S.; Xu, Y.; Guo, W.; Feng, Y. Supplementation of micronutrient selenium in metabolic diseases: Its role as an antioxidant. Oxid. Med. Cell. Longev., 2017, 2017, 7478523.
[http://dx.doi.org/10.1155/2017/7478523]
[66]
Ungvári, É.; Monori, I.; Megyeri, A.; Csiki, Z.; Prokisch, J.; Sztrik, A.; Jávor, A.; Benkő, I. Protective effects of meat from lambs on selenium nanoparticle supplemented diet in a mouse model of polycyclic aromatic hydrocarbon-induced immunotoxicity. Food Chem. Toxicol., 2014, 64, 298-306.
[http://dx.doi.org/10.1016/j.fct.2013.12.004] [PMID: 24315870]
[67]
Abdelnour, S.A.; Alagawany, M.; Hashem, N.M.; Farag, M.R.; Alghamdi, E.S.; Hassan, F.U.; Bilal, R.M.; Elnesr, S.S.; Dawood, M.A.O.; Nagadi, S.A.; Elwan, H.A.M. ALmasoudi, A.G.; Attia, Y.A. Nanominerals: Fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals, 2021, 11(7), 1916.
[http://dx.doi.org/10.3390/ani11071916] [PMID: 34203158]
[68]
Xiao, Y.; Huang, Q.; Zheng, Z.; Guan, H.; Liu, S. Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparticles and enhancement of their antioxidant activities. Int. J. Biol. Macromol., 2017, 99, 483-491.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.016] [PMID: 28274870]
[69]
Yan, J.K.; Qiu, W.Y.; Wang, Y.Y.; Wang, W.H.; Yang, Y.; Zhang, H.N. Fabrication and stabilization of biocompatible selenium nanoparticles by carboxylic curdlans with various molecular properties. Carbohydr. Polym., 2018, 179, 19-27.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.063] [PMID: 29111042]
[70]
Xie, J.H.; Jin, M.L.; Morris, G.A.; Zha, X.Q.; Chen, H.Q.; Yi, Y.; Li, J.E.; Wang, Z.J.; Gao, J.; Nie, S.P.; Shang, P.; Xie, M.Y. Advances on bioactive polysaccharides from medicinal plants. Crit. Rev. Food Sci. Nutr., 2016, 56, S60-S84.
[http://dx.doi.org/10.1080/10408398.2015.1069255] [PMID: 26463231]
[71]
Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym., 2018, 183, 91-101.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.009] [PMID: 29352896]
[72]
Lemarchand, C.; Gref, R.; Couvreur, P. Polysaccharide-decorated nanoparticles. Eur. J. Pharm. Biopharm., 2004, 58(2), 327-341.
[http://dx.doi.org/10.1016/j.ejpb.2004.02.016] [PMID: 15296959]
[73]
Hu, S.; Hu, W.; Li, Y.; Li, S.; Tian, H.; Lu, A.; Wang, J. Construction and structure-activity mechanism of polysaccharide nano-selenium carrier. Carbohydr. Polym., 2020, 236, 116052.
[http://dx.doi.org/10.1016/j.carbpol.2020.116052] [PMID: 32172867]
[74]
Chen, T. Yang; Tang; Zhong; Bai; Zhang, Y.; Li, Y.; Zheng, W. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int. J. Nanomedicine, 2012, 7, 835-844.
[http://dx.doi.org/10.2147/IJN.S28278] [PMID: 22359460]
[75]
Qiu, W.Y.; Wang, Y.Y.; Wang, M.; Yan, J.K. Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles. Colloids Surf. B Biointerfaces, 2018, 170, 692-700.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.003] [PMID: 29986266]
[76]
Lara, H.H.; Guisbiers, G.; Mendoza, J.; Mimun, L.C.; Vincent, B.; Lopez-Ribot, J.L.; Nash, K.L. Synergistic antifungal effect of chitosan-stabilized selenium nanoparticles synthesized by pulsed laser ablation in liquids against Candida albicans biofilms. Int. J. Nanomedicine, 2018, 13, 2697-2708.
[http://dx.doi.org/10.2147/IJN.S151285] [PMID: 29760550]
[77]
Xia, I.F.; Cheung, J.S.T.; Wu, M.; Wong, K.S.; Kong, H.K.; Zheng, X.T.; Wong, K.H.; Kwok, K.W.H. Dietary chitosan-selenium nanoparticle (CTS-SeNP) enhance immunity and disease resistance in zebrafish. Fish Shellfish Immunol., 2019, 87, 449-459.
[http://dx.doi.org/10.1016/j.fsi.2019.01.042] [PMID: 30703551]
[78]
Zhu, C.; Zhang, S.; Song, C.; Zhang, Y.; Ling, Q.; Hoffmann, P.R.; Li, J.; Chen, T.; Zheng, W.; Huang, Z. Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-κB mediated hyper inflammation. J. Nanobiotechnology, 2017, 15(1), 20.
[http://dx.doi.org/10.1186/s12951-017-0252-y] [PMID: 28270147]
[79]
Shao, C.; Yu, Z.; Luo, T.; Zhou, B.; Song, Q.; Li, Z.; Yu, X.; Jiang, S.; Zhou, Y.; Dong, W.; Zhou, X.; Wang, X.; Song, H. Chitosan-coated selenium nanoparticles attenuate PRRSV replication and ROS/JNK-mediated apoptosis in vitro. Int. J. Nanomedicine, 2022, 17, 3043-3054.
[http://dx.doi.org/10.2147/IJN.S370585] [PMID: 35832119]
[80]
Zhang, C.; Zhai, X.; Zhao, G.; Ren, F.; Leng, X. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights. Carbohydr. Polym., 2015, 134, 158-166.
[http://dx.doi.org/10.1016/j.carbpol.2015.07.065] [PMID: 26428112]
[81]
Kumar, A.; Prasad, K.S. Role of nano-selenium in health and environment. J. Biotechnol., 2021, 325, 152-163.
[http://dx.doi.org/10.1016/j.jbiotec.2020.11.004] [PMID: 33157197]
[82]
Domínguez-Álvarez, E.; Rácz, B.; Marć, M.A.; Nasim, M.J.; Szemerédi, N.; Viktorová, J.; Jacob, C.; Spengler, G. Selenium and tellurium in the development of novel small molecules and nanoparticles as cancer multidrug resistance reversal agents. Drug Resist. Updat., 2022, 63, 100844.
[http://dx.doi.org/10.1016/j.drup.2022.100844] [PMID: 35533630]
[83]
Zhang, W.; Zhang, J.; Ding, D.; Zhang, L.; Muehlmann, L.A.; Deng, S.; Wang, X.; Li, W.; Zhang, W. Synthesis and antioxidant properties of Lycium barbarum polysaccharides capped selenium nanoparticles using tea extract. Artif. Cells Nanomed. Biotechnol., 2018, 46(7), 1463-1470.
[http://dx.doi.org/10.1080/21691401.2017.1373657] [PMID: 28880681]
[84]
Kalishwaralal, K.; Jeyabharathi, S.; Sundar, K.; Selvamani, S.; Prasanna, M.; Muthukumaran, A. A novel biocompatible chitosan–Selenium nanoparticles (SeNPs) film with electrical conductivity for cardiac tissue engineering application. Mater. Sci. Eng. C, 2018, 92, 151-160.
[http://dx.doi.org/10.1016/j.msec.2018.06.036] [PMID: 30184738]
[85]
El-Batal, A.I.; Mosallam, F.M.; Ghorab, M.M.; Hanora, A.; Gobara, M.; Baraka, A.; Elsayed, M.A.; Pal, K.; Fathy, R.M.; Abd Elkodous, M.; El-Sayyad, G.S. Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells. Int. J. Biol. Macromol., 2020, 156, 1584-1599.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.210] [PMID: 31790741]
[86]
Varlamova, E.G.; Turovsky, E.A.; Blinova, E.V. Therapeutic potential and main methods of obtaining selenium nanoparticles. Int. J. Mol. Sci., 2021, 22(19), 10808.
[http://dx.doi.org/10.3390/ijms221910808] [PMID: 34639150]
[87]
Chaudhary, S.; Umar, A.; Mehta, S.K. Surface functionalized selenium nanoparticles for biomedical applications. J. Biomed. Nanotechnol., 2014, 10(10), 3004-3042.
[http://dx.doi.org/10.1166/jbn.2014.1985] [PMID: 25992427]
[88]
Bai, Y.; Wang, Y.; Zhou, Y.; Li, W.; Zheng, W. Modification and modulation of saccharides on elemental selenium nanoparticles in liquid phase. Mater. Lett., 2008, 62(15), 2311-2314.
[http://dx.doi.org/10.1016/j.matlet.2007.11.098]
[89]
Chen, W.; Yue, L.; Jiang, Q.; Liu, X.; Xia, W. Synthesis of varisized chitosan-selenium nanocomposites through heating treatment and evaluation of their antioxidant properties. Int. J. Biol. Macromol., 2018, 114, 751-758.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.108] [PMID: 29588203]
[90]
Kong, H.; Yang, J.; Zhang, Y.; Fang, Y.; Nishinari, K.; Phillips, G.O. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int. J. Biol. Macromol., 2014, 65, 155-162.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.011] [PMID: 24418338]
[91]
Chen, J.; Chen, X.; Li, J.; Luo, B.; Fan, T.; Li, R.; Liu, X.; Song, B.; Jia, X.; Zhong, S. Preparation and characterization of nano-selenium decorated by chondroitin sulfate derived from shark cartilage and investigation on its antioxidant activity. Mar. Drugs, 2022, 20(3), 172.
[http://dx.doi.org/10.3390/md20030172] [PMID: 35323471]
[92]
Zhang, X.; Yan, H.; Ma, L.; Zhang, H.; Ren, D.F. Preparation and characterization of selenium nanoparticles decorated by Spirulina platensis polysaccharide. J. Food Biochem., 2020, 44(9), e13363.
[http://dx.doi.org/10.1111/jfbc.13363] [PMID: 32648615]
[93]
Araujo, J.M.; Fortes-Silva, R.; Pola, C.C.; Yamamoto, F.Y.; Gatlin, D.M., III; Gomes, C.L. Delivery of selenium using chitosan nanoparticles: Synthesis, characterization, and antioxidant and growth effects in Nile tilapia (Orechromis niloticus). PLoS One, 2021, 16(5), e0251786.
[http://dx.doi.org/10.1371/journal.pone.0251786] [PMID: 34003829]
[94]
Chen, T.; Wong, Y.S.; Zheng, W.; Bai, Y.; Huang, L. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf. B Biointerfaces, 2008, 67(1), 26-31.
[http://dx.doi.org/10.1016/j.colsurfb.2008.07.010] [PMID: 18805679]
[95]
Liao, W.; Yu, Z.; Lin, Z.; Lei, Z.; Ning, Z.; Regenstein, J.M.; Yang, J.; Ren, J. Biofunctionalization of selenium nanoparticle with dictyophora indusiata polysaccharide and its antiproliferative activity through death-receptor and mitochondria-mediated apoptotic pathways. Sci. Rep., 2015, 5(1), 18629.
[http://dx.doi.org/10.1038/srep18629] [PMID: 26686000]
[96]
Cao, B.; Zhang, Q.; Guo, J.; Guo, R.; Fan, X.; Bi, Y. Synthesis and evaluation of Grateloupia Livida polysaccharides-functionalized selenium nanoparticles. Int. J. Biol. Macromol., 2021, 191, 832-839.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.087] [PMID: 34547315]
[97]
Liu, G.; Yang, X.; Zhang, J.; Liang, L.; Miao, F.; Ji, T.; Ye, Z.; Chu, M.; Ren, J.; Xu, X. Synthesis, stability and anti-fatigue activity of selenium nanoparticles stabilized by Lycium barbarum polysaccharides. Int. J. Biol. Macromol., 2021, 179, 418-428.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.018] [PMID: 33676981]
[98]
Wang, T.; Zhao, H.; Bi, Y.; Fan, X. Preparation and antioxidant activity of selenium nanoparticles decorated by polysaccharides from Sargassum fusiforme. J. Food Sci., 2021, 86(3), 977-986.
[http://dx.doi.org/10.1111/1750-3841.15605] [PMID: 33559173]
[99]
Wang, Z.; Ji, L.; Ren, Y.; Liu, M.; Ai, X.; Yang, C. Preparation and anti-tumor study of dextran 70,000-selenium nanoparticles and poloxamer 188-selenium nanoparticles. AAPS PharmSciTech, 2022, 23(1), 29.
[http://dx.doi.org/10.1208/s12249-021-02141-4] [PMID: 34931279]
[100]
Wadhwani, S.A.; Shedbalkar, U.U.; Singh, R.; Chopade, B.A. Biogenic selenium nanoparticles: Current status and future prospects. Appl. Microbiol. Biotechnol., 2016, 100(6), 2555-2566.
[http://dx.doi.org/10.1007/s00253-016-7300-7] [PMID: 26801915]
[101]
Xu, C.; Qiao, L.; Guo, Y.; Ma, L.; Cheng, Y. Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393. Carbohydr. Polym., 2018, 195, 576-585.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.110] [PMID: 29805014]
[102]
Fesharaki, P.J.; Nazari, P.; Shakibaie, M.; Rezaie, S.; Banoee, M.; Abdollahi, M.; Shahverdi, A.R. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz. J. Microbiol., 2010, 41(2), 461-466.
[http://dx.doi.org/10.1590/S1517-83822010000200028] [PMID: 24031517]
[103]
Abbas, H.S.; Abou Baker, D.H.; Ahmed, E.A. Cytotoxicity and antimicrobial efficiency of selenium nanoparticles biosynthesized by Spirulina platensis. Arch. Microbiol., 2021, 203(2), 523-532.
[http://dx.doi.org/10.1007/s00203-020-02042-3] [PMID: 32968818]
[104]
Ren, L.; Wu, Z.; Ma, Y.; Jian, W.; Xiong, H.; Zhou, L. Preparation and growth‐promoting effect of selenium nanoparticles capped by polysaccharide‐protein complexes on tilapia. J. Sci. Food Agric., 2021, 101(2), 476-485.
[http://dx.doi.org/10.1002/jsfa.10656] [PMID: 32643806]
[105]
Kazemi, M.; Akbari, A.; Sabouri, Z.; Soleimanpour, S.; Zarrinfar, H.; Khatami, M.; Darroudi, M. Green synthesis of colloidal selenium nanoparticles in starch solutions and investigation of their photocatalytic, antimicrobial, and cytotoxicity effects. Bioprocess Biosyst. Eng., 2021, 44(6), 1215-1225.
[http://dx.doi.org/10.1007/s00449-021-02515-9] [PMID: 33595725]
[106]
Falsafi, S.R.; Rostamabadi, H.; Assadpour, E.; Jafari, S.M. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Adv. Colloid Interface Sci., 2020, 280, 102166.
[http://dx.doi.org/10.1016/j.cis.2020.102166] [PMID: 32387755]
[107]
Rydz, J.; Šišková, A.; Andicsová Eckstein, A. Scanning electron microscopy and atomic force microscopy: Topographic and dynamical surface studies of blends, composites, and hybrid functional materials for sustainable future. Adv. Mater. Sci. Eng., 2019, 2019, 1-16.
[http://dx.doi.org/10.1155/2019/6871785]
[108]
Cai, W.; Hu, T.; Bakry, A.M.; Zheng, Z.; Xiao, Y.; Huang, Q. Effect of ultrasound on size, morphology, stability and antioxidant activity of selenium nanoparticles dispersed by a hyperbranched polysaccharide from Lignosus rhinocerotis. Ultrason. Sonochem., 2018, 42, 823-831.
[http://dx.doi.org/10.1016/j.ultsonch.2017.12.022] [PMID: 29429736]
[109]
Pochapski, D.J.; Carvalho dos Santos, C.; Leite, G.W.; Pulcinelli, S.H.; Santilli, C.V. Zeta potential and colloidal stability predictions for inorganic nanoparticle dispersions: Effects of experimental conditions and electrokinetic models on the interpretation of results. Langmuir, 2021, 37(45), 13379-13389.
[http://dx.doi.org/10.1021/acs.langmuir.1c02056] [PMID: 34637312]
[110]
Zhao, H.; Liu, C.; Song, J.; Fan, X. Pilot study of toxicological safety evaluation in acute and 28‐day studies of selenium nanoparticles decorated by polysaccharides from Sargassum fusiforme in Kunming mice. J. Food Sci., 2022, 87(9), 4264-4279.
[http://dx.doi.org/10.1111/1750-3841.16289] [PMID: 35988116]
[111]
Xu, C.; Qiao, L.; Ma, L.; Yan, S.; Guo, Y.; Dou, X.; Zhang, B.; Roman, A. Biosynthesis of polysaccharides-capped selenium nanoparticles using Lactococcus lactis NZ9000 and their antioxidant and anti-inflammatory activities. Front. Microbiol., 2019, 10, 1632.
[http://dx.doi.org/10.3389/fmicb.2019.01632] [PMID: 31402902]
[112]
Wang, J.; Zhang, Y.; Yuan, Y.; Yue, T. Immunomodulatory of selenium nano-particles decorated by sulfated Ganoderma lucidum polysaccharides. Food Chem. Toxicol., 2014, 68, 183-189.
[http://dx.doi.org/10.1016/j.fct.2014.03.003] [PMID: 24626144]
[113]
Cui, D.; Ma, J.; Liang, T.; Sun, L.; Meng, L.; Liang, T.; Li, Q. Selenium nanoparticles fabricated in laminarin polysaccharides solutions exert their cytotoxicities in HepG2 cells by inhibiting autophagy and promoting apoptosis. Int. J. Biol. Macromol., 2019, 137, 829-835.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.031] [PMID: 31284007]
[114]
Zeng, D.; Zhao, J.; Luk, K.H.; Cheung, S.T.; Wong, K.H.; Chen, T. Potentiation of in vivo anticancer efficacy of selenium nanoparticles by mushroom polysaccharides surface decoration. J. Agric. Food Chem., 2019, 67(10), 2865-2876.
[http://dx.doi.org/10.1021/acs.jafc.9b00193] [PMID: 30785270]
[115]
Tang, L.; Luo, X.; Wang, M.; Wang, Z.; Guo, J.; Kong, F.; Bi, Y. Synthesis, characterization, in vitro antioxidant and hypoglycemic activities of selenium nanoparticles decorated with polysaccharides of Gracilaria lemaneiformis. Int. J. Biol. Macromol., 2021, 193(Pt A), 923-932.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.10.189] [PMID: 34728301]
[116]
Zhang, J.; Taylor, E.W.; Wang, Y.; Wan, X.; Zhang, J. Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention. Int. J. Nanomedicine, 2012, 7, 1711-1721.
[http://dx.doi.org/10.2147/IJN.S29341] [PMID: 22619522]
[117]
Maiyo, F.; Singh, M. Selenium nanoparticles: Potential in cancer gene and drug delivery. Nanomedicine, 2017, 12(9), 1075-1089.
[http://dx.doi.org/10.2217/nnm-2017-0024] [PMID: 28440710]
[118]
Ferro, C.; Florindo, H.F.; Santos, H.A. Selenium nanoparticles for biomedical applications: from development and characterization to therapeutics. Adv. Healthc. Mater., 2021, 10(16), 2100598.
[http://dx.doi.org/10.1002/adhm.202100598] [PMID: 34121366]
[119]
Pi, J.; Jin, H.; Liu, R.; Song, B.; Wu, Q.; Liu, L.; Jiang, J.; Yang, F.; Cai, H.; Cai, J. Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells. Appl. Microbiol. Biotechnol., 2013, 97(3), 1051-1062.
[http://dx.doi.org/10.1007/s00253-012-4359-7] [PMID: 22945264]
[120]
Liu, T.; Zeng, L.; Jiang, W.; Fu, Y.; Zheng, W.; Chen, T. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine, 2015, 11(4), 947-958.
[http://dx.doi.org/10.1016/j.nano.2015.01.009] [PMID: 25680543]
[121]
Nonsuwan, P.; Puthong, S.; Palaga, T.; Muangsin, N. Novel organic/inorganic hybrid flower-like structure of selenium nanoparticles stabilized by pullulan derivatives. Carbohydr. Polym., 2018, 184, 9-19.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.029] [PMID: 29352947]
[122]
Kumari, M.; Purohit, M.P.; Patnaik, S.; Shukla, Y.; Kumar, P.; Gupta, K.C. Curcumin loaded selenium nanoparticles synergize the anticancer potential of doxorubicin contained in self-assembled, cell receptor targeted nanoparticles. Eur. J. Pharm. Biopharm., 2018, 130, 185-199.
[http://dx.doi.org/10.1016/j.ejpb.2018.06.030] [PMID: 29969665]
[123]
Saw, P.E.; Song, E.W. siRNA therapeutics: A clinical reality. Sci. China Life Sci., 2020, 63(4), 485-500.
[http://dx.doi.org/10.1007/s11427-018-9438-y] [PMID: 31054052]
[124]
Xia, Y.; Guo, M.; Xu, T.; Li, Y.; Wang, C.; Lin, Z.; Zhao, M.; Zhu, B. siRNA-loaded selenium nanoparticle modified with hyaluronic acid for enhanced hepatocellular carcinoma therapy. Int. J. Nanomedicine, 2018, 13, 1539-1552.
[http://dx.doi.org/10.2147/IJN.S157519] [PMID: 29588583]
[125]
Jiang, W.; Fu, Y.; Yang, F.; Yang, Y.; Liu, T.; Zheng, W.; Zeng, L.; Chen, T. Gracilaria lemaneiformis polysaccharide as integrin-targeting surface decorator of selenium nanoparticles to achieve enhanced anticancer efficacy. ACS Appl. Mater. Interfaces, 2014, 6(16), 13738-13748.
[http://dx.doi.org/10.1021/am5031962] [PMID: 25073123]
[126]
Liu, Y.; Zhao, J.; Zhao, Y.; Zong, S.; Tian, Y.; Chen, S.; Li, M.; Liu, H.; Zhang, Q.; Jing, X.; Sun, B.; Wang, H.; Sun, T.; Yang, C. Therapeutic effects of lentinan on inflammatory bowel disease and colitis‐associated cancer. J. Cell. Mol. Med., 2019, 23(2), 750-760.
[http://dx.doi.org/10.1111/jcmm.13897] [PMID: 30472806]
[127]
Liu, H.J.; Qin, Y.; Zhao, Z.H.; Zhang, Y.; Yang, J.H.; Zhai, D.H.; Cui, F.; Luo, C.; Lu, M.X.; Liu, P.P.; Xu, H.W.; Li, K.; Sun, B.; Chen, S.; Zhou, H.G.; Yang, C.; Sun, T. Lentinan-functionalized selenium nanoparticles target tumor cell mitochondria via TLR4/TRAF3/MFN1 pathway. Theranostics, 2020, 10(20), 9083-9099.
[http://dx.doi.org/10.7150/thno.46467] [PMID: 32802180]
[128]
Gao, X.; Yao, Y.; Chen, X.; Lin, X.; Yang, X.; Ho, C.T.; Li, B.; Chen, Z. Lentinan-functionalized selenium nanoparticles induce apoptosis and cell cycle arrest in human colon carcinoma HCT-116 cells. Front. Nutr., 2022, 9, 987807.
[http://dx.doi.org/10.3389/fnut.2022.987807] [PMID: 36082027]
[129]
Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell, 2011, 147(4), 728-741.
[http://dx.doi.org/10.1016/j.cell.2011.10.026] [PMID: 22078875]
[130]
Onorati, A.V.; Dyczynski, M.; Ojha, R.; Amaravadi, R.K. Targeting autophagy in cancer. Cancer, 2018, 124(16), 3307-3318.
[http://dx.doi.org/10.1002/cncr.31335] [PMID: 29671878]
[131]
Kirwale, S.; Pooladanda, V.; Thatikonda, S.; Murugappan, S.; Khurana, A.; Godugu, C. Selenium nanoparticles induce autophagy mediated cell death in human keratinocytes. Nanomedicine, 2019, 14(15), 1991-2010.
[http://dx.doi.org/10.2217/nnm-2018-0397] [PMID: 31355710]
[132]
Huang, J.; Liu, Y.; Liu, T.; Chang, Y.; Chen, T.; Li, X. Dual-targeting nanotherapeutics antagonize hyperinsulinemia-promoted tumor growth via activating cell autophagy. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(43), 6751-6758.
[http://dx.doi.org/10.1039/C9TB01197H] [PMID: 31593205]
[133]
Duan, Z.; Liang, M.; Yang, C.; Yan, C.; Wang, L.; Song, J.; Han, L.; Fan, Y.; Li, W.; Liang, T.; Li, Q. Selenium nanoparticles coupling with Astragalus Polysaccharides exert their cytotoxicities in MCF-7 cells by inhibiting autophagy and promoting apoptosis. J. Trace Elem. Med. Biol., 2022, 73, 127006.
[http://dx.doi.org/10.1016/j.jtemb.2022.127006]
[134]
Zhang, X.; He, C.; Yan, R.; Chen, Y.; Zhao, P.; Li, M.; Fan, T.; Yang, T.; Lu, Y.; Luo, J.; Ma, X.; Xiang, G. HIF-1 dependent reversal of cisplatin resistance via anti-oxidative nano selenium for effective cancer therapy. Chem. Eng. J., 2020, 380, 122540.
[http://dx.doi.org/10.1016/j.cej.2019.122540]
[135]
Luesakul, U.; Puthong, S.; Neamati, N.; Muangsin, N. pH-responsive selenium nanoparticles stabilized by folate-chitosan delivering doxorubicin for overcoming drug-resistant cancer cells. Carbohydr. Polym., 2018, 181, 841-850.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.068] [PMID: 29254044]
[136]
Menon, S.; Jayakodi, S.; Yadav, K.K.; Somu, P.; Isaq, M.; Shanmugam, V.K.; Chaitanyakumar, A.; Basavegowda, N. Preparation of paclitaxel-encapsulated bio-functionalized selenium nanoparticles and evaluation of their efficacy against cervical cancer. Molecules, 2022, 27(21), 7290.
[http://dx.doi.org/10.3390/molecules27217290] [PMID: 36364115]
[137]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[138]
Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882.
[http://dx.doi.org/10.1016/j.cell.2010.02.029] [PMID: 20303877]
[139]
Luo, Y.; Ren, Z.; Bo, R.; Liu, X.; Zhang, J.; Yu, R.; Chen, S.; Meng, Z.; Xu, Y.; Ma, Y.; Huang, Y.; Qin, T. Designing selenium polysaccharides-based nanoparticles to improve immune activity of Hericium erinaceus. Int. J. Biol. Macromol., 2020, 143, 393-400.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.061] [PMID: 31830456]
[140]
Bagheri-Josheghani, S.; Bakhshi, B. Formulation of selenium nanoparticles encapsulated by alginate-chitosan for controlled delivery of Vibrio Cholerae LPS: A novel delivery system candidate for nanovaccine. Int. J. Biol. Macromol., 2022, 208, 494-508.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.087] [PMID: 35337913]
[141]
Darroudi, M.; Rangrazi, A.; Ghazvini, K.; Bagheri, H.; Boruziniat, A. Antimicrobial activity of colloidal selenium nanoparticles in chitosan solution against streptococcus mutans, lactobacillus acidophilus, and candida albicans, pesquisa brasileira em odontopediatria e clínica integrada 21 2021.
[142]
Rangrazi, A.; Bagheri, H.; Ghazvini, K.; Boruziniat, A.; Darroudi, M. Synthesis and antibacterial activity of colloidal selenium nanoparticles in chitosan solution: A new antibacterial agent. Mater. Res. Express, 2020, 6(12), 1250h3.
[http://dx.doi.org/10.1088/2053-1591/ab6a56]
[143]
Mariadoss, A.V.A.; Saravanakumar, K.; Sathiyaseelan, A.; Naveen, K.V.; Wang, M.H. Enhancement of anti-bacterial potential of green synthesized selenium nanoparticles by starch encapsulation. Microb. Pathog., 2022, 167, 105544.
[http://dx.doi.org/10.1016/j.micpath.2022.105544] [PMID: 35443211]
[144]
Dawood, M.A.O.; Zommara, M.; Eweedah, N.M.; Helal, A.I.; Aboel-Darag, M.A. The potential role of nano-selenium and vitamin C on the performances of Nile tilapia (Oreochromis niloticus). Environ. Sci. Pollut. Res. Int., 2020, 27(9), 9843-9852.
[http://dx.doi.org/10.1007/s11356-020-07651-5] [PMID: 31925699]
[145]
Azimi, F.; Oraei, M.; Gohari, G.; Panahirad, S.; Farmarzi, A. Chitosan-selenium nanoparticles (Cs–Se NPs) modulate the photosynthesis parameters, antioxidant enzymes activities and essential oils in Dracocephalum moldavica L. under cadmium toxicity stress. Plant Physiol. Biochem., 2021, 167, 257-268.
[http://dx.doi.org/10.1016/j.plaphy.2021.08.013] [PMID: 34391200]
[146]
Wang, L.; Li, C.; Huang, Q.; Fu, X. Biofunctionalization of selenium nanoparticles with a polysaccharide from Rosa roxburghii fruit and their protective effect against H 2 O 2 -induced apoptosis in INS-1 cells. Food Funct., 2019, 10(2), 539-553.
[http://dx.doi.org/10.1039/C8FO01958D] [PMID: 30662993]
[147]
Chen, W.; Cheng, H.; Xia, W. Construction of polygonatum sibiricum polysaccharide functionalized selenium nanoparticles for the enhancement of stability and antioxidant activity. Antioxidants, 2022, 11(2), 240.
[http://dx.doi.org/10.3390/antiox11020240] [PMID: 35204123]
[148]
Bai, K.; Hong, B.; Huang, W.; He, J. Selenium-nanoparticles-loaded chitosan/chitooligosaccharide microparticles and their antioxidant potential: A chemical and in vivo investigation. Pharmaceutics, 2020, 12(1), 43.
[http://dx.doi.org/10.3390/pharmaceutics12010043] [PMID: 31947874]
[149]
Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[150]
Nazıroğlu, M.; Muhamad, S.; Pecze, L. Nanoparticles as potential clinical therapeutic agents in Alzheimer’s disease: Focus on selenium nanoparticles. Expert Rev. Clin. Pharmacol., 2017, 10(7), 773-782.
[http://dx.doi.org/10.1080/17512433.2017.1324781] [PMID: 28463572]
[151]
Yin, T.; Yang, L.; Liu, Y.; Zhou, X.; Sun, J.; Liu, J. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta Biomater., 2015, 25, 172-183.
[http://dx.doi.org/10.1016/j.actbio.2015.06.035] [PMID: 26143603]
[152]
Gao, F.; Zhao, J.; Liu, P.; Ji, D.; Zhang, L.; Zhang, M.; Li, Y.; Xiao, Y. Preparation and in vitro evaluation of multi-target-directed selenium-chondroitin sulfate nanoparticles in protecting against the Alzheimer’s disease. Int. J. Biol. Macromol., 2020, 142, 265-276.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.098] [PMID: 31593732]
[153]
Javdani, M.; Ghorbani, R.; Hashemnia, M. Histopathological evaluation of spinal cord with experimental traumatic injury following implantation of a controlled released drug delivery system of chitosan hydrogel loaded with selenium nanoparticle. Biol. Trace Elem. Res., 2021, 199(7), 2677-2686.
[http://dx.doi.org/10.1007/s12011-020-02395-2] [PMID: 32959339]
[154]
Rao, S.; Lin, Y.; Lin, R.; Liu, J.; Wang, H.; Hu, W.; Chen, B.; Chen, T. Traditional Chinese medicine active ingredients-based selenium nanoparticles regulate antioxidant selenoproteins for spinal cord injury treatment. J. Nanobiotechnology, 2022, 20(1), 278.
[http://dx.doi.org/10.1186/s12951-022-01490-x] [PMID: 35701758]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy