Generic placeholder image

Current Functional Foods

Editor-in-Chief

ISSN (Print): 2666-8629
ISSN (Online): 2666-8637

Review Article

Antidiabetic Potential of Apiaceae Family Plants- A Critical Update

Author(s): Sneha Bag, Dipan Chatterjee, Sumel Ashique*, Radheshyam Pal, Heya Khatoon and Shubneesh Kumar

Volume 2, Issue 2, 2024

Published on: 29 February, 2024

Article ID: e290224227538 Pages: 13

DOI: 10.2174/0126668629283987240123100449

Price: $65

conference banner
Abstract

Apiaceae is one of the biggest and most important plant families, comprising about 3700 species and 434 genera. Most of them are aromatic, flowering plants. The plants in this family are beneficial for everyday use and treating diseases. They are a rich source of nutraceuticals and secondary metabolites attributed to different pharmacological activities. Some plants under this family possess antidiabetic activity through different mechanisms, such as inhibiting carbohydrate hydrolyzing enzymes, stimulating insulin secretion, and regulating glucose transporters. Diabetes mellitus has become a chronic metabolic disorder whose management is of utmost importance in recent days. The present review aims to establish the use of Apiaceae family plants in treating diabetes mellitus. The availability of plants, their bio-constituents, mode of action, and experimental studies have also been briefly described here.

Keywords: Apiaceae, antihyperglycemic, secondary metabolites, inhibition of enzymes, glucose transporters, bio-constituents.

Graphical Abstract
[1]
World Health Organization, Diabetes. 2020. Available from: www.who.int/news- room/fact-sheets/detail/diabetes (Accessed on 8 June 2020).
[2]
International Diabetes Federation IDF Diabetes Atlas, Diabetes Facts & Figures. (9th ed.), 2019. Available from: https://diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf
[3]
Gupta PD, De A. Diabetes mellitus and its herbal treatment. Int J Res Pharm Biomed Sci 2012; 3: 706-21.
[4]
Kitada M, Zhang Z, Mima A, King GL. Molecular mechanisms of diabetic vascular complications. J Diabetes Investig 2010; 1(3): 77-89.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00018.x] [PMID: 24843412]
[5]
Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. On type 1 diabetes mellitus pathogenesis. Endocr Connect 2018; 7(1): R38-46.
[http://dx.doi.org/10.1530/EC-17-0347] [PMID: 29191919]
[6]
Chauhan A, Sharma PK, Srivastava P, Kumar N, Dudhe R. Plants having potential antidiabetic activity: A review. Pharm Lett 2010; 2(3): 369-87.
[7]
Malviya N, Jain S, Malviya S. Antidiabetic potential of medicinal plants. Acta Pol Pharm 2010; 67(2): 113-8.
[PMID: 20369787]
[8]
Christensen LP, Brandt K. Bioactive polyacetylenes in food plants of the Apiaceae family: Occurrence, bioactivity and analysis. J Pharm Biomed Anal 2006; 41(3): 683-93.
[http://dx.doi.org/10.1016/j.jpba.2006.01.057] [PMID: 16520011]
[9]
Berenbaum MR. Evolution of specialization in insect-umbellifer associations. Annu Rev Entomol 1990; 35(1): 319-43.
[http://dx.doi.org/10.1146/annurev.en.35.010190.001535]
[10]
(a) Duncan C. Identification and Management of Three Toxic Plants in the Carrot Family. Technical Invasive Plant News 2019.;
(b) Pae HO, Oh H, Yun YG, et al. Imperatorin, a furanocoumarin from Angelica dahurica (Umbelliferae), induces cytochrome c-dependent apoptosis in human promyelocytic leukaemia, HL-60 cells. Pharmacol Toxicol 2002; 91(1): 40-8.
[http://dx.doi.org/10.1034/j.1600-0773.2002.910107.x] [PMID: 12193260]
[11]
Huang WY, Cai YZ, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 2009; 62(1): 1-20.
[http://dx.doi.org/10.1080/01635580903191585] [PMID: 20043255]
[12]
Jia XL, Wang GL, Xiong F, et al. De novo assembly, transcriptome characterization, lignin accumulation and anatomic characteristics: Novel insights into lignin biosynthesis during celery leaf development. Sci Rep 2015; 5(1): 8259.
[http://dx.doi.org/10.1038/srep08259]
[13]
Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009; 2(5): 270-8.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[14]
Najda A, Dyduch J, Brzozowski N. Flavonoid content and antioxidant activity of caraway roots (Carum Carvi L.). J Fruit Ornam Plant Res 2008; 68(1): 127-33.
[http://dx.doi.org/10.2478/v10032-008-0011-6]
[15]
Nassar MI. Secondary metabolites and pharmacology of Foeniculum vulgare Mill. Subsp. Piperitum. Rev Latiniamer Quem 2010; 38(2): 103-12.
[16]
Rodrigues VM, Rosa PTV, Marques MOM, Petenate AJ, Meireles MAA. Supercritical extraction of essential oil from aniseed (Pimpinella anisum L.) using CO2: Solubility, kinetics, and composition data. J Agric Food Chem 2003; 51(6): 1518-23.
[http://dx.doi.org/10.1021/jf0257493] [PMID: 12617576]
[17]
Wu YC, Hsieh CL. Pharmacological effects of radix Angelica sinensis (Danggui) on cerebral infarction. Chin Med 2011; 6(1): 32.
[http://dx.doi.org/10.1186/1749-8546-6-32] [PMID: 21867503]
[18]
Chen J. On effects and mechanism of Angelica sinensis polysaccharides on glucose metabolism in experiment aldiabetic rats. J Wuhan Univ Technol 2010; 9: 93-5.
[19]
Wang K, Tang Z, Zheng Z. Protective effects of angelica sinensis polysaccharide against hyperglycemia and liver injury in multiple low-dose streptozotocin- induced type 2 diabetic BALB/c mice. Food Funct 2016; 7(12): 4889-97.
[20]
Wang Q, Ding F, Zhu N, He P, Fang Y. Determination of the compositions of polysaccharides from Chinese herbs by capillary zone electrophoresis with amperometric detection. Biomed Chromatogr 2003; 17(7): 483-8.
[http://dx.doi.org/10.1002/bmc.267] [PMID: 14598334]
[21]
Al-Sa’aidi JA, Alrodhan MNA, Ismael AK. Antioxidant activity of n-butanol extract of celery (Apium graveolens) seed in streptozotocin-induced diabetic male rats. Res Pharm Biotech 2012; 4(2): 24-9.
[22]
Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol Rev 2000; 52(4): 673-751.
[PMID: 11121513]
[23]
Gutierrez RMP, Juarez VA, Sauceda JV, Sosa IA. In vitro and in vivo antidiabetic and antiglycation properties of apium graveolens in type 1 and 2 diabetic rat. Int J Pharmacol 2014; 10(7): 368-79.
[http://dx.doi.org/10.3923/ijp.2014.368.379]
[24]
Abozid MM, Abd El-Rahman HSM, Mohamed MS. Evaluation of potential anti-diabetic effect of Apium graveolens and Brassica oleracea extractsin alloxan induced diabetic rats. Int J Pharm Sci Rev Res 2018; 49(2): 39-44.
[25]
Li P, Zhang D, Xie J, Xu X, Wei D. In vitro and in vivo antioxidant activities of a flavonoid isolated from celery (Apium graveolens L. var. dulce). Food Funct 2013; 1-7.
[PMID: 24232123]
[26]
Shekhawat GS, Jana S. Anethum graveolens: An Indian traditional medicinal herb and spice. Pharmacogn Rev 2010; 4(8): 179-84.
[http://dx.doi.org/10.4103/0973-7847.70915] [PMID: 22228959]
[27]
Yazdanparast R, Bahramikia S. Evaluation of the effect of Anethum graveolens L. crude extracts on serum lipids and lipoproteins profile in hypercholesterolaemic rats. Daru 2008; 16(2): 88-94.
[28]
Mishra N. Haematological and hypoglycemic potential Anethum graveolens seeds extract in normal and diabetic Swiss albino mice. Vet World 2013; 6(8): 502-7.
[http://dx.doi.org/10.5455/vetworld.2013.502-507]
[29]
Mobasseri M, Payahoo L, Ostadrahimi A, Bishak YK, Jafarabadi MA, Mahluji S. Anethu graveolens supplementation improves insulin sensitivity and lipid abnormality in type-2 diabetic patients. Pharm Sci 2014; 20: 40-5.
[30]
Oshaghi EA. Lipid lowering effects of hydroalcoholic extract of Anethum graveolens L. and Dill tablet in high cholesterol fed hamsters. Cholesterol 2015; 2015: 958560.
[http://dx.doi.org/10.1155/2015/958560] [PMID: 26823981]
[31]
Al-Snafi AE. The chemical constituents and pharmacological effects of Carum carvi: A review. Indian J Pharm Sci Res 2015; 2: 72-82.
[32]
AbouEl-Soud NH, El-Lithy NA, El-Saeed G. Renoprotective effects of caraway (Carum carvi) essential oil in streptozotocin induced diabetic rats. J Appl Pharm Sci 2014; 4(2): 27-33.
[http://dx.doi.org/10.7324/JAPS.2014.40205]
[33]
Eddouks M. Caraway and caper: Potentialamti-hyperglycaemic plants in diabetic rats. J Ethnopharmacol 2004; 94: 143-8.
[http://dx.doi.org/10.1016/j.jep.2004.05.006] [PMID: 15261975]
[34]
Kumar EK, Mastan SK, Sreekanth N, Chaitanya G. Influence of aqueous extract of Carum carvi fruits on tobutamide-induced hypoglycemia/antihyperglycemia in normal/alloxan-induced diabetic rats. Biomed Pharmacol J 2008; 1(2): 365-70.
[35]
Eidi A, Eidi M. Hypoglycemic effect of ethanolic of Carum carvi L. seeds in normal and streptozotocin-induced diabetic rats. Faslnamah-i Giyahan-i Daruyi 2010; 9(35): 106-13.
[36]
Mahboubi M. Caraway as important medicinal plants in management of diseases. Nat Prod Bioprospect 2019; 9(1): 1-11.
[http://dx.doi.org/10.1007/s13659-018-0190-x] [PMID: 30374904]
[37]
Brinkhaus B, Lindner M, Schuppan D, Hahn EG. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella aslatica. Phytomedicine 2000; 7(5): 427-48.
[http://dx.doi.org/10.1016/S0944-7113(00)80065-3] [PMID: 11081995]
[38]
Gohil K, Patel J, Gajjar A. Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian J Pharm Sci 2010; 72(5): 546-56.
[http://dx.doi.org/10.4103/0250-474X.78519] [PMID: 21694984]
[39]
Singh B, Rastogi RP. A reinvestigation of the triterpenes of Centella asiatica. Phytochemistry 1969; 8(5): 917-21.
[http://dx.doi.org/10.1016/S0031-9422(00)85884-7]
[40]
Ramaswamy AS, Pariyaswami SM, Basu N. Pharmacological studies on Centella asiatica Linn. Indian J Med Res 1970; 4: 160-4.
[41]
Heidari M, Jamshedi AH, Akhondzadeh SH, Ghaffari NM, Sadeghi MR, Khansari GM. Evaluating the effects of Centella asiatica on spermatogenesis in rats. Med J Reprod Infertility 2007; 7: 367-74.
[42]
Cesarone MR, Laurora G, De Sanctis MT, Belcaro G. Activity of Centella asiatica in venous insufficiency. Minerva Cardioangiol 1992; 40(4): 137-43.
[PMID: 1528498]
[43]
Kabir AU, Samad MB, D’Costa NM, Akhter F, Ahmed A, Hannan JMA. Anti-hyperglycemic activity of Centella asiatica is partly mediated by carbohydrase inhibition and glucose-fiber binding. BMC Complement Altern Med 2014; 14(1): 31.
[http://dx.doi.org/10.1186/1472-6882-14-31] [PMID: 24438380]
[44]
Emran TB, Dutta M, Nasir Uddin MM, Nath A, Zia Uddin M. Antidiabetic potential of the leaf extract of Centella asiatica in alloxan-induced diabetic rats. J Biosci 2015; 4(1): 51-9.
[45]
Sasikala S, Lakshminarasaiah S, Naidu MD. Antidiabetic activity of Centella asiatica on streptozotocin induced diabetic male albino rats. World J Pharm Sci 2015; 3(8): 1701-5.
[46]
Bhat S, Kaushal P, Kaur M, Sharma K. Coriander (Coriandrum sativum L.): Processing, nutritional and functional aspects. Afr J Plant Sci 2014; 8(1): 25-33.
[http://dx.doi.org/10.5897/AJPS2013.1118]
[47]
Gray AM, Flatt PR. Insulin-releasing and insulin-like activity of the traditional anti-diabetic plant Coriandrum sativum (coriander). Br J Nutr 1999; 81(3): 203-9.
[http://dx.doi.org/10.1017/S0007114599000392] [PMID: 10434846]
[48]
Eidi M, Eidi A, Saeidi A, et al. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin‐induced diabetic rats. Phytother Res 2009; 23(3): 404-6.
[http://dx.doi.org/10.1002/ptr.2642] [PMID: 19003941]
[49]
Brindis F, Gonzalez-Andrade M, Gonzalez-Trujano ME, Estrada-Soto S. Postprandial glycemia and inhibition of α-glucosidase activity by aqueous extract from activity by aqueous extract from Coriandrum sativum. Nat Prod Res 2014; 28(22): 2021-5.
[http://dx.doi.org/10.1080/14786419.2014.917414] [PMID: 24836119]
[50]
Aligita W, Susilawati E, Septiani H, Atsil R. Antidiabetic activity of coriander (Coriandrum sativum L.) leaves’ ethanolic extract. Int J Pharm Phytopharm Res 2018; 8(2): 59-63.
[51]
Das S, Chaware S, Narkar N, Tilak AV, Raveendran S, Rane P. Antidiabetic activity of Coriandrum sativum in streptozotocin induced diabetic rats. Int J Basic Clin Pharmacol 2019; 8(5): 925-9.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20191577]
[52]
Al-Snafi AE. The Pharmacological Activities of Cuminum cyminum- A Review. IOSR J Pharm 2016; 6(2): 46-65.
[53]
Li R, Jiang ZT. Chemical composition of the essential oil of Cuminum cyminum L. from China. Flavour Fragrance J 2004; 19(4): 311-3.
[http://dx.doi.org/10.1002/ffj.1302]
[54]
Hashemi P, Shamizadeh M, Badiei A, Ghiasvand AR, Azizi K. Study of the essential oil composition of cumin seeds by an amino ethyl-functionalized nanoporous SPME fiber. Chromatographia 2009; 70(7-8): 1147-51.
[http://dx.doi.org/10.1365/s10337-009-1269-7]
[55]
Lee HS. Cuminaldehyde: Aldose reductase and α-glucosidase inhibitor derived from Cuminum cyminum L. Seeds. J Agric Food Chem 2005; 53(7): 2446-50.
[http://dx.doi.org/10.1021/jf048451g] [PMID: 15796577]
[56]
Srivastava R, Srivastava SP, Jaiswal N, Mishra A, Maurya R, Srivastava AK. Antidiabetic and antidyslipidemic activities of Cuminum cyminum L. in validated animal models. Med Chem Res 2010; 20(9): 1-12.
[http://dx.doi.org/10.1007/s00044-010-9483-2]
[57]
Patil SB, Takalikar SS, Joglekar MM, Haldavnekar VS, Arvindekar AU. Insulinotropic and β-cell protective action of cuminaldehyde, cuminol and an inhibitor isolated from Cuminum cyminum in streptozotocin-induced diabetic rats. Br J Nutr 2013; 110(8): 1434-43.
[http://dx.doi.org/10.1017/S0007114513000627] [PMID: 23507295]
[58]
Srinivasan K. Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: Traditional uses, chemical constituents, and nutraceutical effects. Food Quality and Safety 2018; 2(1): 1-16.
[http://dx.doi.org/10.1093/fqsafe/fyx031]
[59]
Akhtar M, Ali M. Study of hypoglycaemic activity of Cuminum nigrum seeds in normal and alloxan diabetic rabbits. Planta Med 1985; 51(2): 81-5.
[http://dx.doi.org/10.1055/s-2007-969411] [PMID: 4034738]
[60]
Ahmad M, Akhtar MS, Malik T, Gilani AH. Hypoglycaemic action of the flavonoid fraction of Cuminum nigrum seeds. Phytother Res 2000; 14(2): 103-6.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200003)14:2<103::AID-PTR578>3.0.CO;2-P] [PMID: 10685106]
[61]
Brain KR, Turner TD. The Practical Evaluation of Phytopharmaceuticals. Bristol: John Wright and Sons 1975; pp. 89-107.
[62]
Al-Snafi PDAE. Nutritional and therapeutic importance of Daucus carota- A review. IOSR J Pharm 2017; 7(2): 72-88.
[http://dx.doi.org/10.9790/3013-0702017288]
[63]
Sivanantham S, Thangaraj N. Phytochemical screening, characterization, compound identification and separation from Daucus carota L. Int J Curr Res Biosci Plant Biol 2015; 2(7): 168-72.
[64]
Dranik LI, Dolganenko LG. Flavonoids of the fruit of Daucus carota. Chem Nat Compd 1973; 9(5): 635.
[http://dx.doi.org/10.1007/BF00564395]
[65]
Poulin MJ, Bel-Rhlid R, Piché Y, Chênevert R. Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in the presence of optimal CO2 enrichment. J Chem Ecol 1993; 19(10): 2317-27.
[http://dx.doi.org/10.1007/BF00979666] [PMID: 24248578]
[66]
Ksouri A, Dob T, Belkebir A, Krimat S, Chelghoum C. Chemical composition and antioxidant activity of the essential oil and the methanol extract of algerian wild carrot Daucus carota L. ssp carota (L.) thell. J Mater Environ Sci 2015; 6(3): 784-91.
[67]
Khayatnouri M, Nikmanesh M, Safarmashei S. Study of the effect of gliclazide and carrot juice on blood sugar level in STZ-induced diabetic male mice. Adv Environ Biol 2011; 5(7): 1742-5.
[68]
Suzuki K, Ito Y, Nakamura S, Ochiai J, Aoki K. Relationship between serum carotenoids and hyperglycemia: A population-based cross-sectional study. J Epidemiol 2002; 12(5): 357-66.
[http://dx.doi.org/10.2188/jea.12.357] [PMID: 12395879]
[69]
Pouraboli I, Ranjbar B. The effect of Daucas carota seeds extract on lipid profile, LFT and kidney function indicators in streptozotocin- induced diabetic rats. Int J Plant Sci Ecol 2015; 1(3): 84-7.
[70]
Gupta K, Niranjan G. A new flavone glycoside from seeds of Daucus carota. Planta Med 1982; 46(12): 240-1.
[http://dx.doi.org/10.1055/s-2007-971223] [PMID: 17396982]
[71]
Suh KS, Oh S, Woo JT, et al. Apigenin attenuates 2-deoxy-D-ribose-induced oxidative cell damage in HIT-T15 pancreatic β-cells. Biol Pharm Bull 2012; 35(1): 121-6.
[http://dx.doi.org/10.1248/bpb.35.121] [PMID: 22223348]
[72]
Kumar S, Shachi K, Kumar Prasad N, Dubey NK, Dubey U. Anti-diabetic, haematinic and anti-cholesterolmic effects of carrot (Daucus carota Linn.) juice metabolites to cure alloxan monohydrate induced type-1 diabetes in albino rats. J Diabetes Metab Disord Control 2020; 7(1): 37-40.
[http://dx.doi.org/10.15406/jdmdc.2020.07.00197]
[73]
Rather MA, Dar BA, Sofi SN, Bhat BA, Qurishi MA. Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arab J Chem 2016; 9: S1574-83.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.011]
[74]
Díaz-Maroto MC, Pérez-Coello MS, Esteban J, Sanz J. Comparison of the volatile composition of wild fennel samples (Foeniculum vulgare Mill.) from central Spain. J Agric Food Chem 2006; 54(18): 6814-8.
[http://dx.doi.org/10.1021/jf0609532] [PMID: 16939344]
[75]
Nassar MI, Aboutabl EA, Makled YA, El-Khrisy EA, Osman AF. Secondary metabolites and pharmacology of Foeniculum vulgare Mill. Subsp. Pieritum. Rev Latinoam Quím 2010; 38(2): 103-12.
[76]
Parejo I, Viladomat F, Bastida J. Bioguided isolation and identification of the nonvolatile antioxidant compoundsfrom fennel (Foeniculum vulgare Mill.) waste. J Agric Food Chem 2004; 52(7): 1890-7.
[http://dx.doi.org/10.1021/jf030717g] [PMID: 15053525]
[77]
Dongare V, Kulkarni C, Kondawar M, Magdum C, Haldavnekar V, Arvindekar A. Inhibition of aldose reductase and anti-cataract action of trans-anethole isolated from Foeniculum vulgare Mill. fruits. Food Chem 2012; 132(1): 385-90.
[http://dx.doi.org/10.1016/j.foodchem.2011.11.005] [PMID: 26434305]
[78]
Anitha T, Balakumar C, Ilango KB, Jose CB, Vetrivel D. Antidiabetic activity of the aqueous extracts of Foeniculum vulgare on streptozotocin-induced diabetic rats. Int J Adv Pharm Biol Chem 2014; 3(2): 487-94.
[79]
Mhaidat NM, Abu-zaiton AS, Alzoubi KH, Alzoubi W, Alazab RS. Antihyperglycemic properties of Foeniculum vulgare extract in streptozocin-induced diabetes in rats. Int J Pharmacol 2014; 11(1): 72-5.
[http://dx.doi.org/10.3923/ijp.2015.72.75]
[80]
Godavari A, Amutha K, Moorthi NM. In vitro hypoglycemic effect of Foeniculum vulgare Mill. seeds on the carbohydrate hydrolyzing enzymes, α-Amylase and α- Glucosidase. Int J Pharm Sci Res 2018; 9(10): 4441-5.
[81]
Shojaii A, Fard MA. Review of pharmacological properties and chemical constituents of Pimpinella anisum. ISRN Pharm 2012; 2012: 510795.
[http://dx.doi.org/10.5402/2012/510795]
[82]
Besharati-Seidani A, Jabbari A, Yamini Y. Headspace solvent microextraction: A very rapid method for identification of volatile components of Iranian Pimpinella anisum seed. Anal Chim Acta 2005; 530(1): 155-61.
[http://dx.doi.org/10.1016/j.aca.2004.09.006]
[83]
Gülçın İ, Oktay M, Kıreçcı E, Küfrevıoǧlu Öİ. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem 2003; 83(3): 371-82.
[http://dx.doi.org/10.1016/S0308-8146(03)00098-0]
[84]
Rajeshwari U, Shobha I, Andallu B. Comparison of aniseeds and coriander seeds for antidiabetic, hypolipidemic and antioxidant activities. Spatula DD 2011; 1(1): 9-16.
[http://dx.doi.org/10.5455/spatula.20110106123144]
[85]
Shobha RI, Rajeswari CU, Andallu B. Anti-peroxidative and anti-diabetic activities of aniseeds (Pimpinella anisum L.) and identification of bioactive compounds. Am J Phytomed Clin Ther 2013; 1(5): 516-27.
[86]
Shobha RI, Andallu B. Antioxidant, anti-diabetic and hypolipidemic effects of aniseeds (Pimpinella anisum L.): In vitro and in vivo studies. JCMAH 2018; 5(2): 1-12.
[87]
Zhang H, Chen F, Wang X, Yao HY. Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Res Int 2006; 39(8): 833-9.
[http://dx.doi.org/10.1016/j.foodres.2006.03.007]
[88]
Fejes S, Blázovics A, Lemberkovics E, et al. Free radical scavenging and membrane protective effects of methanol extracts from Anthriscus cerefolium L. (Hoffm.) and Petroselinum crispum (Mill.) nym. ex A.W. Hill. Phytother Res 2000; 14(5): 362-5.
[http://dx.doi.org/10.1002/1099-1573(200008)14:5<362::AID-PTR554>3.0.CO;2-G] [PMID: 10925404]
[89]
Gadi D, Bnouham M, Aziz M, et al. Flavonoids purified from parsley inhibit human blood platelet aggregation and adhesion to collagen under flow. J Complement Integr Med 2012; 9(1): 19.
[http://dx.doi.org/10.1515/1553-3840.1579] [PMID: 22944717]
[90]
Bolkent S, Yanardag R, Ozsoy-Sacan O, Karabulut-Bulan O. Effects of parsley (Petroselinum crispum) on the liver of diabetic rats: A morphological and biochemical study. Phytother Res 2004; 18(12): 996-9.
[http://dx.doi.org/10.1002/ptr.1598] [PMID: 15742348]
[91]
Eltablawy NA, Soliman HA, Hamed MS. Antioxidant and antidiabetic role of Petroselinum crispum against STZ-induced diabetes in rats. J Biomed Pharm Res 2015; 4(3): 32-45.
[92]
Abou-Khalil NS, Abou-Elhamd AS, Wasfy SIA, El Mileegy IMH, Hamed MY, Ageely HM. Antidiabetic and antioxidant impacts of desert date (Balanites aegyptiaca) and parsley (Petroselinum sativum) aqueous extracts: Lessons from experimental rats. J Diabetes Res 2016; 2016: 8408326.
[http://dx.doi.org/10.1155/2016/8408326]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy