Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Meta-Analysis

Conditioned Medium Treatment for the Improvement of Functional Recovery after Spinal Cord Injury: A Meta-Analysis Study

Author(s): Razieh Hajisoltani, Mona Taghizadeh, Michael R Hamblin and Fatemeh Ramezani*

Volume 20, Issue 4, 2025

Published on: 28 February, 2024

Page: [389 - 408] Pages: 20

DOI: 10.2174/011574888X283713240129095031

Price: $65

Abstract

Background: While there is no certain treatment for spinal cord injury (SCI), stem cellbased therapy may be an attractive alternative, but the survival and differentiation of cells in the host tissue are poor. Conditioned medium (CM) has several beneficial effects on cells.

Objective: In this meta-analysis study, we examined the effect of CM on SCI treatment.

Methods: After searching on MEDLINE, SCOPUS, EMBASE, and Web of Science, first and secondary screening were performed based on title, abstract, and full text. The data were extracted from the included studies, and meta-analysis was performed using STATA.14 software. A standardized mean difference (SMD) with a 95% confidence interval was used to report findings. Quality control and subgroup analysis were also performed.

Results: The results from 52 articles and 61 separate experiments showed that CM had a significantly strong effect on improving motor function after SCI (SMD = 2.58; 95% CI: 2.17 to 2.98; p < 0.001) and also analysis of data from 12 articles demonstrated that CM reduced the expression of GFAP marker (SMD = -4.16; p < 0.0001) compared to SCI group without any treatment. Subgroup analysis showed that treatment with CM of neural stem cells was better than CM of mesenchymal stem cells. It was more effective after a mild lesion than a moderate or severe one. The improvement was more pronounced with <4 weeks than >4 weeks follow-up.

Conclusion: CM had a significant effect in improving motor function after SCI, especially in cases of mild lesions. It has been observed that if CM originates from the neural stem cells, it has a more significant effect than mesenchymal cells.

Keywords: Spinal cord injury, stem cell, conditioned medium, animal models, motor function, GFAP expression.

Graphical Abstract
[1]
Davis, A. Medical, Psychosocial and Vocational Aspects of Disability. 4th ed. J. Rehabil, 2015, 81(3), 58-60.
[2]
Giannini, M.J.; Bergmark, B.; Kreshover, S.; Elias, E.; Plummer, C.; O’Keefe, E. Understanding suicide and disability through three major disabling conditions: Intellectual disability, spinal cord injury, and multiple sclerosis. Disabil. Health J., 2010, 3(2), 74-78.
[http://dx.doi.org/10.1016/j.dhjo.2009.09.001] [PMID: 21122771]
[3]
Kwiecien, J.M.; Dabrowski, W.; Dąbrowska-Bouta, B. Prolonged inflammation leads to ongoing damage after spinal cord injury. PLoS One, 2020, 15(3), e0226584.
[http://dx.doi.org/10.1371/journal.pone.0226584] [PMID: 32191733]
[4]
Steeves, J.D.; Lammertse, D.; Curt, A. Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: Clinical trial outcome measures. Spinal Cord, 2007, 45(3), 206-221.
[http://dx.doi.org/10.1038/sj.sc.3102008] [PMID: 17179972]
[5]
Grant, R.A.; Quon, J.L.; Abbed, K.M. Management of acute traumatic spinal cord injury. Curr. Treat. Options Neurol., 2015, 17(2), 6.
[http://dx.doi.org/10.1007/s11940-014-0334-1] [PMID: 25630995]
[6]
Yang, C-C.; Shih, Y-H.; Ko, M-H.; Hsu, S-Y.; Cheng, H.; Fu, Y-S. Transplantation of human umbilical mesenchymal stem cells from wharton’s jelly after complete transection of the rat spinal cord, 2008.https://dx.plos.org/10.1371/journal.pone.0003336
[http://dx.doi.org/10.1371/journal.pone.0003336]
[7]
Silvestro, S.; Bramanti, P.; Trubiani, O.; Mazzon, E. Stem cells therapy for spinal cord injury: An overview of clinical trials. Int. J. Mol. Sci., 2020, 21(2), 659.
[http://dx.doi.org/10.3390/ijms21020659] [PMID: 31963888]
[8]
Vismara, I.; Papa, S.; Rossi, F.; Forloni, G.; Veglianese, P. Current options for cell therapy in spinal cord injury. Trends Mol. Med., 2017, 23(9), 831-849.
[http://dx.doi.org/10.1016/j.molmed.2017.07.005] [PMID: 28811172]
[9]
Ronsyn, M.W.; Berneman, Z.N.; Van Tendeloo, V F I.; Jorens, P.G.; Ponsaerts, P. Can cell therapy heal a spinal cord injury? Spinal Cord, 2008, 46(8), 532-539.
[http://dx.doi.org/10.1038/sc.2008.13] [PMID: 18347607]
[10]
Yamasaki, T.R.; Blurton-Jones, M.; Morrissette, D.A.; Kitazawa, M.; Oddo, S.; LaFerla, F.M. Neural stem cells improve memory in an inducible mouse model of neuronal loss. J. Neurosci., 2007, 27(44), 11925-11933.
[http://dx.doi.org/10.1523/JNEUROSCI.1627-07.2007] [PMID: 17978032]
[11]
Salazar, D.L.; Uchida, N.; Hamers, F.P.T.; Cummings, B.J.; Anderson, A.J. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS One, 2010, 5(8), e12272.
[http://dx.doi.org/10.1371/journal.pone.0012272] [PMID: 20806064]
[12]
Gabel, B.C.; Curtis, E.I.; Marsala, M.; Ciacci, J.D. A review of stem cell therapy for spinal cord injury: Large animal models and the frontier in humans. World Neurosurg., 2017, 98, 438-443.
[http://dx.doi.org/10.1016/j.wneu.2016.11.053] [PMID: 27876663]
[13]
Nori, S.; Okada, Y.; Yasuda, A. Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc. Natl. Acad. Sci. USA, 2011, 108(40), 16825-16830.
[http://dx.doi.org/10.1073/pnas.1108077108] [PMID: 21949375]
[14]
Quertainmont, R.; Cantinieaux, D.; Botman, O.; Sid, S.; Schoenen, J.; Franzen, R. Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. PLoS One, 2012, 7(6), e39500.
[http://dx.doi.org/10.1371/journal.pone.0039500] [PMID: 22745769]
[15]
Gao, L; Peng, Y; Xu, W; He, P; Li, T; Lu, X. Progress in Stem Cell Therapy for Spinal Cord Injury, 2020.
[http://dx.doi.org/10.1155/2020/2853650]
[16]
Ning, G.; Tang, L.; Wu, Q. Human umbilical cord blood stem cells for spinal cord injury: Early transplantation results in better local angiogenesis. Regen. Med., 2013, 8(3), 271-281.
[http://dx.doi.org/10.2217/rme.13.26] [PMID: 23627822]
[17]
Cofano, F.; Boido, M.; Monticelli, M. Mesenchymal stem cells for spinal cord injury: Current options limitations, and future of cell therapy. Int. J. Mol. Sci., 2019, 20(11), 2698.
[http://dx.doi.org/10.3390/ijms20112698] [PMID: 31159345]
[18]
Volk, S.W.; Theoret, C. Translating stem cell therapies: The role of companion animals in regenerative medicine. Wound Repair Regen., 2013, 21(3), 382-394.
[http://dx.doi.org/10.1111/wrr.12044] [PMID: 23627495]
[19]
Ronaghi, M.; Erceg, S.; Moreno-Manzano, V.; Stojkovic, M. Challenges of stem cell therapy for spinal cord injury: Human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells, 2010, 28(1), 93-99.
[http://dx.doi.org/10.1002/stem.253] [PMID: 19904738]
[20]
Willerth, S.M.; Sakiyama-Elbert, S.E. Cell therapy for spinal cord regeneration. Adv. Drug Deliv. Rev., 2008, 60(2), 263-276.
[http://dx.doi.org/10.1016/j.addr.2007.08.028] [PMID: 18029050]
[21]
Paul, C.; Samdani, A.F.; Betz, R.R.; Fischer, I.; Neuhuber, B. Grafting of human bone marrow stromal cells into spinal cord injury: A comparison of delivery methods. Spine, 2009, 34(4), 328-334.
[http://dx.doi.org/10.1097/BRS.0b013e31819403ce] [PMID: 19182705]
[22]
Emerich, D.F.; Orive, G.; Thanos, C.; Tornoe, J.; Wahlberg, L.U. Encapsulated cell therapy for neurodegenerative diseases: From promise to product. Adv. Drug Deliv. Rev., 2014, 67-68, 131-141.
[http://dx.doi.org/10.1016/j.addr.2013.07.008] [PMID: 23880505]
[23]
Hill, E.; Boontheekul, T.; Mooney, D.J. Regulating activation of transplanted cells controls tissue regeneration. Proc. Natl. Acad. Sci. USA, 2006, 103(8), 2494-2499.
[http://dx.doi.org/10.1073/pnas.0506004103] [PMID: 16477029]
[24]
Jing, Y.; Bai, F.; Wang, L. Fecal microbiota transplantation exerts neuroprotective effects in a mouse spinal cord injury model by modulating the microenvironment at the lesion site. Microbiol. Spectr., 2022, 10(3), e00177-e22.
[http://dx.doi.org/10.1128/spectrum.00177-22] [PMID: 35467388]
[25]
Haeri Moghaddam, N.; Hashamdar, S.; Hamblin, M.R.; Ramezani, F. Effects of electrospun nanofibers on motor function recovery after spinal cord injury: A systematic review and meta-analysis. World Neurosurg., 2024, 181, 96-106.
[http://dx.doi.org/10.1016/j.wneu.2023.10.065] [PMID: 37852475]
[26]
Lu, Y.; Zhou, Y.; Zhang, R. Bone mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier. Front. Neurosci., 2019, 13, 209.
[http://dx.doi.org/10.3389/fnins.2019.00209] [PMID: 30914918]
[27]
Yuan, X.; Wu, Q.; Wang, P. Exosomes derived from pericytes improve microcirculation and protect blood-spinal cord barrier after spinal cord injury in mice. Front. Neurosci., 2019, 13, 319.
[http://dx.doi.org/10.3389/fnins.2019.00319] [PMID: 31040762]
[28]
Sheng, X.; Zhao, J.; Li, M. Bone marrow mesenchymal stem cell-derived exosomes accelerate functional recovery after spinal cord injury by promoting the phagocytosis of macrophages to clean myelin debris. Front. Cell Dev. Biol., 2021, 9, 772205.
[http://dx.doi.org/10.3389/fcell.2021.772205] [PMID: 34820385]
[29]
Fan, L.; Dong, J.; He, X.; Zhang, C.; Zhang, T. Bone marrow mesenchymal stem cells-derived exosomes reduce apoptosis and inflammatory response during spinal cord injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Hum. Exp. Toxicol., 2021, 40(10), 1612-1623.
[http://dx.doi.org/10.1177/09603271211003311] [PMID: 33779331]
[30]
Jia, Y.; Lu, T.; Chen, Q. Exosomes secreted from sonic hedgehog-modified bone mesenchymal stem cells facilitate the repair of rat spinal cord injuries. Acta Neurochir. (Wien), 2021, 163(8), 2297-2306.
[http://dx.doi.org/10.1007/s00701-021-04829-9] [PMID: 33821317]
[31]
Zhou, W.; Silva, M.; Feng, C. Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis. Stem Cell Res. Ther., 2021, 12(1), 174.
[http://dx.doi.org/10.1186/s13287-021-02248-2] [PMID: 33712072]
[32]
Liu, C.; Hu, F.; Jiao, G. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury. J. Nanobiotechnology, 2022, 20(1), 65.
[http://dx.doi.org/10.1186/s12951-022-01273-4] [PMID: 35109874]
[33]
Zhao, C.; Zhou, X.; Qiu, J. Exosomes derived from bone marrow mesenchymal stem cells inhibit complement activation in rats with spinal cord injury. Drug Des. Devel. Ther., 2019, 13, 3693-3704.
[http://dx.doi.org/10.2147/DDDT.S209636] [PMID: 31695336]
[34]
Gharagozloo, M; Kalantari, H; Rezaei, A; Maracy, MR; Salehi, M; Bahador, A 2015, 116, 296-301.
[35]
Ji, W.; Jiang, W.; Li, M.; Li, J.; Li, Z. miR-21 deficiency contributes to the impaired protective effects of obese rat mesenchymal stem cell-derived exosomes against spinal cord injury. Biochimie, 2019, 167, 171-178.
[http://dx.doi.org/10.1016/j.biochi.2019.10.002] [PMID: 31605737]
[36]
Huang, W.; Lin, M.; Yang, C.; Wang, F.; Zhang, M.; Gao, J. Rat bone mesenchymal stem cell-derived exosomes loaded with miR-494 promoting neurofilament regeneration and behavioral function recovery after spinal cord injury. Oxid. Med. Cell. Longev., 2021, 2021, 1634917.
[http://dx.doi.org/10.1155/2021/1634917]
[37]
Xiao, X.; Li, W.; Rong, D. Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov., 2021, 7(1), 212.
[http://dx.doi.org/10.1038/s41420-021-00572-3] [PMID: 34381025]
[38]
Liu, W.; Wang, Y.; Gong, F. Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of a1 neurotoxic reactive astrocytes. J. Neurotrauma, 2019, 36(3), 469-484.
[http://dx.doi.org/10.1089/neu.2018.5835] [PMID: 29848167]
[39]
Zhou, X.; Chu, X.; Yuan, H. Mesenchymal stem cell derived EVs mediate neuroprotection after spinal cord injury in rats via the microRNA-21-5p/FasL gene axis. Biomed. Pharmacother., 2019, 115, 108818.
[http://dx.doi.org/10.1016/j.biopha.2019.108818] [PMID: 31102912]
[40]
Zhong, D.; Cao, Y.; Li, C.J. Neural stem cell-derived exosomes facilitate spinal cord functional recovery after injury by promoting angiogenesis. Exp. Biol. Med. (Maywood), 2020, 245(1), 54-65.
[http://dx.doi.org/10.1177/1535370219895491] [PMID: 31903774]
[41]
Li, C.; Jiao, G.; Wu, W. Exosomes from Bone marrow mesenchymal stem cells inhibit neuronal apoptosis and promote motor function recovery via the Wnt/β-catenin signaling pathway. Cell Transplant., 2019, 28(11), 1373-1383.
[http://dx.doi.org/10.1177/0963689719870999] [PMID: 31423807]
[42]
Rong, Y.; Liu, W.; Wang, J. Neural stem cell-derived small extracellular vesicles attenuate apoptosis and neuroinflammation after traumatic spinal cord injury by activating autophagy. Cell Death Dis., 2019, 10(5), 340.
[http://dx.doi.org/10.1038/s41419-019-1571-8] [PMID: 31000697]
[43]
Luo, Y.; Xu, T.; Liu, W. Exosomes derived from GIT1-overexpressing bone marrow mesenchymal stem cells promote traumatic spinal cord injury recovery in a rat model. Int. J. Neurosci., 2021, 131(2), 170-182.
[http://dx.doi.org/10.1080/00207454.2020.1734598] [PMID: 32223487]
[44]
Wang, L.; Pei, S.; Han, L. Mesenchymal Stem cell-derived exosomes reduce A1 Astrocytes via Downregulation of Phosphorylated NFκB P65 subunit in spinal cord injury. Cell. Physiol. Biochem., 2018, 50(4), 1535-1559.
[http://dx.doi.org/10.1159/000494652] [PMID: 30376671]
[45]
Peng, L.; Lian, H.J. Human neural stem cells prom ote co icospinal axons regeneration and synapse reformation in injured spinal cord of rats. Chin. Med. J. (Engl.), 2006, 119(16), 1331-1338.
[46]
Haider, T.; Höftberger, R.; Rüger, B. The secretome of apoptotic human peripheral blood mononuclear cells attenuates secondary damage following spinal cord injury in rats. Exp. Neurol., 2015, 267, 230-242.
[http://dx.doi.org/10.1016/j.expneurol.2015.03.013] [PMID: 25797576]
[47]
Matsubara, K.; Matsushita, Y.; Sakai, K. Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J. Neurosci., 2015, 35(6), 2452-2464.
[http://dx.doi.org/10.1523/JNEUROSCI.4088-14.2015] [PMID: 25673840]
[48]
Guo, L.; Rolfe, A.J.; Wang, X. Rescuing macrophage normal function in spinal cord injury with embryonic stem cell conditioned media. Mol. Brain, 2016, 9(1), 48.
[http://dx.doi.org/10.1186/s13041-016-0233-3] [PMID: 27153974]
[49]
Fan, L.; Liu, C.; Chen, X. Exosomes‐loaded electroconductive hydrogel synergistically promotes tissue repair after spinal cord injury via immunoregulation and enhancement of myelinated axon growth. Adv. Sci. (Weinh.), 2022, 9(13), 2105586.
[http://dx.doi.org/10.1002/advs.202105586] [PMID: 35253394]
[50]
Zhang, A.; Bai, Z.; Yi, W.; Hu, Z.; Hao, J. Overexpression of miR-338-5p in exosomes derived from mesenchymal stromal cells provides neuroprotective effects by the Cnr1/Rap1/Akt pathway after spinal cord injury in rats. Neurosci. Lett., 2021, 761, 136124.
[http://dx.doi.org/10.1016/j.neulet.2021.136124] [PMID: 34302891]
[51]
Yeng, C.H.; Chen, P.J.; Chang, H.K. Attenuating spinal cord injury by conditioned medium from human umbilical cord blood-derived CD34+ cells in rats. Taiwan. J. Obstet. Gynecol., 2016, 55(1), 85-93.
[http://dx.doi.org/10.1016/j.tjog.2015.12.009] [PMID: 26927256]
[52]
Guo, S.; Perets, N.; Betzer, O. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog sirna repairs complete spinal cord injury. ACS Nano, 2019, 13(9), 10015-10028.
[http://dx.doi.org/10.1021/acsnano.9b01892] [PMID: 31454225]
[53]
Huang, J.H.; Yin, X.M.; Xu, Y. Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. J. Neurotrauma, 2017, 34(24), 3388-3396.
[http://dx.doi.org/10.1089/neu.2017.5063] [PMID: 28665182]
[54]
Huang, J.H.; Fu, C.H.; Xu, Y.; Yin, X.M.; Cao, Y.; Lin, F.Y. Extracellular vesicles derived from Epidural Fat-Mesenchymal Stem Cells Attenuate NLRP3 inflammasome activation and improve functional recovery after spinal cord injury. Neurochem. Res., 2020, 45(4), 760-771.
[http://dx.doi.org/10.1007/s11064-019-02950-x] [PMID: 31953741]
[55]
Li, C.; Qin, T.; Zhao, J. Bone marrow mesenchymal stem cell-derived exosome-educated macrophages promote functional healing after spinal cord injury. Front. Cell. Neurosci., 2021, 15, 725573.
[http://dx.doi.org/10.3389/fncel.2021.725573] [PMID: 34650405]
[56]
Noori, L.; Arabzadeh, S.; Mohamadi, Y. Intrathecal administration of the extracellular vesicles derived from human Wharton’s jelly stem cells inhibit inflammation and attenuate the activity of inflammasome complexes after spinal cord injury in rats. Neurosci. Res., 2021, 170, 87-98.
[http://dx.doi.org/10.1016/j.neures.2020.07.011] [PMID: 32717259]
[57]
Cizkova, D.; Cubinkova, V.; Smolek, T. Localized intrathecal delivery of mesenchymal stromal cells conditioned medium improves functional recovery in a rat model of spinal cord injury. Int. J. Mol. Sci., 2018, 19(3), 870.
[http://dx.doi.org/10.3390/ijms19030870] [PMID: 29543759]
[58]
Chudickova, M.; Vackova, I.; Machova Urdzikova, L. The effect of wharton jelly-derived mesenchymal stromal cells and their conditioned media in the treatment of a rat spinal cord injury. Int. J. Mol. Sci., 2019, 20(18), 4516.
[http://dx.doi.org/10.3390/ijms20184516] [PMID: 31547264]
[59]
Sun, G.; Li, G.; Li, D. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater. Sci. Eng. C, 2018, 89, 194-204.
[http://dx.doi.org/10.1016/j.msec.2018.04.006] [PMID: 29752089]
[60]
Pinho, A.G.; Cibrão, J.R.; Lima, R. Immunomodulatory and regenerative effects of the full and fractioned adipose tissue derived stem cells secretome in spinal cord injury. Exp. Neurol., 2022, 351, 113989.
[http://dx.doi.org/10.1016/j.expneurol.2022.113989] [PMID: 35065953]
[61]
Tsai, M.J.; Liou, D.Y.; Lin, Y.R. Attenuating spinal cord injury by conditioned medium from bone marrow mesenchymal stem cells. J. Clin. Med., 2018, 8(1), 23.
[http://dx.doi.org/10.3390/jcm8010023] [PMID: 30585207]
[62]
Kanekiyo, K.; Wakabayashi, T.; Nakano, N. Effects of intrathecal injection of the conditioned medium from bone marrow stromal cells on spinal cord injury in rats. J. Neurotrauma, 2018, 35(3), 521-532.
[http://dx.doi.org/10.1089/neu.2017.5201] [PMID: 29054133]
[63]
Jia, Y.; Yang, J.; Lu, T. Repair of spinal cord injury in rats via exosomes from bone mesenchymal stem cells requires sonic hedgehog. Regen. Ther., 2021, 18, 309-315.
[http://dx.doi.org/10.1016/j.reth.2021.08.007] [PMID: 34522723]
[64]
Jiang, Z.; Zhang, J. Mesenchymal stem cell-derived exosomes containing miR-145-5p reduce inflammation in spinal cord injury by regulating the TLR4/NF-κB signaling pathway. Cell Cycle, 2021, 20(10), 993-1009.
[http://dx.doi.org/10.1080/15384101.2021.1919825] [PMID: 33945431]
[65]
Cheng, J.; Chen, Z.; Liu, C. Bone mesenchymal stem cell-derived exosome-loaded injectable hydrogel for minimally invasive treatment of spinal cord injury. Nanomedicine (Lond.), 2021, 16(18), 1567-1579.
[http://dx.doi.org/10.2217/nnm-2021-0025] [PMID: 34189939]
[66]
Jia, Y-J.; Zhou, Y.; Wen, L-L. Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis. Neural Regen. Res., 2022, 17(1), 194-202.
[http://dx.doi.org/10.4103/1673-5374.314323] [PMID: 34100456]
[67]
Cantinieaux, D; Quertainmont, R; Blacher, S; Rossi, L; Wanet, T; Noël, A. 2013.https://dx.plos.org/10.1371/journal.pone.0069515
[68]
Chen, Y.T.; Tsai, M.J.; Hsieh, N. The superiority of conditioned medium derived from rapidly expanded mesenchymal stem cells for neural repair. Stem Cell Res. Ther., 2019, 10(1), 390.
[http://dx.doi.org/10.1186/s13287-019-1491-7] [PMID: 31842998]
[69]
Vawda, R.; Badner, A.; Hong, J. Harnessing the secretome of mesenchymal stromal cells for traumatic spinal cord injury: Multicell comparison and assessment of in vivo Efficacy. Stem Cells Dev., 2020, 29(22), 1429-1443.
[http://dx.doi.org/10.1089/scd.2020.0079] [PMID: 32962528]
[70]
Lee, J.R.; Kyung, J.W.; Kumar, H. Targeted delivery of mesenchymal stem cell-derived nanovesicles for spinal cord injury treatment. Int. J. Mol. Sci., 2020, 21(11), 4185.
[http://dx.doi.org/10.3390/ijms21114185] [PMID: 32545361]
[71]
Borhani-Haghighi, M.; Navid, S.; Mohamadi, Y. The therapeutic potential of conditioned medium from human breast milk stem cells in treating spinal cord injury. Asian Spine J., 2020, 14(2), 131-138.
[http://dx.doi.org/10.31616/asj.2019.0026] [PMID: 31711062]
[72]
Asadi-Golshan, R.; Razban, V.; Mirzaei, E. Sensory and motor behavior evidences supporting the usefulness of conditioned medium from dental pulp-derived stem cells in spinal cord injury in rats. Asian Spine J., 2018, 12(5), 785-793.
[http://dx.doi.org/10.31616/asj.2018.12.5.785] [PMID: 30213159]
[73]
Li, L.; Zhang, Y.; Mu, J.; Chen, J.; Zhang, C.; Cao, H. Transplantation of human mesenchymal stem cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury. Nano Lett; Just, 2020.
[http://dx.doi.org/10.1021/acs.nanolett.0c00929]
[74]
Chen, C.; Xu, H.H.; Liu, X.Y. 3D printed collagen/silk fibroin scaffolds carrying the secretome of human umbilical mesenchymal stem cells ameliorated neurological dysfunction after spinal cord injury in rats. Regen. Biomater., 2022, 9, rbac014.
[http://dx.doi.org/10.1093/rb/rbac014]
[75]
Song, F.; Hooper, L.; Loke, Y.K. Publication bias: What is it? How do we measure it? How do we avoid it? Open Access J. Clin. Trials, 2012, 5, 71-81.
[76]
Ding, F.; Gu, X.; Li, Z. The molecular cloning of glial fibrillary acidic protein in gekko japonicus and its expression changes after spinal cord transection. Cell. Mol. Biol. Lett., 2010, 15, 582-599.
[PMID: 20711818]
[77]
Izquierdo-s, V.; Zambrano-rodr, P.C.; Peña-merino, N.; Bolaños-puchet, S.; Reyes-alva, H.J.; Mart, A. Evaluation of traumatic spinal cord injury in a rat model using 99m Tc-GA-5 as a potential in vivo tracer. Molecules, 2021, 26(23), 7138.
[78]
Okada, S.; Hara, M.; Kobayakawa, K.; Matsumoto, Y.; Nakashima, Y. Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci. Res., 2018, 126, 39-43.
[http://dx.doi.org/10.1016/j.neures.2017.10.004] [PMID: 29054466]
[79]
Shang, Z.; Wang, R.; Li, D. Spinal Cord Injury: A systematic review and network meta-analysis of therapeutic strategies based on 15 types of stem cells in animal models. Front. Pharmacol., 2022, 13, 819861.
[http://dx.doi.org/10.3389/fphar.2022.819861] [PMID: 35359872]
[80]
Liu, S.; Zhang, H.; Wang, H. A comparative study of different stem cell transplantation for spinal cord injury: A systematic review and network meta-analysis. World Neurosurg., 2022, 159, e232-e243.
[http://dx.doi.org/10.1016/j.wneu.2021.12.035] [PMID: 34954058]
[81]
Kim, C.K.; Won, J.S.; An, J.Y. Significant therapeutic effects of adult human neural stem cells for spinal cord injury are mediated by Monocyte Chemoattractant Protein-1 (MCP-1). Int. J. Mol. Sci., 2022, 23(8), 4267.
[http://dx.doi.org/10.3390/ijms23084267] [PMID: 35457084]
[82]
Purushothaman, A. Exosomes from cell culture-conditioned medium: Isolation by ultracentrifugation and characterization. Methods Mol. Biol., 2019, 1952, 233-244.
[http://dx.doi.org/10.1007/978-1-4939-9133-4_19] [PMID: 30825179]
[83]
Takeuchi, R.; Katagiri, W.; Endo, S.; Kobayashi, T. Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis. PLoS One, 2019, 14(11), e0225472.
[http://dx.doi.org/10.1371/journal.pone.0225472] [PMID: 31751396]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy