Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

MFAP5 Strengthened the Stem Cell Features of Non-small Cell Lung Cancer Cells by Regulating the FBW/Sox9 Axis

Author(s): Chun Du*, Zijuan Qi and Wei Zhang

Volume 26, Issue 2, 2025

Published on: 23 February, 2024

Page: [235 - 245] Pages: 11

DOI: 10.2174/0113892010259632240213091136

Price: $65

Abstract

Introduction: Non-small cell lung cancer (NSCLC) is a type of malignant tumor with high morbidity as well as mortality. The process of lung cancer may be driven by cancer stem cells. It was known that MFAP5 enhanced the occurrence of diverse types of cancer. Also, MFAP5 has the potential to induce the degradation of FBW7 which is a tumor suppressor. Lower levels of FBW7 enhance the stability of Sox9, which is the cancer stem cell-related protein. However, whether the MFAP5 can modulate the stem cell features of NSCLC cells by modulating the FBW7/Sox9 axis is unclear. Therefore, this study aimed to explore the role of MFAP5/FBW7/Sox9 axis on the stem cell features of NSCLC cells and develop a new treatment of this carcinoma.

Material and Methods: In this study, we explored the effects of MFAP5 on the stem cell features of NSCLC cells for the first time. We established MFAP5 overexpression and knockdown NSCLC cells. Clone formation assays and cell sphere culture assays were conducted for the exploration of the growth and stem cell features of these cells. Western blotting was applied for the detection of Sox9 and FBW7 expression in these cells. CHX was applied for the treatment of these cells for the detection of degradation of Sox9. Finally, we overexpressed the Sox9 in MFAP5 knockdown NSCLC cells.

Results: MFAP5 promoted the growth and stem cell features of these cells. Knockdown of MFAP5 induced higher levels of FBW7 while restricting the expression of Sox9. Knockdown of MFAP5 aggravated the degradation of Sox9. Overexpression of Sox9 abrogated the efficacy of MFAP5 inhibition on the growth as well as stem cell features of these cells. The results of this study clarified the role of MFAP5/FBW7/Sox9 axis on the development of non-small cell lung cancer cells, providing the potential therapeutic target for the clinical treatment of NSCLC.

Conclusion: MFAP5 maintained the stem cell features of non-small cell lung cancer cells by modulating FBW7/Sox9 axis.

Keywords: Non-small cell lung cancer, MFAP5, cancer stem cells, Sox9, FBW/Sox9 axis, growth of cells.

Graphical Abstract
[1]
Huang, H.; Zhang, W.; Pan, Y.; Gao, Y.; Deng, L.; Li, F.; Li, F.; Ma, X.; Hou, S.; Xu, J.; Li, P.; Li, X.; Hu, G.; Li, C.; Chen, H.; Zhang, L.; Ji, H. YAP suppresses lung squamous cell carcinoma progression via deregulation of the DNp63–GPX2 axis and ROS accumulation. Cancer Res., 2017, 77(21), 5769-5781.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0449] [PMID: 28916653]
[2]
O’Flaherty, J.D.; Barr, M.; Fennell, D.; Richard, D.; Reynolds, J.; O’Leary, J.; O’Byrne, K. The cancer stem-cell hypothesis: Its emerging role in lung cancer biology and its relevance for future therapy. J. Thorac. Oncol., 2012, 7(12), 1880-1890.
[http://dx.doi.org/10.1097/JTO.0b013e31826bfbc6] [PMID: 23154562]
[3]
Ye, T.; Li, J.; Sun, Z.; Liu, Y.; Kong, L.; Zhou, S.; Tang, J.; Wang, J.; Xing, H.R. Nr5a2 promotes cancer stem cell properties and tumorigenesis in nonsmall cell lung cancer by regulating Nanog. Cancer Med., 2019, 8(3), 1232-1245.
[http://dx.doi.org/10.1002/cam4.1992] [PMID: 30740909]
[4]
Wu, Y.; Wu, P.; Zhang, Q.; Chen, W.; Liu, X.; Zheng, W. MFAP5 promotes basal-like breast cancer progression by activating the EMT program. Cell Biosci., 2019, 9(1), 24.
[http://dx.doi.org/10.1186/s13578-019-0284-0] [PMID: 30899449]
[5]
Chen, Z.; Yan, X.; Li, K.; Ling, Y.; Kang, H. Stromal fibroblast-derived MFAP5 promotes the invasion and migration of breast cancer cells via Notch1/slug signaling. Clin. Transl. Oncol., 2020, 22(4), 522-531.
[http://dx.doi.org/10.1007/s12094-019-02156-1] [PMID: 31190277]
[6]
Li, Q.; Zhang, Y.; Jiang, Q. MFAP5 suppression inhibits migration/invasion, regulates cell cycle and induces apoptosis via promoting ROS production in cervical cancer. Biochem. Biophys. Res. Commun., 2018, 507(1-4), 51-58.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.146] [PMID: 30454902]
[7]
Yeung, T.L.; Leung, C.S.; Yip, K.P.; Sheng, J.; Vien, L.; Bover, L.C.; Birrer, M.J.; Wong, S.T.C.; Mok, S.C. Anticancer immunotherapy by MFAP5 blockade inhibits fibrosis and enhances chemosensitivity in ovarian and pancreatic cancer. Clin. Cancer Res., 2019, 25(21), 6417-6428.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0187] [PMID: 31332047]
[8]
Navab, R.; Strumpf, D.; Bandarchi, B.; Zhu, C.Q.; Pintilie, M.; Ramnarine, V.R.; Ibrahimov, E.; Radulovich, N.; Leung, L.; Barczyk, M.; Panchal, D.; To, C.; Yun, J.J.; Der, S.; Shepherd, F.A.; Jurisica, I.; Tsao, M.S. Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc. Natl. Acad. Sci., 2011, 108(17), 7160-7165.
[http://dx.doi.org/10.1073/pnas.1014506108] [PMID: 21474781]
[9]
Zhou, Z.; Cui, D.; Sun, M.H.; Huang, J.L.; Deng, Z.; Han, B.M.; Sun, X.W.; Xia, S.J.; Sun, F.; Shi, F. CAFs‐derived MFAP5 promotes bladder cancer malignant behavior through NOTCH2/HEY1 signaling. FASEB J., 2020, 34(6), 7970-7988.
[http://dx.doi.org/10.1096/fj.201902659R] [PMID: 32293074]
[10]
Xu, Q.; Chang, H.; Tian, X.; Lou, C.; Ma, H.; Yang, X. Hypoxia-induced MFAP5 promotes tumor migration and invasion via AKT pathway in head and neck squamous cell carcinoma. J. Cancer, 2020, 11(6), 1596-1605.
[http://dx.doi.org/10.7150/jca.38217] [PMID: 32047565]
[11]
Principe, S.; Mejia-Guerrero, S.; Ignatchenko, V.; Sinha, A.; Ignatchenko, A.; Shi, W.; Pereira, K.; Su, S.; Huang, S.H.; O’Sullivan, B.; Xu, W.; Goldstein, D.P.; Weinreb, I.; Ailles, L.; Liu, F.F.; Kislinger, T. Proteomic analysis of cancer-associated fibroblasts reveals a paracrine role for MFAP5 in human oral tongue squamous cell carcinoma. J. Proteome Res., 2018, 17(6), 2045-2059.
[http://dx.doi.org/10.1021/acs.jproteome.7b00925] [PMID: 29681158]
[12]
Li, J.H.; Zhu, X.X.; Li, F.X.; Huang, C.S.; Huang, X.T.; Wang, J.Q.; Gao, Z.X.; Li, S.J.; Xu, Q.C.; Zhao, W.; Yin, X.Y. MFAP5 facilitates the aggressiveness of intrahepatic Cholangiocarcinoma by activating the Notch1 signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 476.
[http://dx.doi.org/10.1186/s13046-019-1477-4] [PMID: 31775892]
[13]
Wu, Z.; Wang, T.; Fang, M.; Huang, W.; Sun, Z.; Xiao, J.; Yan, W. MFAP5 promotes tumor progression and bone metastasis by regulating ERK/MMP signaling pathways in breast cancer. Biochem. Biophys. Res. Commun., 2018, 498(3), 495-501.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.007] [PMID: 29526753]
[14]
Ji, S.; Qin, Y.; Shi, S.; Liu, X.; Hu, H.; Zhou, H.; Gao, J.; Zhang, B.; Xu, W.; Liu, J.; Liang, D.; Liu, L.; Liu, C.; Long, J.; Zhou, H.; Chiao, P.J.; Xu, J.; Ni, Q.; Gao, D.; Yu, X. ERK kinase phosphorylates and destabilizes the tumor suppressor FBW7 in pancreatic cancer. Cell Res., 2015, 25(5), 561-573.
[http://dx.doi.org/10.1038/cr.2015.30] [PMID: 25753158]
[15]
Zhang, Y.; Zhang, X.; Ye, M.; Jing, P.; Xiong, J.; Han, Z.; Kong, J.; Li, M.; Lai, X.; Chang, N.; Zhang, J.; Zhang, J. FBW7 loss promotes epithelial-to-mesenchymal transition in non-small cell lung cancer through the stabilization of Snail protein. Cancer Lett., 2018, 419, 75-83.
[http://dx.doi.org/10.1016/j.canlet.2018.01.047] [PMID: 29355657]
[16]
Suryo Rahmanto, A.; Savov, V.; Brunner, A.; Bolin, S.; Weishaupt, H.; Malyukova, A.; Rosén, G.; Čančer, M.; Hutter, S.; Sundström, A.; Kawauchi, D.; Jones, D.T.W.; Spruck, C.; Taylor, M.D.; Cho, Y.J.; Pfister, S.M.; Kool, M.; Korshunov, A.; Swartling, F.J.; Sangfelt, O. FBW7 suppression leads to SOX9 stabilization and increased malignancy in medulloblastoma. EMBO J., 2016, 35(20), 2192-2212.
[http://dx.doi.org/10.15252/embj.201693889] [PMID: 27625374]
[17]
Adam, R.C.; Yang, H.; Rockowitz, S.; Larsen, S.B.; Nikolova, M.; Oristian, D.S.; Polak, L.; Kadaja, M.; Asare, A.; Zheng, D.; Fuchs, E. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature, 2015, 521(7552), 366-370.
[http://dx.doi.org/10.1038/nature14289] [PMID: 25799994]
[18]
Fan, X.; Chen, X.; Deng, W.; Zhong, G.; Cai, Q.; Lin, T. Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostate cancer cells metastasis by modulating FNDC3B expression. BMC Cancer, 2013, 13(1), 61.
[http://dx.doi.org/10.1186/1471-2407-13-61] [PMID: 23383988]
[19]
Pao, W.; Chmielecki, J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat. Rev. Cancer, 2010, 10(11), 760-774.
[http://dx.doi.org/10.1038/nrc2947] [PMID: 20966921]
[20]
Wei, L.; Sun, J.J.; Cui, Y.C.; Jiang, S.L.; Wang, X.W.; Lv, L.Y.; Xie, L.; Song, X.R. Twist may be associated with invasion and metastasis of hypoxic NSCLC cells. Tumour Biol., 2016, 37(7), 9979-9987.
[http://dx.doi.org/10.1007/s13277-016-4896-2] [PMID: 26819207]
[21]
Combs, M.D.; Knutsen, R.H.; Broekelmann, T.J.; Toennies, H.M.; Brett, T.J.; Miller, C.A.; Kober, D.L.; Craft, C.S.; Atkinson, J.J.; Shipley, J.M.; Trask, B.C.; Mecham, R.P. Microfibril-associated glycoprotein 2 (MAGP2) loss of function has pleiotropic effects in vivo. J. Biol. Chem., 2013, 288(40), 28869-28880.
[http://dx.doi.org/10.1074/jbc.M113.497727] [PMID: 23963447]
[22]
Kurtova, A.V.; Xiao, J.; Mo, Q.; Pazhanisamy, S.; Krasnow, R.; Lerner, S.P.; Chen, F.; Roh, T.T.; Lay, E.; Ho, P.L.; Chan, K.S. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature, 2015, 517(7533), 209-213.
[http://dx.doi.org/10.1038/nature14034] [PMID: 25470039]
[23]
Zhou, J.; Fan, Q.; Li, J.; Wu, J.; Huang, J.; Zhang, Y.; He, X. Knockdown of MAGE‐A6 enhanced the irradiation sensitivity of non‐small cell lung cancer cells by activating the AMPK pathway. Environ. Toxicol., 2022, 37(7), 1711-1722.
[http://dx.doi.org/10.1002/tox.23519] [PMID: 35285568]
[24]
Beck, B.; Blanpain, C. Unravelling cancer stem cell potential. Nat. Rev. Cancer, 2013, 13(10), 727-738.
[http://dx.doi.org/10.1038/nrc3597] [PMID: 24060864]
[25]
Li, Q.; Li, Y.; Li, J.; Ma, Y.; Dai, W.; Mo, S.; Xu, Y.; Li, X.; Cai, S. FBW7 suppresses metastasis of colorectal cancer by inhibiting HIF1α/CEACAM5 functional axis. Int. J. Biol. Sci., 2018, 14(7), 726-735.
[http://dx.doi.org/10.7150/ijbs.24505] [PMID: 29910683]
[26]
Lin, J.; Ji, A.; Qiu, G.; Feng, H.; Li, J.; Li, S.; Zou, Y.; Cui, Y.; Song, C.; He, H.; Lu, Y. FBW 7 is associated with prognosis, inhibits malignancies and enhances temozolomide sensitivity in glioblastoma cells. Cancer Sci., 2018, 109(4), 1001-1011.
[http://dx.doi.org/10.1111/cas.13528] [PMID: 29427543]
[27]
Yu, J.; Zhang, W.; Gao, F.; Liu, Y.X.; Chen, Z.Y.; Cheng, L.Y.; Xie, S.F.; Zheng, S.S. FBW7 increases chemosensitivity in hepatocellular carcinoma cells through suppression of epithelial-mesenchymal transition. Hepatobiliary Pancreat. Dis. Int., 2014, 13(2), 184-191.
[http://dx.doi.org/10.1016/S1499-3872(14)60029-1] [PMID: 24686546]
[28]
Suryo Rahmanto, A.; Swartling, F.J.; Sangfelt, O. Targeting SOX9 for degradation to inhibit chemoresistance, metastatic spread, and recurrence. Mol. Cell. Oncol., 2017, 4(1), e1252871.
[http://dx.doi.org/10.1080/23723556.2016.1252871] [PMID: 28197531]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy