Generic placeholder image

Reviews on Recent Clinical Trials

Editor-in-Chief

ISSN (Print): 1574-8871
ISSN (Online): 1876-1038

Systematic Review Article

Characterization of Intrinsically Disordered Proteins in Healthy and Diseased States by Nuclear Magnetic Resonance

Author(s): Mohamad Hesam Shahrajabian and Wenli Sun*

Volume 19, Issue 3, 2024

Published on: 21 February, 2024

Page: [176 - 188] Pages: 13

DOI: 10.2174/0115748871271420240213064251

Price: $65

conference banner
Abstract

Introduction: Intrinsically Disordered Proteins (IDPs) are active in different cellular procedures like ordered assembly of chromatin and ribosomes, interaction with membrane, protein, and ligand binding, molecular recognition, binding, and transportation via nuclear pores, microfilaments and microtubules process and disassembly, protein functions, RNA chaperone, and nucleic acid binding, modulation of the central dogma, cell cycle, and other cellular activities, post-translational qualification and substitute splicing, and flexible entropic linker and management of signaling pathways.

Methods: The intrinsic disorder is a precise structural characteristic that permits IDPs/IDPRs to be involved in both one-to-many and many-to-one signaling. IDPs/IDPRs also exert some dynamical and structural ordering, being much less constrained in their activities than folded proteins. Nuclear magnetic resonance (NMR) spectroscopy is a major technique for the characterization of IDPs, and it can be used for dynamic and structural studies of IDPs.

Results and Conclusion: This review was carried out to discuss intrinsically disordered proteins and their different goals, as well as the importance and effectiveness of NMR in characterizing intrinsically disordered proteins in healthy and diseased states.

Keywords: RNA chaperoning, intrinsically disordered protein, microfilament assembly, microtubule assembly, nucleic acid binding, nuclear magnetic resonance.

Graphical Abstract
[1]
Basu S, Bahadur RP. Do sequence neighbours of intrinsically disordered regions promote structural flexibility in intrinsically disordered proteins? J Struct Biol 2020; 209(2): 107428.
[http://dx.doi.org/10.1016/j.jsb.2019.107428] [PMID: 31756456]
[2]
Zaharias S, Zhang Z, Davis K, et al. Intrinsically disordered electronegative clusters improve stability and binding specificity of RNA-binding proteins. J Biol Chem 2021; 297(2): 100945.
[http://dx.doi.org/10.1016/j.jbc.2021.100945] [PMID: 34246632]
[3]
Han C, Cui C, Xing X, et al. Functions of intrinsic disorder in proteins involved in DNA demethylation during pre-implantation embryonic development. Int J Biol Macromol 2019; 136: 962-79.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.143] [PMID: 31229544]
[4]
Ramanathan A, Ma H, Parvatikar A, Chennubhotla SC. Artificial intelligence techniques for integrative structural biology of intrinsically disordered proteins. Curr Opin Struct Biol 2021; 66: 216-24.
[http://dx.doi.org/10.1016/j.sbi.2020.12.001] [PMID: 33421906]
[5]
Oldfield CJ, Xue B, Van YY, et al. Utilization of protein intrinsic disorder knowledge in structural proteomics. Biochim Biophys Acta Proteins Proteomics 2013; 1834(2): 487-98.
[http://dx.doi.org/10.1016/j.bbapap.2012.12.003] [PMID: 23232152]
[6]
Frege T, Uversky VN. Intrinsically disordered proteins in the nucleus of human cells. Biochem Biophys Rep 2015; 1: 33-51.
[http://dx.doi.org/10.1016/j.bbrep.2015.03.003] [PMID: 29124132]
[7]
Dey S, MacAinsh M, Zhou HX. Local interactions and transient secondary structures govern backbone dynamics of intrinsically disordered proteins. Biophys J 2022; 121(3): 198a.
[http://dx.doi.org/10.1016/j.bpj.2021.11.1738]
[8]
Yang T, Jarosz D, Zia RN. A colloidal polymer model for the condensnation of intrinsically disordered proteins. Biophys J 2022; 121(3): 199a.
[http://dx.doi.org/10.1016/j.bpj.2021.11.1744]
[9]
Wichapong K, Silvestre-Roig C, Braster Q, Schumski A, Soehnlein O, Nicolaes GAF. Structure-based peptide design targeting intrinsically disordered proteins: Novel histone H4 and H2A peptidic inhibitors. Comput Struct Biotechnol J 2021; 19: 934-48.
[http://dx.doi.org/10.1016/j.csbj.2021.01.026] [PMID: 33598107]
[10]
Ghosh B, Sengupta N. The protein hydration layer in high glucose concentration: Dynamical responses in folded and intrinsically disordered dimeric states. Biochem Biophys Res Commun 2021; 577: 124-9.
[http://dx.doi.org/10.1016/j.bbrc.2021.09.005] [PMID: 34509724]
[11]
Rieloff E, Tully MD, Skepö M. Assessing the intricate balance of intermolecular interactions upon self-association of intrinsically disordered proteins. J Mol Biol 2019; 431(3): 511-23.
[http://dx.doi.org/10.1016/j.jmb.2018.11.027] [PMID: 30529747]
[12]
Akhila MV, Narwani TJ, Floch A, et al. A structural entropy index to analyse local conformations in intrinsically disordered proteins. J Struct Biol 2020; 210(1): 107464.
[http://dx.doi.org/10.1016/j.jsb.2020.107464] [PMID: 31978465]
[13]
Huihui J, Ghosh K. Intrachain interaction topology can identify functionally similar intrinsically disordered proteins. Biophys J 2021; 120(10): 1860-8.
[http://dx.doi.org/10.1016/j.bpj.2020.11.2282] [PMID: 33865811]
[14]
Osuda H, Sunano Y, Hara M. An intrinsically disordered radish vacuolar calcium-binding protein (RVCaB) showed cryoprotective activity for lactate dehydrogenase with its hydrophobic region. Int J Biol Macromol 2021; 182: 1130-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.056] [PMID: 33857518]
[15]
Sen S, Kumar H, Udgaonkar JB. Microsecond dynamics during the binding-induced folding of an intrinsically disordered protein. J Mol Biol 2021; 433(22): 167254.
[http://dx.doi.org/10.1016/j.jmb.2021.167254] [PMID: 34537237]
[16]
Schneider R, Blackledge M, Jensen MR. Elucidating binding mechanisms and dynamics of intrinsically disordered protein complexes using NMR spectroscopy. Curr Opin Struct Biol 2019; 54: 10-8.
[http://dx.doi.org/10.1016/j.sbi.2018.09.007] [PMID: 30316104]
[17]
Clerc I, Sagar A, Barducci A, Sibille N, Bernadó P, Cortés J. The diversity of molecular interactions involving intrinsically disordered proteins: A molecular modeling perspective. Comput Struct Biotechnol J 2021; 19: 3817-28.
[http://dx.doi.org/10.1016/j.csbj.2021.06.031] [PMID: 34285781]
[18]
Musselman CA, Kutateladze TG. Characterization of functional disordered regions within chromatin-associated proteins. iScience 2021; 24(2): 102070.
[http://dx.doi.org/10.1016/j.isci.2021.102070] [PMID: 33604523]
[19]
Deiana A, Forcelloni S, Porrello A, Giansanti A. Intrinsically disordered proteins and structured proteins with intrinsically disordered regions have different functional roles in the cell. PLoS One 2019; 14(8): e0217889.
[http://dx.doi.org/10.1371/journal.pone.0217889] [PMID: 31425549]
[20]
Chen R, Li X, Yang Y, Song X, Wang C, Qiao D. Prediction of protein-protein interaction sites in intrinsically disordered proteins. Front Mol Biosci 2022; 9: 985022.
[http://dx.doi.org/10.3389/fmolb.2022.985022] [PMID: 36250006]
[21]
Uversky VN. The multifaceted roles of intrinsic disorder in protein complexes. FEBS Lett 2015; 589(19PartA): 2498-506.
[http://dx.doi.org/10.1016/j.febslet.2015.06.004] [PMID: 26073257]
[22]
Choudhary S, Lopus M, Hosur RV. Targeting disorders in unstructured and structured proteins in various diseases. Biophys Chem 2022; 281: 106742.
[http://dx.doi.org/10.1016/j.bpc.2021.106742] [PMID: 34922214]
[23]
Sen S, Kumar H, Udgaonkar JB. Microsecond dynamics during the binding-induced folding of an intrinsically disordered protein. Biophys J 2022; 121(3): 56a.
[http://dx.doi.org/10.1016/j.bpj.2021.11.2422]
[24]
Shigemitsu Y, Hiroaki H. Common molecular pathogenesis of disease-related intrinsically disordered proteins revealed by NMR analysis. J Biochem 2018; 163(1): 11-8.
[http://dx.doi.org/10.1093/jb/mvx056] [PMID: 28992347]
[25]
Burger V, Gurry T, Stultz C. Intrinsically disordered proteins: Where computation meets experiment. Polymers 2014; 6(10): 2684-719.
[http://dx.doi.org/10.3390/polym6102684]
[26]
Ambadipudi S, Zweckstetter M. Targeting intrinsically disordered proteins in rational drug discovery. Expert Opin Drug Discov 2016; 11(1): 65-77.
[http://dx.doi.org/10.1517/17460441.2016.1107041] [PMID: 26549326]
[27]
Hartlmüller C, Spreitzer E, Göbl C, Falsone F, Madl T. NMR characterization of solvent accessibility and transient structure in intrinsically disordered proteins. J Biomol NMR 2019; 73(6-7): 305-17.
[http://dx.doi.org/10.1007/s10858-019-00248-2] [PMID: 31297688]
[28]
Kosol S, Contreras-Martos S, Cedeño C, Tompa P. Structural characterization of intrinsically disordered proteins by NMR spectroscopy. Molecules 2013; 18(9): 10802-28.
[http://dx.doi.org/10.3390/molecules180910802] [PMID: 24008243]
[29]
Uversky VN, Kulkarni P. Intrinsically disordered proteins: Chronology of a discovery. Biophys Chem 2021; 279: 106694.
[http://dx.doi.org/10.1016/j.bpc.2021.106694] [PMID: 34607199]
[30]
Handa T, Kundu D, Dubey VK. Perspectives on evolutionary and functional importance of intrinsically disordered proteins. Int J Biol Macromol 2020; 224: 243-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.10.120] [PMID: 36257361]
[31]
Martinez Pomier K, Ahmed R, Melacini G. Interactions of intrinsically disordered proteins with the unconventional chaperone human serum albumin: From mechanisms of amyloid inhibition to therapeutic opportunities. Biophys Chem 2022; 282: 106743.
[http://dx.doi.org/10.1016/j.bpc.2021.106743] [PMID: 35093643]
[32]
Estaña A, Sibille N, Delaforge E, Vaisset M, Cortés J, Bernadó P. Realistic ensemble models of intrinsically disordered proteins using a structure-encoding coil database. Structure 2019; 27(2): 381-391.e2.
[http://dx.doi.org/10.1016/j.str.2018.10.016] [PMID: 30554840]
[33]
Lindorff-Larsen K, Kragelund BB. On the potential of machine learning to examine the relationship between sequence, structure, dynamics and function of intrinsically disordered proteins. J Mol Biol 2021; 433(20): 167196.
[http://dx.doi.org/10.1016/j.jmb.2021.167196] [PMID: 34390736]
[34]
Schäffler M, Khaled M, Strodel B. ATRANET – Automated generation of transition networks for the structural characterization of intrinsically disordered proteins. Methods 2022; 206: 18-26.
[http://dx.doi.org/10.1016/j.ymeth.2022.07.013] [PMID: 35934194]
[35]
Hanson J, Paliwal KK, Litfin T, Zhou Y. SPOT-disorder2: Improved protein intrinsic disorder prediction by ensembles deep learning. Genom Proteom Bioinform 2019; 17(6): 645-56.
[http://dx.doi.org/10.1016/j.gpb.2019.01.004] [PMID: 32173600]
[36]
Kassem N, Kassem MM, Pedersen SF, Pedersen PA, Kragelund BB. Yeast recombinant production of intact human membrane proteins with long intrinsically disordered intracellular regions for structural studies. Biochim Biophys Acta Biomembr 2020; 1862(6): 183272.
[http://dx.doi.org/10.1016/j.bbamem.2020.183272] [PMID: 32169592]
[37]
Reddy ST, Uversky VN, Costa-Filho AJ. Biophysical characterization of intrinsically disordered human Golgi matrix protein GRASP65. Int J Biol Macromol 2020; 162: 1982-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.126] [PMID: 32822731]
[38]
Melarkode Vattekatte A, Narwani TJ, Floch A, et al. Data set of intrinsically disordered proteins analysed at a local protein conformation level. Data Brief 2020; 29: 105383.
[http://dx.doi.org/10.1016/j.dib.2020.105383] [PMID: 32195305]
[39]
Verma G, Singh P, Bhat R. Disorder under stress: Role of polyol osmolytes in modulating fibrillation and aggregation of intrinsically disordered proteins. Biophys Chem 2020; 264: 106422.
[http://dx.doi.org/10.1016/j.bpc.2020.106422] [PMID: 32707418]
[40]
Zeng X, Holehouse AS, Chilkoti A, Mittag T, Pappu RV. Connecting coil-to-globule transitions to full phase diagrams for intrinsically disordered proteins. Biophys J 2020; 119(2): 402-18.
[http://dx.doi.org/10.1016/j.bpj.2020.06.014] [PMID: 32619404]
[41]
Santofimia-Castaño P, Rizzuti B, Pey AL, Fárez-Vidal ME, Iovanna JL, Neira JL. Intrinsically disordered protein NUPR1 binds to the armadillo-repeat domain of Plakophilin 1. Int J Biol Macromol 2021; 170: 549-60.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.193] [PMID: 33385445]
[42]
Malagrinò F, Diop A, Pagano L, Nardella C, Toto A, Gianni S. Unveiling induced folding of intrinsically disordered proteins – Protein engineering, frustration and emerging themes. Curr Opin Struct Biol 2022; 72: 153-60.
[http://dx.doi.org/10.1016/j.sbi.2021.11.004] [PMID: 34902817]
[43]
Choura M, Ebel C, Hanin M. Genomic analysis of intrinsically disordered proteins in cereals: From mining to meaning. Gene 2019; 714: 143984.
[http://dx.doi.org/10.1016/j.gene.2019.143984] [PMID: 31330237]
[44]
Macossay-Castillo M, Marvelli G, Guharoy M, et al. The balancing act of intrinsically disordered proteins: Enabling functional diversity while minimizing promiscuity. J Mol Biol 2019; 431(8): 1650-70.
[http://dx.doi.org/10.1016/j.jmb.2019.03.008] [PMID: 30878482]
[45]
Biesaga M, Frigolé-Vivas M, Salvatella X. Intrinsically disordered proteins and biomolecular condensates as drug targets. Curr Opin Chem Biol 2021; 62: 90-100.
[http://dx.doi.org/10.1016/j.cbpa.2021.02.009] [PMID: 33812316]
[46]
Kulkarni P, Behal A, Mohanty A, Salgia R, Nedelcu AM, Uversky VN. Co-opting disorder into order: Intrinsically disordered proteins and the early evolution of complex multicellularity. Int J Biol Macromol 2022; 201: 29-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.182] [PMID: 34998872]
[47]
Nasir I, Onuchic PL, Labra SR, Deniz AA. Single-molecule fluorescence studies of intrinsically disordered proteins and liquid phase separation. Biochim Biophys Acta Proteins Proteomics 2019; 1867(10): 980-7.
[http://dx.doi.org/10.1016/j.bbapap.2019.04.007] [PMID: 31054969]
[48]
Best RB. Emerging consensus on the collapse of unfolded and intrinsically disordered proteins in water. Curr Opin Struct Biol 2020; 60: 27-38.
[http://dx.doi.org/10.1016/j.sbi.2019.10.009] [PMID: 31805437]
[49]
Bandyopadhyay A, Basu S. Criticality in the conformational phase transition among self-similar groups in intrinsically disordered proteins: Probed by salt-bridge dynamics. Biochim Biophys Acta Proteins Proteomics 2020; 1868(10): 140474.
[http://dx.doi.org/10.1016/j.bbapap.2020.140474] [PMID: 32579908]
[50]
Nguyen PH, Derreumaux P. Structures of the intrinsically disordered Aβ, tau and α-synuclein proteins in aqueous solution from computer simulations. Biophys Chem 2020; 264: 106421.
[http://dx.doi.org/10.1016/j.bpc.2020.106421] [PMID: 32623047]
[51]
Petri L, Ábrányi-Balogh P, Vagrys D, et al. A covalent strategy to target intrinsically disordered proteins: Discovery of novel tau aggregation inhibitors. Eur J Med Chem 2022; 231: 114163.
[http://dx.doi.org/10.1016/j.ejmech.2022.114163] [PMID: 35131537]
[52]
Verburgt J, Zhang Z, Kihara D. Multi-level analysis of intrinsically disordered protein docking methods. Methods 2022; 204: 55-63.
[http://dx.doi.org/10.1016/j.ymeth.2022.05.006] [PMID: 35609776]
[53]
Uversky VN, Dunker AK. Understanding protein non-folding. Biochim Biophys Acta Proteins Proteomics 2010; 1804(6): 1231-64.
[http://dx.doi.org/10.1016/j.bbapap.2010.01.017] [PMID: 20117254]
[54]
Avramov M, Schád É, Révész Á, et al. Identification of intrinsically disordered proteins and regions in a non-model insect species Ostrinia nubilalis (Hbn.). Biomolecules 2022; 12(4): 592.
[http://dx.doi.org/10.3390/biom12040592] [PMID: 35454181]
[55]
Boskey AL, Villarreal-Ramirez E. Intrinsically disordered proteins and biomineralization. Matrix Biol 2016; 52-54: 43-59.
[http://dx.doi.org/10.1016/j.matbio.2016.01.007] [PMID: 26807759]
[56]
Romero-Pérez SP, Covarrubias AA, Campos F. A simple method to purify intrinsically disordered proteins by adjusting trichloroacetic acid concentration. Protein Expr Purif 2023; 202: 106183.
[http://dx.doi.org/10.1016/j.pep.2022.106183] [PMID: 36182030]
[57]
Chakrabarti P, Chakravarty D. Intrinsically disordered proteins/regions and insight into their biomolecular interactions. Biophys Chem 2022; 283: 106769.
[http://dx.doi.org/10.1016/j.bpc.2022.106769] [PMID: 35139468]
[58]
Kodera N, Ando T. Guide to studying intrinsically disordered proteins by high-speed atomic force microscopy. Methods 2022; 207: 44-56.
[http://dx.doi.org/10.1016/j.ymeth.2022.08.008] [PMID: 36055623]
[59]
Martins IC, Santos NC. Intrinsically disordered protein domains in flavivirus infection. Arch Biochem Biophys 2020; 683: 108298.
[http://dx.doi.org/10.1016/j.abb.2020.108298] [PMID: 32045581]
[60]
Blundell TL, Gupta MN, Hasnain SE. Intrinsic disorder in proteins: Relevance to protein assemblies, drug design and host-pathogen interactions. Prog Biophys Mol Biol 2020; 156: 34-42.
[http://dx.doi.org/10.1016/j.pbiomolbio.2020.06.004] [PMID: 32628954]
[61]
Gao M, Han Y, Zeng Y, Su Z, Huang Y. Introducing intrinsic disorder reduces electrostatic steering in protein-protein interactions. Biophys J 2021; 120(15): 2998-3007.
[http://dx.doi.org/10.1016/j.bpj.2021.06.021] [PMID: 34214536]
[62]
Palopoli N, Marchetti J, Monzon AM, et al. Intrinsically disordered protein ensembles shape evolutionary rates revealing conformational patterns. J Mol Biol 2021; 433(3): 166751.
[http://dx.doi.org/10.1016/j.jmb.2020.166751] [PMID: 33310020]
[63]
Klass SH, Gleason JM, Omole AO, Onoa B, Bustamante CJ, Francis MB. Preparation of bioderived and biodegradable surfactants based on an intrinsically disordered protein sequence. Biomacromolecules 2022; 23(3): 1462-70.
[http://dx.doi.org/10.1021/acs.biomac.2c00051] [PMID: 35238203]
[64]
Maiti S, De S. Identification of potential short linear motifs (SLiMs) in intrinsically disordered sequences of proteins by fast time-scale backbone dynamics. J Magn Reson Open 2022; 10-11: 100029.
[http://dx.doi.org/10.1016/j.jmro.2021.100029]
[65]
Kodera N, Ando T. Visualization of intrinsically disordered proteins by high-speed atomic force microscopy. Curr Opin Struct Biol 2022; 72: 260-6.
[http://dx.doi.org/10.1016/j.sbi.2021.11.014] [PMID: 34998124]
[66]
Zapletal V, Mládek A, Melková K, et al. Choice of force field for proteins containing structured and intrinsically disordered regions. Biophys J 2020; 118(7): 1621-33.
[http://dx.doi.org/10.1016/j.bpj.2020.02.019] [PMID: 32367806]
[67]
Uversky VN. Dancing protein clouds: The strange biology and chaotic physics of intrinsically disordered proteins. J Biol Chem 2016; 291(13): 6681-8.
[http://dx.doi.org/10.1074/jbc.R115.685859] [PMID: 26851286]
[68]
Weng J, Wang W. Dynamic multivalent interactions of intrinsically disordered proteins. Curr Opin Struct Biol 2020; 62: 9-13.
[http://dx.doi.org/10.1016/j.sbi.2019.11.001] [PMID: 31783325]
[69]
Alston JJ, Soranno A, Holehouse AS. Integrating single-molecule spectroscopy and simulations for the study of intrinsically disordered proteins. Methods 2021; 193: 116-35.
[http://dx.doi.org/10.1016/j.ymeth.2021.03.018] [PMID: 33831596]
[70]
Iconaru LI, Das S, Nourse A, Shelat AA, Zuo J, Kriwacki RW. Small molecule sequestration of the intrinsically disordered protein, p27Kip1, within soluble oligomers. J Mol Biol 2021; 433(18): 167120.
[http://dx.doi.org/10.1016/j.jmb.2021.167120] [PMID: 34197833]
[71]
Koh J. Probing coupled conformational transitions of intrinsically disordered proteins in their interactions with target proteins. Anal Biochem 2021; 619: 114126.
[http://dx.doi.org/10.1016/j.ab.2021.114126] [PMID: 33567297]
[72]
Karlsson E, Paissoni C, Erkelens AM, et al. Mapping the transition state for a binding reaction between ancient intrinsically disordered proteins. J Biol Chem 2020; 295(51): 17698-712.
[http://dx.doi.org/10.1074/jbc.RA120.015645] [PMID: 33454008]
[73]
Mitra G. Application of native mass spectrometry in studying intrinsically disordered proteins: A special focus on neurodegenerative diseases. Biochim Biophys Acta Proteins Proteomics 2019; 1867(11): 140260.
[http://dx.doi.org/10.1016/j.bbapap.2019.07.013] [PMID: 31382021]
[74]
Kim Y, Furman CM, Manhart CM, Alani E, Finkelstein IJ. Intrinsically disordered regions regulate both catalytic and non-catalytic activities of the MutLα mismatch repair complex. Nucleic Acids Res 2019; 47(4): 1823-35.
[http://dx.doi.org/10.1093/lnarlgky1244] [PMID: 30541127]
[75]
Peng Z, Oldfield CJ, Xue B, et al. A creature with a hundred waggly tails: Intrinsically disordered proteins in the ribosome. Cell Mol Life Sci 2014; 71(8): 1477-504.
[http://dx.doi.org/10.1007/s00018-013-1446-6] [PMID: 23942625]
[76]
Borgia A, Borgia MB, Scaiola A, Best R, Schuler B. Highly disordered 10:1 complex of two anti-apoptotic, chromatin-remodelling intrinsically disordered proteins. Biophys J 2019; 116(3): 453a.
[http://dx.doi.org/10.1016/j.bpj.2018.11.2445]
[77]
Quiroga IY, Ahn JH, Wang GG, Phanstiel D. Oncogenic fusion proteins and their role in three-dimensional chromatin structure, phase separation, and cancer. Curr Opin Genet Dev 2022; 74: 101901.
[http://dx.doi.org/10.1016/j.gde.2022.101901] [PMID: 35427897]
[78]
Watson M, Stott K. Disordered domains in chromatin-binding proteins. Essays Biochem 2019; 63(1): 147-56.
[http://dx.doi.org/10.1042/EBC20180068] [PMID: 30940742]
[79]
Shukla S, Agarwal P, Kumar A. Disordered regions tune order in chromatin organization and function. Biophys Chem 2022; 281: 106716.
[http://dx.doi.org/10.1016/j.bpc.2021.106716] [PMID: 34844028]
[80]
Santofimia-Castaño P, Rizzuti B, Abián O, Velázquez-Campoy A, Iovanna JL, Neira JL. Amphipathic helical peptides hamper protein-protein interactions of the intrinsically disordered chromatin nuclear protein 1 (NUPR1). Biochim Biophys Acta, Gen Subj 2018; 1862(6): 1283-95.
[http://dx.doi.org/10.1016/j.bbagen.2018.03.009] [PMID: 29530795]
[81]
Bonucci A, Palomino-Schätzlein M, Malo de Molina P, et al. Crowding effects on the structure and dynamics of the intrinsically disordered nuclear chromatin protein NUPR1. Front Mol Biosci 2021; 8(8): 684622.
[http://dx.doi.org/10.3389/fmolb.2021.684622] [PMID: 34291085]
[82]
Neira JL, Correa J, Rizzuti B, et al. Dendrimers as competitiors of protein-protein interactions of the intrinsically disordered nuclear chromatin protein NUPR1. Biomacromolecules 2019; 20(7): 2567-76.
[http://dx.doi.org/10.1021/acs.biomac.9b00378] [PMID: 31181156]
[83]
Ausió J, Paz AM, Esteller M. MeCP2: The long trip from a chromatin protein to neurological disorders. Trends Mol Med 2014; 20(9): 487-98.
[http://dx.doi.org/10.1016/j.molmed.2014.03.004] [PMID: 24766768]
[84]
Shukla V, Cetnarowska A, Hyldahl M, Mandrup S. Interplay between regulatory elements and chromatin topology in cellular lineage determination. Trends Genet 2022; 38(10): 1048-61.
[http://dx.doi.org/10.1016/j.tig.2022.05.011] [PMID: 35688654]
[85]
Liu H. AlphaFold and structural mass spectrometry enable interrogations on the intrinsically disordered regions in cynaobacterial light-harvesting complex phycobilisome. J Mol Biol 2022; 434(21): 167831.
[http://dx.doi.org/10.1016/j.jmb.2022.167831] [PMID: 36116541]
[86]
Das T, Eliezer D. Membrane interactions of intrinsically disordered proteins: The example of alpha-synuclein. Biochim Biophys Acta Proteins Proteomics 2019; 1867(10): 879-89.
[http://dx.doi.org/10.1016/j.bbapap.2019.05.001] [PMID: 31096049]
[87]
Manna B, Bhattacharya T, Kahali B, Ghosh TC. Evolutionary constraints on hub and non-hub proteins in human protein interaction network: Insight from protein connectivity and intrinsic disorder. Gene 2009; 434(1-2): 50-5.
[http://dx.doi.org/10.1016/j.gene.2008.12.013] [PMID: 19185053]
[88]
Bondos SE, Hsiao HC, Catanese DJ Jr, Jordy K, Matthews KS. Ultrabithorax, an intrinsically disordered protein, selects protein interactions by topology. Biophys J 2012; 102(3): 633a.
[http://dx.doi.org/10.1016/j.bpj.2011.11.3447]
[89]
Kozlov AG, Shinn MK, Weiland EA, Lohman TM. Glutamate promotes SSB protein–protein Interactions via intrinsically disordered regions. J Mol Biol 2017; 429(18): 2790-801.
[http://dx.doi.org/10.1016/j.jmb.2017.07.021] [PMID: 28782560]
[90]
Sammak S, Zinzalla G. Targeting protein–protein interactions (PPIs) of transcription factors: Challenges of intrinsically disordered proteins (IDPs) and regions (IDRs). Prog Biophys Mol Biol 2015; 119(1): 41-6.
[http://dx.doi.org/10.1016/j.pbiomolbio.2015.06.004] [PMID: 26126425]
[91]
Dyson HJ, Wright PE. Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J Biol Chem 2016; 291(13): 6714-22.
[http://dx.doi.org/10.1074/jbc.R115.692020] [PMID: 26851278]
[92]
Shimizu K, Toh H. Interaction between intrinsically disordered proteins frequently occurs in a human protein-protein interaction network. J Mol Biol 2009; 392(5): 1253-65.
[http://dx.doi.org/10.1016/j.jmb.2009.07.088] [PMID: 19660471]
[93]
De Biasio A, Ibáñez de Opakua A, Cordeiro TN, et al. p15PAF is an intrinsically disordered protein with nonrandom structural preferences at sites of interaction with other proteins. Biophys J 2014; 106(4): 865-74.
[http://dx.doi.org/10.1016/j.bpj.2013.12.046] [PMID: 24559989]
[94]
Uversky VN. Intrinsically disordered proteins in overcrowded milieu: Membrane-less organelles, phase separation, and intrinsic disorder. Curr Opin Struct Biol 2017; 44: 18-30.
[http://dx.doi.org/10.1016/j.sbi.2016.10.015] [PMID: 27838525]
[95]
Bickers SC, Sayewich JS, Kanelis V. Intrinsically disordered regions regulate the activities of ATP binding cassette transporters. Biochim Biophys Acta Biomembr 2020; 1862(6): 183202.
[http://dx.doi.org/10.1016/j.bbamem.2020.183202] [PMID: 31972165]
[96]
Borcherds W, Bremer A, Borgia MB, Mittag T. How do intrinsically disordered protein regions encode a driving force for liquid–liquid phase separation? Curr Opin Struct Biol 2021; 67: 41-50.
[http://dx.doi.org/10.1016/j.sbi.2020.09.004] [PMID: 33069007]
[97]
Marín M, Thallmair V, Ott T. The intrinsically disordered N-terminal region of AtREM1.3 remorin protein mediates protein-protein interactions. J Biol Chem 2012; 287(47): 39982-91.
[http://dx.doi.org/10.1074/jbc.M112.414292] [PMID: 23027878]
[98]
Wright PE, Dyson HJ. Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 2015; 16(1): 18-29.
[http://dx.doi.org/10.1038/nrm3920] [PMID: 25531225]
[99]
Uversky VN. Intrinsic disorder-based protein interactions and their modulators. Curr Pharm Des 2013; 19(23): 4191-213.
[http://dx.doi.org/10.2174/1381612811319230005] [PMID: 23170892]
[100]
Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 2013; 20(3): 259-66.
[http://dx.doi.org/10.1038/nsmb.2470] [PMID: 23463310]
[101]
Jiao L, Shubbar M, Yang X, et al. A partially disordered region connects gene repression and activation functions of EZH2. Proc Natl Acad Sci USA 2020; 117(29): 16992-7002.
[http://dx.doi.org/10.1073/pnas.1914866117] [PMID: 32631994]
[102]
Tantos A, Han KH, Tompa P. Intrinsic disorder in cell signaling and gene transcription. Mol Cell Endocrinol 2012; 348(2): 457-65.
[http://dx.doi.org/10.1016/j.mce.2011.07.015] [PMID: 21782886]
[103]
Lazar T, Schad E, Szabo B, et al. Intrinsic protein disorder in histone lysine methylation. Biol Direct 2016; 11(1): 30.
[http://dx.doi.org/10.1186/s13062-016-0129-2] [PMID: 27356874]
[104]
El Hadidy N, Uversky VN. Intrinsic disorder of the BAF complex: Roles in chromatin remodeling and disease development. Int J Mol Sci 2019; 20(21): 5260.
[http://dx.doi.org/10.3390/ijms20215260] [PMID: 31652801]
[105]
Zienowicz A, Bamm VV, Vassall KA, Harauz G. Myelin basic protein is a glial microtubule-associated protein – Characterization of binding domains, kinetics of polymerization, and regulation by phosphorylation and a lipidic environment. Biochem Biophys Res Commun 2015; 461(1): 136-41.
[http://dx.doi.org/10.1016/j.bbrc.2015.03.181] [PMID: 25862371]
[106]
Goodson HV, Jonasson EM. Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol 2018; 10(6): a022608.
[http://dx.doi.org/10.1101/cshperspect.a022608] [PMID: 29858272]
[107]
Roll-Mecak A. The tubulin code in microtubule dynamics and information encoding. Dev Cell 2020; 54(1): 7-20.
[http://dx.doi.org/10.1016/j.devcel.2020.06.008] [PMID: 32634400]
[108]
Alpízar-Pedraza D, Veulens AN, Araujo EC, Piloto-Ferrer J, Sánchez-Lamar Á. Microtubules destabilizing agents binding sites in tubulin. J Mol Struct 2022; 1259: 132723.
[http://dx.doi.org/10.1016/j.molstruc.2022.132723]
[109]
Skrabana R, Bartkova M, Kovacech B, Hanes J, Novak M. P3-199: Intrinsically disordered protein tau with unsheltered microtubule-binding domain become mis-disordered: Implications for neurofibrillary degeneration. Alzheimers Dement 2009; 5(4S_Part_13): 401.
[http://dx.doi.org/10.1016/j.jalz.2009.04.1073]
[110]
Chung PJ, Deek JB, Song C, et al. Order from disorder: The intrinsically disordered protein Tau facilitates higher-order assembly of microtubules. Biophys J 2014; 106(2): 354a.
[http://dx.doi.org/10.1016/j.bpj.2013.11.2013]
[111]
Chung PJ, Song C, Deek J, et al. Tau mediates widely-spaced microtubule bundles through local polyion attractions at the midplane layer: A novel functional mechanism for intrinsically disordered proteins. Biophys J 2016; 110(3): 553a.
[http://dx.doi.org/10.1016/j.bpj.2015.11.2958]
[112]
Roll-Mecak A. Intrinsically disordered tubulin tails: Complex tuners of microtubule functions? Semin Cell Dev Biol 2015; 37: 11-9.
[http://dx.doi.org/10.1016/j.semcdb.2014.09.026] [PMID: 25307498]
[113]
Wall KP, Pagratis M, Armstrong G, et al. Molecular determinants of tubulin,s C-terminal tail conformatioal ensemble. ACS Chem Biol 2016; 11(11): 2981-90.
[http://dx.doi.org/10.1021/acschembio.6b00507] [PMID: 27541566]
[114]
Chen J, Kholina E, Szyk A, et al. α-tubulin tail modifications regulate microtubule stability through selective effector recruitment, not changes in intrinsic polymer dynamics. Dev Cell 2021; 56(14): 2016-2028.e4.
[http://dx.doi.org/10.1016/j.devcel.2021.05.005] [PMID: 34022132]
[115]
Hashi Y, Kawai G, Kotani S. Microtubule-associated protein (MAP) 4 interacts with microtubules in an intrinsically disordered manner. Biosci Biotechnol Biochem 2014; 78(11): 1864-70.
[http://dx.doi.org/10.1080/09168451.2014.940836] [PMID: 25052097]
[116]
Melková K, Zapletal V, Jansen S, et al. Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics. J Biol Chem 2018; 293(34): 13297-309.
[http://dx.doi.org/10.1074/jbc.RA118.001769] [PMID: 29925592]
[117]
Jalava NS, Lopez-Picon FR, Kukko-Lukjanov TK, Holopainen IE. Changes in microtubule-associated protein-2 (MAP2) expression during development and after status epilepticus in the immature rat hippocampus. Int J Dev Neurosci 2007; 25(2): 121-31.
[http://dx.doi.org/10.1016/j.ijdevneu.2006.12.001] [PMID: 17229541]
[118]
Sündermann F, Fernandez MP, Morgan RO. An evolutionary roadmap to the microtubule-associated protein MAP Tau. BMC Genomics 2016; 17(1): 264.
[http://dx.doi.org/10.1186/s12864-016-2590-9] [PMID: 27030133]
[119]
Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci 2016; 17(1): 22-35.
[http://dx.doi.org/10.1038/nrn.2015.1] [PMID: 26631930]
[120]
Dehmelt L, Halpain S. The MAP2/Tau family of microtubule-associated proteins. Genome Biol 2004; 6(1): 204.
[http://dx.doi.org/10.1186/gb-2004-6-1-204] [PMID: 15642108]
[121]
Ruskamo S, Chukhlieb M, Vahokoski J, et al. Juxtanodin is an intrinsically disordered F-actin-binding protein. Sci Rep 2012; 2(1): 899.
[http://dx.doi.org/10.1038/srep00899] [PMID: 23198089]
[122]
Oldfield CJ, Peng Z, Kurgan L. Disordered RNA-binding region prediction with DisoRDPind. Methods Mol Biol 2020; 2106: 225-39.
[http://dx.doi.org/10.1007/978-1-0716-0231-7_14] [PMID: 31889261]
[123]
Semrad K. Proteins with RNA chaperone activity: A world of diverse proteins with a common task-impediment of RNA misfolding. Biochem Res Int 2011; 2011: 1-11.
[http://dx.doi.org/10.1155/2011/532908] [PMID: 21234377]
[124]
Holmstrom ED, Liu Z, Nettels D, Best RB, Schuler B. Disordered RNA chaperones can enhance nucleic acid folding via local charge screening. Nat Commun 2019; 10(1): 2453.
[http://dx.doi.org/10.1038/s41467-019-10356-0] [PMID: 31165735]
[125]
Ivanyi-Nagy R, Lavergne JP, Gabus C, Ficheux D, Darlix JL. RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae. Nucleic Acids Res 2008; 36(3): 712-25.
[http://dx.doi.org/10.1093/nar/gkm1051] [PMID: 18033802]
[126]
Tompa P, Kovacs D. Intrinsically disordered chaperones in plants and animalsthis paper is one of a selection of papers published in this special issue entitled “canadian society of biochemistry, molecular & cellular biology 52nd annual meeting-protein folding: Principles and diseases” and has undergone the journal’s usual peer review process. Biochem Cell Biol 2010; 88(2): 167-74.
[http://dx.doi.org/10.1139/O09-163] [PMID: 20453919]
[127]
Park C, Jin Y, Kim YJ, Jeong H, Seong BL. RNA-binding as chaperones of DNA binding proteins from starved cells. Biochem Biophys Res Commun 2020; 524(2): 484-9.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.121] [PMID: 32007271]
[128]
Liu Y, Zhang M, Yuan H, Zou Z. Potentiation of the activity of Escherichia coli chaperone DnaJ by tailing hyper-acidic minipeptides. J Biotechnol 2021; 341: 86-95.
[http://dx.doi.org/10.1016/j.jbiotec.2021.09.012] [PMID: 34563565]
[129]
Cai H, Roca J, Zhao YF, Woodson SA. Dynamic refolding of OxyS sRNA by the Hfq RNA chaperone. J Mol Biol 2022; 434(18): 167776.
[http://dx.doi.org/10.1016/j.jmb.2022.167776] [PMID: 35934049]
[130]
Warren C, Shechter D. Fly fishing for histones: Catch and release by histone chaperone intrinsically disordered regions and acidic stretches. J Mol Biol 2017; 429(16): 2401-26.
[http://dx.doi.org/10.1016/j.jmb.2017.06.005] [PMID: 28610839]
[131]
Barik S. Genus-specific pattern of intrinsically disordered central regions in the nucleocapsid protein of coronaviruses. Comput Struct Biotechnol J 2020; 18: 1884-90.
[http://dx.doi.org/10.1016/j.csbj.2020.07.005] [PMID: 32765822]
[132]
Ostendorp A, Ostendorp S, Zhou Y, et al. Intrinsically disordered plant protein PARCL colocalizes with RNA in phase-separated condensates whose formation can be regulated by mutating the PLD. J Biol Chem 2022; 298(12): 102631.
[http://dx.doi.org/10.1016/j.jbc.2022.102631] [PMID: 36273579]
[133]
Rutledge BS, Choy WY, Duennwald ML. Folding or holding?-Hsp70 and Hsp90 chaperoning of misfolded proteins in neurodegenerative disease. J Biol Chem 2022; 298(5): 101905.
[http://dx.doi.org/10.1016/j.jbc.2022.101905] [PMID: 35398094]
[134]
Aoki D, Awazu A, Fujii M, et al. Ultrasensitive change in nucleosome binding by multiple phosphorylations to the intrinsically disordered region of the histone chaperone FACT. J Mol Biol 2020; 432(16): 4637-57.
[http://dx.doi.org/10.1016/j.jmb.2020.06.011] [PMID: 32553729]
[135]
Brodsky S, Jana T, Barkai N. Order through disorder: The role of intrinsically disordered regions in transcription factor binding specificity. Curr Opin Struct Biol 2021; 71: 110-5.
[http://dx.doi.org/10.1016/j.sbi.2021.06.011] [PMID: 34303077]
[136]
Sarni SH, Roca J, Du C, et al. Intrinsically disordered interaction network in an RNA chaperone revealed by native mass spectrometry. Proc Natl Acad Sci U S A 2022; 119(47): e2208780119.
[137]
Hegyi H, Tompa P. Intrinsically disordered proteins display no preference for chaperone binding in vivo. PLOS Comput Biol 2008; 4(3): e1000017.
[http://dx.doi.org/10.1371/journal.pcbi.1000017] [PMID: 18369417]
[138]
Basu S, Bahadur RP. A structural perspective of RNA recognition by intrinsically disordered proteins. Cell Mol Life Sci 2016; 73(21): 4075-84.
[http://dx.doi.org/10.1007/s00018-016-2283-1] [PMID: 27229125]
[139]
Chong SH, Ham S. Assessing the influence of solvation models on structural characteristics of intrinsically disordered protein. Comput Theor Chem 2013; 1017: 194-9.
[http://dx.doi.org/10.1016/j.comptc.2013.05.029]
[140]
Ruan H, Sun Q, Zhang W, Liu Y, Lai L. Targeting intrinsically disordered proteins at the edge of chaos. Drug Discov Today 2019; 24(1): 217-27.
[http://dx.doi.org/10.1016/j.drudis.2018.09.017] [PMID: 30278223]
[141]
Li XH, Babu MM. Human diseases from gain-of-function mutations in disordered protein regions. Cell 2018; 175(1): 40-2.
[http://dx.doi.org/10.1016/j.cell.2018.08.059] [PMID: 30241614]
[142]
Gingerich M. Novel disease variants reveal critical functions for intrinsically disordered regions encoded by the diabetes gene CLEC16A. Biophys J 2021; 120(3): 215a.
[http://dx.doi.org/10.1016/j.bpj.2020.11.1451]
[143]
Niu H, Wu X, Ying YL, Long YT. Real-time monitoring conformational changes of a intrinsically disordered protein with aerolysin nanopore. Biophys J 2021; 120(3): 108a.
[http://dx.doi.org/10.1016/j.bpj.2020.11.875]
[144]
Yakubu UM, Morano KA. Suppression of aggregate and amyloid formation by a novel intrinsically disordered region in metazoan Hsp110 chaperones. J Biol Chem 2021; 296: 100567.
[http://dx.doi.org/10.1016/j.jbc.2021.100567] [PMID: 33753171]
[145]
Stuchfield D, Barran P. Unique insights to intrinsically disordered proteins provided by ion mobility mass spectrometry. Curr Opin Chem Biol 2018; 42: 177-85.
[http://dx.doi.org/10.1016/j.cbpa.2018.01.007] [PMID: 29428839]
[146]
Chino H, Hatta T, Natsume T, Mizushima N. Intrinsically disrodered protein TEX264 mediates ER-phagy. Mol Cell 2019; 74(5): 909-921.e6.
[http://dx.doi.org/10.1016/j.molcel.2019.03.033] [PMID: 31006538]
[147]
Mercadante D. Intrinsically disordered proteins: Polymers without structure but with great potential for applications in food science. Encyloped. Food Chem 2019; 134-40.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.22410-4]
[148]
Turoverov KK, Kuznetsova IM, Fonin AV, Darling AL, Zaslavsky BY, Uversky VN. Stochasticity of biological soft matter: Emerging concepts in intrinsically disordered proteins and biological phase separation. Trends Biochem Sci 2019; 44(8): 716-28.
[http://dx.doi.org/10.1016/j.tibs.2019.03.005] [PMID: 31023505]
[149]
Xue B, Uversky VN. Intrinsic disorder in proteins involved in the innate antiviral immunity: Another flexible side of a molecular arms race. J Mol Biol 2014; 426(6): 1322-50.
[http://dx.doi.org/10.1016/j.jmb.2013.10.030] [PMID: 24184279]
[150]
Blanc M, Coetzer TL, Blackledge M, et al. Intrinsic disorder within the erythrocyte binding-like proteins from Plasmodium falciparum. Biochim Biophys Acta Proteins Proteomics 2014; 1844(12): 2306-14.
[http://dx.doi.org/10.1016/j.bbapap.2014.09.023] [PMID: 25288451]
[151]
Banerjee R. Introduction to the thematic minireview series on intrinsically disordered proteins. J Biol Chem 2016; 291(13): 6679-80.
[http://dx.doi.org/10.1074/jbc.R116.719930] [PMID: 26851284]
[152]
do Amaral MJ, de Andrade Rosa I, Andrade SA, et al. The perinuclear region concentrates disordered proteins with predicted phase separation distributed in a 3D network of cytoskeletal filaments and organelles. Biochim Biophys Acta Mol Cell Res 2022; 1869(1): 119161.
[http://dx.doi.org/10.1016/j.bbamcr.2021.119161] [PMID: 34655689]
[153]
Uversky VN, Kuznetsova IM, Turoverov KK, Zaslavsky B. Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates. FEBS Lett 2015; 589(1): 15-22.
[http://dx.doi.org/10.1016/j.febslet.2014.11.028] [PMID: 25436423]
[154]
Lohia R, Bassi K, Hansen M, Brannigan G. Disease associated mutations in intrinsically disordered proteins show evidence of enrichment in hydrophobic blobs. Biophys J 2020; 118(3): 215a.
[http://dx.doi.org/10.1016/j.bpj.2019.11.1280]
[155]
Lou DI, Kim ET, Meyerson NR, et al. An intrinsically disordered region of the DNA repair protein Nbs1 is a species-specific barrier to Herpes Simplex virus 1 in primates. Cell Host Microbe 2016; 20(2): 178-88.
[http://dx.doi.org/10.1016/j.chom.2016.07.003] [PMID: 27512903]
[156]
Rahmati M, Stötzel S, El Khassawna T, et al. Intrinsically disordered peptides enhance regenerative capacities of bone composite xenografts. Mater Today 2022; 52: 63-79.
[http://dx.doi.org/10.1016/j.mattod.2021.12.001]
[157]
Sevcik J, Skrabana R, Dvorsky R, Csokova N, Iqbal K, Novak M. X‐ray structure of the PHF core C‐terminus: Insight into the folding of the intrinsically disordered protein tau in Alzheimer’s disease. FEBS Lett 2007; 581(30): 5872-8.
[http://dx.doi.org/10.1016/j.febslet.2007.11.067] [PMID: 18061582]
[158]
Okazawa H. PQBP1, an intrinsically disordered/denatured protein at the crossroad of intellectual disability and neurodegenerative diseases. Neurochem Int 2018; 119: 17-25.
[http://dx.doi.org/10.1016/j.neuint.2017.06.005] [PMID: 28627366]
[159]
Skrabana R, Skrabanova-Khuebachova M, Kontsek P, Novak M. Alzheimer’s-disease-associated conformation of intrinsically disordered tau protein studied by intrinsically disordered protein liquid-phase competitive enzyme-linked immunosorbent assay. Anal Biochem 2006; 359(2): 230-7.
[http://dx.doi.org/10.1016/j.ab.2006.09.031] [PMID: 17081491]
[160]
Schrag LG, Liu X, Thevarajan I, Prakash O, Zolkiewski M, Chen J. Cancer-associated mutations perturb the disordered ensemble and interactions of the intrinsically disordered p53 transactivation domain. J Mol Biol 2021; 433(15): 167048.
[http://dx.doi.org/10.1016/j.jmb.2021.167048] [PMID: 33984364]
[161]
Phillips AH, Kriwacki RW. Intrinsic protein disorder and protein modifications in the processing of biological signals. Curr Opin Struct Biol 2020; 60: 1-6.
[http://dx.doi.org/10.1016/j.sbi.2019.09.003] [PMID: 31629249]
[162]
Tompa P, Schad E, Tantos A, Kalmar L. Intrinsically disordered proteins: Emerging interaction specialists. Curr Opin Struct Biol 2015; 35: 49-59.
[http://dx.doi.org/10.1016/j.sbi.2015.08.009] [PMID: 26402567]
[163]
Barik S. Bioinformatic analysis reveals conservation of intrinsic disorder in the linker sequences of prokaryotic dual-family immunophilin chaperones. Comput Struct Biotechnol J 2018; 16: 6-14.
[http://dx.doi.org/10.1016/j.csbj.2017.12.002] [PMID: 29552333]
[164]
Berlow RB, Dyson HJ, Wright PE. Expanding the paradigm: Intrinsically disordered proteins and allosteric regulation. J Mol Biol 2018; 430(16): 2309-20.
[http://dx.doi.org/10.1016/j.jmb.2018.04.003] [PMID: 29634920]
[165]
Zeng Y, He Y, Yang F, et al. The cancer/testis antigen prostate-associated gene 4 (PAGE4) is a highly intrinsically disordered protein. J Biol Chem 2011; 286(16): 13985-94.
[http://dx.doi.org/10.1074/jbc.M110.210765] [PMID: 21357425]
[166]
Sharma NR, Gadhave K, Kumar P, et al. Analysis of the dark proteome of Chandipura virus reveals maximum propensity for intrinsic disorder in phosphoprotein. Sci Rep 2021; 11(1): 13253.
[http://dx.doi.org/10.1038/s41598-021-92581-6] [PMID: 34168211]
[167]
Uversky VN, Roman A, Oldfield CJ, Dunker AK. Protein intrinsic disorder and human papillomaviruses: Increased amount of disorder in E6 and E7 oncoproteins from high risk HPVs. J Proteome Res 2006; 5(8): 1829-42.
[http://dx.doi.org/10.1021/pr0602388] [PMID: 16889404]
[168]
Uversky VN. A protein-chameleon: Conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 2003; 21(2): 211-34.
[http://dx.doi.org/10.1080/07391102.2003.10506918] [PMID: 12956606]
[169]
Goedert M. Filamentous nerve cell inclusions in neurodegenerative diseases: Tauopathies and alpha-synucleinopathies. Philos Trans R Soc Lond B Biol Sci 1999; 354(1386): 1101-18.
[http://dx.doi.org/10.1098/rstb.1999.0466] [PMID: 10434313]
[170]
Galvin JE, Lee VMY, Trojanowski JQ. Synucleinopathies. Arch Neurol 2001; 58(2): 186-90.
[http://dx.doi.org/10.1001/archneur.58.2.186] [PMID: 11176955]
[171]
Spillantini MG, Goedert M. The alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Ann N Y Acad Sci 2000; 920(1): 16-27.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06900.x] [PMID: 11193145]
[172]
Volles MJ, Lee SJ, Rochet JC, et al. Vesicle permeabilization by protofibrillar alpha-synuclein: Implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 2001; 40(26): 7812-9.
[http://dx.doi.org/10.1021/bi0102398] [PMID: 11425308]
[173]
Ding TT, Lee SJ, Rochet JC, Lansbury PT Jr. Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 2002; 41(32): 10209-17.
[http://dx.doi.org/10.1021/bi020139h] [PMID: 12162735]
[174]
Jahan I, Nayeem SM. Effect of osmolytes on conformational behavior of intrinsically disordered protein ɑ-Synuclein. Biophys J 2019; 117(10): 1922-34.
[http://dx.doi.org/10.1016/j.bpj.2019.09.046] [PMID: 31699336]
[175]
Zhao R, Gish K, Murphy M, et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 2000; 14(8): 981-93.
[http://dx.doi.org/10.1101/gad.14.8.981] [PMID: 10783169]
[176]
Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK. Flexible nets: Disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 2008; 9(S1) (Suppl. 1): S1.
[http://dx.doi.org/10.1186/1471-2164-9-S1-S1] [PMID: 18366598]
[177]
Midic U, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN. Protein disorder in the human diseasome: Unfoldomics of human genetic diseases. BMC Genomics 2009; 10(S1) (Suppl. 1): S12.
[http://dx.doi.org/10.1186/1471-2164-10-S1-S12] [PMID: 19594871]
[178]
Ayyadevara S, Ganne A, Balasubramaniam M, Shmookler Reis RJ. Intrinsically disordered proteins identified in the aggregate proteome serve as biomarkers of neurodegeneration. Metab Brain Dis 2022; 37(1): 147-52.
[http://dx.doi.org/10.1007/s11011-021-00791-8] [PMID: 34347206]
[179]
Ruy PC, Torrieri R, Toledo JS, Alves VS, Cruz AK, Ruiz JC. Intrinsically disordered proteins (IDPs) in trypanosomatids. BMC Genomics 2014; 15(1): 1100.
[http://dx.doi.org/10.1186/1471-2164-15-1100] [PMID: 25496281]
[180]
Breydo L, Uversky VN. Role of metal ions in aggregation of intrinsically disordered proteins in neurodegenerative diseases. Metallomics 2011; 3(11): 1163-80.
[http://dx.doi.org/10.1039/c1mt00106j] [PMID: 21869995]
[181]
Tenchov R, Zhou QA. Intrinsically disordered proteins: Perspective on COVID-19 infection and drug discovery. ACS Infect Dis 2022; 8(3): 422-32.
[http://dx.doi.org/10.1021/acsinfecdis.2c00031] [PMID: 35196007]
[182]
Bermel W, Bertini I, Csizmok V, Felli IC, Pierattelli R, Tompa P. H-start for exclusively heteronuclear NMR spectroscopy: The case of intrinsically disordered proteins. J Magn Reson 2009; 198(2): 275-81.
[http://dx.doi.org/10.1016/j.jmr.2009.02.012] [PMID: 19307141]
[183]
Ota M, Koike R, Amemiya T, et al. An assignment of intrinsically disordered regions of proteins based on NMR structures. J Struct Biol 2013; 181(1): 29-36.
[http://dx.doi.org/10.1016/j.jsb.2012.10.017] [PMID: 23142703]
[184]
Ono Y-I, Miyashita M, Ono Y, et al. Comparison of residual alpha-and beta-structures between two intrinsically disordered proteins by using NMR. Biochim. Biophys. Acta Proteins Proteom. BBA-Proteins Proteom 2015; 1854(3): 229-38.
[http://dx.doi.org/10.1016/j.bbapap.2014.12.007] [PMID: 25523747]
[185]
Smith PES, Zhou HX. Conformations and exchange dynamics of FlgM, an intrinsically disordered protein, in dilute and crowded conditions studied by NMR spectroscopy. Biophys J 2016; 110(3): 558a.
[http://dx.doi.org/10.1016/j.bpj.2015.11.2985]
[186]
Grudziąż K, Zawadzka-Kazimierczuk A, Koźmiński W. High-dimensional NMR methods for intrinsically disordered proteins studies. Methods 2018; 148: 81-7.
[http://dx.doi.org/10.1016/j.ymeth.2018.04.031] [PMID: 29705209]
[187]
Sun W, Shahrajabian MH, Cheng Q. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-Covid-19 era. Appl Sci 2021; 11(17): 7889.
[http://dx.doi.org/10.3390/app11177889]
[188]
Shahrajabian MH, Sun W, Cheng Q. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini Rev Org Chem 2022; 19(3): 293-318.
[http://dx.doi.org/10.2174/1570178618666210707161025]
[189]
Schwalbe M, Ozenne V, Bibow S, et al. Predictive atomic resolution descriptions of intrinsically disordered hTau40 and α-synuclein in solution from NMR and small angle scattering. Structure 2014; 22(2): 238-49.
[http://dx.doi.org/10.1016/j.str.2013.10.020] [PMID: 24361273]
[190]
Gibbs EB, Cook EC, Showalter SA. Application of NMR to studies of intrinsically disordered proteins. Arch Biochem Biophys 2017; 628: 57-70.
[http://dx.doi.org/10.1016/j.abb.2017.05.008] [PMID: 28502465]
[191]
Salvi N, Abyzov A, Blackledge M. Atomic resolution conformational dynamics of intrinsically disordered proteins from NMR spin relaxation. Prog Nucl Magn Reson Spectrosc 2017; 102-103: 43-60.
[http://dx.doi.org/10.1016/j.pnmrs.2017.06.001] [PMID: 29157493]
[192]
Gibbs EB, Kriwacki RW. Direct detection of carbon and nitrogen nuclei for high-resolution analysis of intrinsically disordered proteins using NMR spectroscopy. Methods 2018; 138-139: 39-46.
[http://dx.doi.org/10.1016/j.ymeth.2018.01.004] [PMID: 29341926]
[193]
Konrat R. NMR contributions to structural dynamics studies of intrinsically disordered proteins. J Magn Reson 2014; 241(100): 74-85.
[http://dx.doi.org/10.1016/j.jmr.2013.11.011] [PMID: 24656082]
[194]
Nováček J, Žídek L, Sklenář V. Toward optimal-resolution NMR of intrinsically disordered proteins. J Magn Reson 2014; 241: 41-52.
[http://dx.doi.org/10.1016/j.jmr.2013.12.008] [PMID: 24656079]
[195]
Schramm A, Bignon C, Brocca S, Grandori R, Santambrogio C, Longhi S. An arsenal of methods for the experimental characterization of intrinsically disordered proteins – How to choose and combine them? Arch Biochem Biophys 2019; 676: 108055.
[http://dx.doi.org/10.1016/j.abb.2019.07.020] [PMID: 31356778]
[196]
Jensen MR, Ruigrok RWH, Blackledge M. Describing intrinsically disordered proteins at atomic resolution by NMR. Curr Opin Struct Biol 2013; 23(3): 426-35.
[http://dx.doi.org/10.1016/j.sbi.2013.02.007] [PMID: 23545493]
[197]
Hošek T, Gil-Caballero S, Pierattelli R, Brutscher B, Felli IC. Longitudinal relaxation properties of 1HN and 1Hα determined by direct-detected 13C NMR experiments to study intrinsically disordered proteins (IDPs). J Magn Reson 2015; 254: 19-26.
[http://dx.doi.org/10.1016/j.jmr.2015.01.017] [PMID: 25771525]
[198]
Siemer AB. Advances in studying protein disorder with solid-state NMR. Solid State Nucl Magn Reson 2020; 106: 101643.
[http://dx.doi.org/10.1016/j.ssnmr.2020.101643] [PMID: 31972419]
[199]
Carlon A, Gigli L, Ravera E, Parigi G, Gronenborn AM, Luchinat C. Assessing structural preferences of unstructured protein regions by NMR. Biophys J 2019; 117(10): 1948-53.
[http://dx.doi.org/10.1016/j.bpj.2019.10.008] [PMID: 31676138]
[200]
Salvi N, Zapletal V, Jaseňáková Z, et al. Convergent views on disordered protein dynamics from NMR and computational approaches. Biophys J 2022; 121(20): 3785-94.
[http://dx.doi.org/10.1016/j.bpj.2022.09.016] [PMID: 36131545]
[201]
Whitehead RD III, Teschke CM, Alexandrescu AT. NMR mapping of disordered segments from a viral scaffolding protein enclosed in a 23 MDa procapsid. Biophys J 2019; 117(8): 1387-92.
[http://dx.doi.org/10.1016/j.bpj.2019.08.038] [PMID: 31585705]
[202]
Lazar T, Guharoy M, Vranken W, Rauscher S, Wodak SJ, Tompa P. Distance-based metrics for comparing conformational ensembles of intrinsically disordered proteins. Biophys J 2020; 118(12): 2952-65.
[http://dx.doi.org/10.1016/j.bpj.2020.05.015] [PMID: 32502383]
[203]
Best RB. Structure and dynamics of an intrinsically disordered protein from scattering, FRET and all-atom simulations. Biophys J 2022; 121(3): 197a.
[http://dx.doi.org/10.1016/j.bpj.2021.11.1733]
[204]
Sun W, Shahrajabian MH. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules 2023; 28(4): 1845.
[http://dx.doi.org/10.3390/molecules28041845] [PMID: 36838831]
[205]
Shahrajabian MH, Petropoulos SA, Sun W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae 2023; 9(2): 193.
[http://dx.doi.org/10.3390/horticulturae9020193]
[206]
Sun W, Shahrajabian MH, Petropoulos SA, Shahrajabian N. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants 2023; 12(13): 2469.
[http://dx.doi.org/10.3390/plants12132469] [PMID: 37447031]
[207]
Shahrajabian MH, Sun W. Five important seeds in traditional medicine, and pharmacological benefits. Seeds 2023; 2(3): 290-308.
[http://dx.doi.org/10.3390/seeds2030022]
[208]
Shahrajabian MH, Sun W. Study of different types of fermentation in wine-making process and considering aromatic substances and organic acid. Curr Org Synth 2023; 20
[http://dx.doi.org/10.2174/1570179420666230803102253] [PMID: 37534487]
[209]
Shahrajabian MH, Kuang Y, Cui H, Fu L, Sun W. Metabolic changes of active components of important medicinal plants on the basis of traditional Chinese medicine under different environmental stresses. Curr Org Chem 2023; 27(9): 782-806.
[http://dx.doi.org/10.2174/1385272827666230807150910]
[210]
Sun W, Shahrajabian MH. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants 2023; 12(17): 3101.
[http://dx.doi.org/10.3390/plants12173101] [PMID: 37687348]
[211]
Shahrajabian MH, Sun W. Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods. Mini Rev Med Chem 2023; 23
[http://dx.doi.org/10.2174/1389557523666230816090054] [PMID: 37587815]
[212]
Sharma A, Costantini S, Colonna G. The protein–protein interaction network of the human Sirtuin family. Biochim Biophys Acta Proteins Proteomics 2013; 1834(10): 1998-2009.
[http://dx.doi.org/10.1016/j.bbapap.2013.06.012] [PMID: 23811471]
[213]
Sormanni P, Piovesan D, Heller GT, et al. Simultaneous quantification of protein order and disorder. Nat Chem Biol 2017; 13(4): 339-42.
[http://dx.doi.org/10.1038/nchembio.2331] [PMID: 28328918]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy