Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Transfersomes: Recent Advances, Mechanisms, Exhaustive Applications, Clinical Trials, and Patents

Author(s): Deeksha Manchanda, Manish Makhija, Parijat Pandey and Manu Sharma*

Volume 22, Issue 2, 2025

Published on: 21 February, 2024

Page: [215 - 230] Pages: 16

DOI: 10.2174/0115672018295038240209055444

Price: $65

Abstract

A feasible nano transdermal delivery system generally intends to have specific ideal and distinct characteristics primarily for safety, clinical efficacy, and boosted therapeutic index. The delivery of drugs, particularly macromolecules, across the skin is one of the most strenuous obstacles in front of pharmaceutical scientists. Technology advancement has provided some opportunities to overcome this difficulty by utilising microneedle arrays, ablation, laser methods etc. However, associated uneasiness, painful sensation, and higher cost of therapies limit their day-today use. Therefore, researchers have focused on developing alternate carriers like ultra-deformable liposomes, also termed transfersomes. Transfersomes are composed of a lipid bilayer containing phospholipids and an edge activator to facilitate drug delivery via transdermal route to deeper layers of skin and for higher systemic bioavailability. The bilayer structure of transfersomes allows ease of encapsulation of both hydrophilic and lipophilic drugs with higher permeability than typical liposomes. Therefore, among various vesicular systems, transfersomes have developed much interest in targeted and sustained drug delivery. The current review primarily emphasizes critical aspects of transfersomes, including their applications, clinical trial studies, and patents found in various literature sources.

Keywords: Transfersomes, ultra-deformability, flexibility, phospholipids, edge activator, applications.

Graphical Abstract
[1]
Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in oral drug delivery. Front. Pharmacol., 2021, 12, 618411.
[http://dx.doi.org/10.3389/fphar.2021.618411] [PMID: 33679401]
[2]
Jain, S.; Jain, V.; Mahajan, S.C. Lipid-based vesicular drug delivery systems. Adv. Pharmaceut., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/574673]
[3]
Schäferkorting, M.; Mehnert, W.; Korting, H. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev., 2007, 59(6), 427-443.
[http://dx.doi.org/10.1016/j.addr.2007.04.006] [PMID: 17544165]
[4]
El Maghraby, G.M.; Barry, B.W.; Williams, A.C. Liposomes and skin: From drug delivery to model membranes. Eur. J. Pharm. Sci., 2008, 34(4-5), 203-222.
[http://dx.doi.org/10.1016/j.ejps.2008.05.002] [PMID: 18572392]
[5]
Sachan, R.; Parashar, T.; Singh, V.; Singh, G.; Tyagi, S.; Patel, C.; Gupta, A. Drug carrier transfersomes: A novel tool for transdermal drug delivery system. Int. J. Res. Developm. Pharma. Life Sci., 2013, 2(2), 309-316.
[6]
Punasiya, R.; Joshi, A.; Gupta, S.; Punasiya, J. Transfersomes-a novel carrier for transdermal drug delivery. Res. J. Pharm. Dos. Forms Technol., 2010, 2(2), 133-138.
[7]
Anusha, V. Transfersomes-a novel vesicular system. Res. J. Pharm. Dos. Forms Technol., 2014, 6(4), 286-291.
[8]
Kodi, S.R.; Reddy, M.S. Transferosomes: A novel topical approach. J. Drug Deliv. Ther., 2023, 13(2), 126-131.
[http://dx.doi.org/10.22270/jddt.v13i2.5952]
[9]
Pawar, A.Y. Transfersome: A novel technique which improves transdermal permeability. Asian J. Pharm., 2016, 10(04) [AJP].
[10]
Modi, C.D.; Bharadia, P.D. Transfersomes: New dominants for transdermal drug delivery. Am. J. Pharm. Tech. Res., 2012, 2(3), 71-91.
[11]
Prajapati, S.T.; Patel, C.G.; Patel, C.N. Transfersomes: A vesicular carrier system for transdermal drug delivery. Asian J. Biochem. Pharmaceut. Res., 2011, 2(1), 507-524.
[12]
Sharma, U.; Verma, P.; Jain, N.K. A review on novel vesicular drug delivery system: Transfersomes. Int. J. Pharma. Life Sci., 2020, 11(7)
[13]
Walve, J. R.; Bakliwal, S. R.; Rane, B. R.; Pawar, S. P. Transfersomes: A surrogated carrier for transdermal drug delivery system. IJABPT, 2011, 2(1), 1-10.
[14]
Lee, E.H.; Kim, A.; Oh, Y.K.; Kim, C.K. Effect of edge activators on the formation and transfection efficiency of ultradeformable liposomes. Biomaterials, 2005, 26(2), 205-210.
[http://dx.doi.org/10.1016/j.biomaterials.2004.02.020] [PMID: 15207467]
[15]
Honeywell-Nguyen, P.L.; Bouwstra, J.A. Vesicles as a tool for transdermal and dermal delivery. Drug Discov. Today. Technol., 2005, 2(1), 67-74.
[http://dx.doi.org/10.1016/j.ddtec.2005.05.003] [PMID: 24981757]
[16]
Rajan, R.; Vasudevan, D.T.; Biju Mukund, V.P.; Jose, S. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res., 2011, 2(3), 138-143.
[http://dx.doi.org/10.4103/2231-4040.85524] [PMID: 22171309]
[17]
Cevc, G. Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev., 2004, 56(5), 675-711.
[http://dx.doi.org/10.1016/j.addr.2003.10.028] [PMID: 15019752]
[18]
Has, C.; Pan, S. Vesicle formation mechanisms: An overview. J. Liposome Res., 2021, 31(1), 90-111.
[http://dx.doi.org/10.1080/08982104.2020.1730401] [PMID: 32066297]
[19]
Akram, M.W.; Jamshaid, H.; Rehman, F.U.; Zaeem, M.; Khan, J.; Zeb, A. Transfersomes: A Revolutionary nanosystem for efficient transdermal drug delivery. AAPS PharmSciTech, 2021, 23(1), 7.
[http://dx.doi.org/10.1208/s12249-021-02166-9] [PMID: 34853906]
[20]
Chaurasiya, P.; Ganju, E.; Upmanyu, N.; Ray, S.K.; Jain, P. Transfersomes: A novel technique for transdermal drug delivery. J. Drug Deliv. Ther., 2019, 9(1), 279-285.
[http://dx.doi.org/10.22270/jddt.v9i1.2198]
[21]
Cevc, G. Transdermal drug delivery of insulin with ultradeformable carriers. Clin. Pharmacokinet., 2003, 42(5), 461-474.
[http://dx.doi.org/10.2165/00003088-200342050-00004] [PMID: 12739984]
[22]
Cevc, G.; Blume, G.; Schätzlein, A.; Gebauer, D.; Paul, A. The skin: A pathway for systemic treatment with patches and lipid-based agent carriers. Adv. Drug Deliv. Rev., 1996, 18(3), 349-378.
[http://dx.doi.org/10.1016/0169-409X(95)00091-K]
[23]
Mahmood, S.; Taher, M.; Mandal, U.K. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application. Int. J. Nanomedicine, 2014, 9, 4331-4346.
[PMID: 25246789]
[24]
Cevc, G.; Schätzlein, A.; Richardsen, H. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim. Biophys. Acta Biomembr., 2002, 1564(1), 21-30.
[http://dx.doi.org/10.1016/S0005-2736(02)00401-7] [PMID: 12100992]
[25]
Chen, R.P.; Chavda, V.P.; Patel, A.B.; Chen, Z.S. Phytochemical delivery through transferosome (phytosome): An advanced transdermal drug delivery for complementary medicines. Front. Pharmacol., 2022, 13, 850862.
[http://dx.doi.org/10.3389/fphar.2022.850862] [PMID: 35281927]
[26]
Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics, 2020, 12(9), 855.
[http://dx.doi.org/10.3390/pharmaceutics12090855] [PMID: 32916782]
[27]
Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharmaceut. Sci., 2015, 10(2), 81-98.
[28]
Khan, I.; Needham, R.; Yousaf, S.; Houacine, C.; Islam, Y.; Bnyan, R.; Sadozai, S.K.; Elrayess, M.A.; Elhissi, A. Impact of phospholipids, surfactants and cholesterol selection on the performance of transfersomes vesicles using medical nebulizers for pulmonary drug delivery. J. Drug Deliv. Sci. Technol., 2021, 66, 102822.
[http://dx.doi.org/10.1016/j.jddst.2021.102822]
[29]
Rajkumar, J.; Sree Lakshmi, R.K.; Vineesha, S. A new approach to transdermal drug delivery using transfersomes-based nanoencapsulation: A research update. Asian J. Pharmaceut. Res. Develop., 2022, 10(1), 64-70.
[http://dx.doi.org/10.22270/ajprd.v10i1.1082]
[30]
Ahmed, A.; Ghourab, M.; Gad, S.; Qushawy, M. The application of Plackett-Burman design and response surface methodology for optimization of formulation variables to produce Piroxicam niosomes. Int. J. Drug Dev. Res, 2013, 5(2), 121-130.
[31]
Estupiñán, Ó.; Rendueles, C.; Suárez, P.; Rey, V.; Murillo, D.; Morís, F.; Gutiérrez, G.; Blanco-López, M.C.; Matos, M.; Rodríguez, R. Nano-encapsulation of mithramycin in transfersomes and polymeric micelles for the treatment of sarcomas. J. Clin. Med., 2021, 10(7), 1358.
[http://dx.doi.org/10.3390/jcm10071358] [PMID: 33806182]
[32]
Gupta, R.; Kumar, A. Transfersomes: The ultra-deformable carrier system for non-invasive delivery of drug. Curr. Drug Deliv., 2021, 18(4), 408-420.
[http://dx.doi.org/10.2174/1567201817666200804105416] [PMID: 32753015]
[33]
Jong, A. A. Transfersomes: A peculiar and promising technique for transdermal drug delivery. Int. J. Pharmaceut. Sci. Med., 2021, 6(4), 67-82.
[http://dx.doi.org/10.47760/ijpsm.2021.v06i04.006]
[34]
Izquierdo, M.C.; Lillo, C.R.; Bucci, P.; Gómez, G.E.; Martínez, L.; Alonso, S.V.; Calienni, M.N.; Montanari, J. Comparative skin penetration profiles of formulations including ultradeformable liposomes as potential nanocosmeceutical carriers. J. Cosmet. Dermatol., 2020, 19(11), 3127-3137.
[http://dx.doi.org/10.1111/jocd.13410] [PMID: 32281258]
[35]
Podili, C.; Firoz, S. A review on transfersomes for transdermal drug delivery. J. Glob. Trends Pharm. Sci., 2014, 5(4), 2118-2127.
[36]
Anggraini, W.; Sagita, E.; Iskandarsyah, I. Effect of hydrophilicity surfactants toward characterization and in vitro transfersomes penetration in gels using franz diffusion test. Int. J. Appl. Pharmaceut., 2017, 9, 112-115.
[http://dx.doi.org/10.22159/ijap.2017.v9s1.67_74]
[37]
Nayak, D.; Tippavajhala, V.K. A comprehensive review on preparation, evaluation and applications of deformable liposomes. Iran. J. Pharm. Res., 2021, 20(1), 186-205.
[PMID: 34400952]
[38]
Khatoon, K.; Rizwanullah, M.; Amin, S.; Mir, S.R.; Akhter, S. Cilnidipine loaded transfersomes for transdermal application: Formulation optimization, in-vitro and in-vivo study. J. Drug Deliv. Sci. Technol., 2019, 54, 101303.
[http://dx.doi.org/10.1016/j.jddst.2019.101303]
[39]
Sudhakar, K.; Fuloria, S.; Subramaniyan, V.; Sathasivam, K.V.; Azad, A.K.; Swain, S.S.; Sekar, M.; Karupiah, S.; Porwal, O.; Sahoo, A.; Meenakshi, D.U.; Sharma, V.K.; Jain, S.; Charyulu, R.N.; Fuloria, N.K. Ultraflexible liposome nanocargo as a dermal and transdermal drug delivery system. Nanomaterials, 2021, 11(10), 2557.
[http://dx.doi.org/10.3390/nano11102557] [PMID: 34685005]
[40]
Bnyan, R.; Khan, I.; Ehtezazi, T.; Saleem, I.; Gordon, S.; O’Neill, F.; Roberts, M. Surfactant effects on lipid-based vesicles properties. J. Pharm. Sci., 2018, 107(5), 1237-1246.
[http://dx.doi.org/10.1016/j.xphs.2018.01.005] [PMID: 29336980]
[41]
Moawad, F.A.; Ali, A.A.; Salem, H.F. Nanotransfersomes-loaded thermosensitive in situ gel as a rectal delivery system of tizanidine HCl: Preparation, in vitro and in vivo performance. Drug Deliv., 2017, 24(1), 252-260.
[http://dx.doi.org/10.1080/10717544.2016.1245369] [PMID: 28156169]
[42]
Madhumitha, V.; Sangeetha, S. Transfersomes: A novel vesicular drug delivery system for enhanced permeation through skin. Res. J. Pharma. Technol., 2020, 13(5), 2493-2501.
[http://dx.doi.org/10.5958/0974-360X.2020.00445.X]
[43]
Sivannarayana, P.; Rani, A. P.; Saikishore, V. Transfersomes: Ultra deformable vesicular carrier systems in transdermal drug delivery system. Res. J. Pharm. Dos. Forms Technol., 2012, 4(5), 243-255.
[44]
Yadav, D.; Sandeep, K.; Pandey, D.; Dutta, R.K. Liposomes for drug delivery. J. Biotechnol. Biomater., 2017, 7(4)
[http://dx.doi.org/10.4172/2155-952X.1000276]
[45]
van Hoogevest, P.; Wendel, A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur. J. Lipid Sci. Technol., 2014, 116(9), 1088-1107.
[http://dx.doi.org/10.1002/ejlt.201400219] [PMID: 25400504]
[46]
Mirafzali, Z.; Thompson, C.S.; Tallua, K. Application of liposomes in the food industry. In: Microencapsulation in the food industry; Academic Press, 2023; pp. 195-207.
[http://dx.doi.org/10.1016/B978-0-12-821683-5.00028-5]
[47]
Piumitali, B.; Neeraj, U.; Jyotivardhan, J. Transfersomes—a nanoscience in transdermal drug delivery and its clinical advancements. Int. J. Nanosci., 2020, 19(4), 1950033.
[http://dx.doi.org/10.1142/S0219581X19500339]
[48]
Chen, G.; Li, D.; Jin, Y.; Zhang, W.; Teng, L.; Bunt, C.; Wen, J. Deformable liposomes by reverse-phase evaporation method for an enhanced skin delivery of (+)-catechin. Drug Dev. Ind. Pharm., 2014, 40(2), 260-265.
[http://dx.doi.org/10.3109/03639045.2012.756512] [PMID: 23356860]
[49]
Szoka, F., Jr; Papahadjopoulos, D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci., 1978, 75(9), 4194-4198.
[http://dx.doi.org/10.1073/pnas.75.9.4194] [PMID: 279908]
[50]
Balata, G.F.; Faisal, M.M.; Elghamry, H.A.; Sabry, S.A. Preparation and characterization of ivabradine HCl transfersomes for enhanced transdermal delivery. J. Drug Deliv. Sci. Technol., 2020, 60, 101921.
[http://dx.doi.org/10.1016/j.jddst.2020.101921]
[51]
Garg, V.; Singh, H.; Bimbrawh, S.; Singh, S.K.; Gulati, M.; Vaidya, Y.; Kaur, P. Ethosomes and transfersomes: Principles, perspectives and practices. Curr. Drug Deliv., 2017, 14(5), 613-633.
[PMID: 27199229]
[52]
Hasibi, F.; Nasirpour, A.; Varshosaz, J.; García-Manrique, P.; Blanco-López, M.C.; Gutiérrez, G.; Matos, M. Formulation and characterization of Taxifolin‐loaded lipid nanovesicles (Liposomes, Niosomes, and Transfersomes) for beverage fortification. Eur. J. Lipid Sci. Technol., 2020, 122(2), 1900105.
[http://dx.doi.org/10.1002/ejlt.201900105]
[53]
Yang, Y.; Ou, R.; Guan, S.; Ye, X.; Hu, B.; Zhang, Y.; Lu, S.; Zhou, Y.; Yuan, Z.; Zhang, J.; Li, Q. A novel drug delivery gel of terbinafine hydrochloride with high penetration for external use. Drug Deliv., 2015, 22(8), 1086-1093.
[http://dx.doi.org/10.3109/10717544.2013.878856] [PMID: 24447130]
[54]
Rai, S.; Pandey, V.; Rai, G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Rev. Exp., 2017, 8(1), 1325708.
[http://dx.doi.org/10.1080/20022727.2017.1325708] [PMID: 30410704]
[55]
Kadu, S.D.P. Transfersomes-A boon for transdermal delivery. Indo Am. J. Pharm. Sci, 2017, 4, 2908-2919.
[56]
Kumar, A.; Pathak, K.; Bali, V. Ultra-adaptable nanovesicular systems: A carrier for systemic delivery of therapeutic agents. Drug Discov. Today, 2012, 17(21-22), 1233-1241.
[http://dx.doi.org/10.1016/j.drudis.2012.06.013] [PMID: 22766375]
[57]
Malakar, J.; Sen, S.O.; Nayak, A.K.; Sen, K.K. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm. J., 2012, 20(4), 355-363.
[http://dx.doi.org/10.1016/j.jsps.2012.02.001] [PMID: 23960810]
[58]
Cevc, G.; Blume, G.; Schätzlein, A. Transfersomes-mediated transepidermal delivery improves the regio-specificity and biological activity of corticosteroids in vivo 1Dedicated to the late Dr. Henri Ernest Bodde.1. J. Control. Release, 1997, 45(3), 211-226.
[http://dx.doi.org/10.1016/S0168-3659(96)01566-0]
[59]
Cevc, G.; Blume, G. Biological activity and characteristics of triamcinolone-acetonide formulated with the self-regulating drug carriers, Transfersomes®. Biochim. Biophys. Acta Biomembr., 2003, 1614(2), 156-164.
[http://dx.doi.org/10.1016/S0005-2736(03)00172-X] [PMID: 12896808]
[60]
Cevc, G.; Blume, G. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage. Biochim. Biophys. Acta Biomembr., 2004, 1663(1-2), 61-73.
[http://dx.doi.org/10.1016/j.bbamem.2004.01.006] [PMID: 15157608]
[61]
Gillet, A.; Grammenos, A.; Compère, P.; Evrard, B.; Piel, G. Development of a new topical system: Drug-in-cyclodextrin-in-deformable liposome. Int. J. Pharm., 2009, 380(1-2), 174-180.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.027] [PMID: 19576972]
[62]
Khan, M.I.; Yaqoob, S.; Madni, A.; Akhtar, M.F.; Sohail, M.F.; Saleem, A.; Tahir, N.; Khan, K.R.; Qureshi, O.S. Development and in vitro/ex vivo evaluation of lecithin-based deformable transfersomes and transfersome-based gels for combined dermal delivery of meloxicam and dexamethasone. BioMed Res. Int., 2022, 2022, 1-16.
[http://dx.doi.org/10.1155/2022/8170318] [PMID: 36483631]
[63]
Kumar, L.; Verma, S.; Singh, M.; Chalotra, T.; Utreja, P. Advanced drug delivery systems for transdermal delivery of non-steroidal anti-inflammatory drugs: A review. Curr. Drug Deliv., 2018, 15(8), 1087-1099.
[http://dx.doi.org/10.2174/1567201815666180605114131] [PMID: 29875000]
[64]
Shaji, J.E.S.S.Y.; Lal, M.A.R.I.A. Preparation, optimization and evaluation of transferosomal formulation for enhanced transdermal delivery of a COX-2 inhibitor. Int. J. Pharm. Pharm. Sci., 2014, 6(1), 467-477.
[65]
Duangjit, S.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transfersomes. J. Drug Deliv., 2011, 2011, 1-9.
[http://dx.doi.org/10.1155/2011/418316] [PMID: 21490750]
[66]
Darusman, F.; Raisya, R.; Priani, S.E. Development, characterization, and performance evaluation of transfersome gel of ibuprofen as a transdermal drug delivery system using nanovesicular carrier. Drug Invent. Today, 2019, 10, 3750-3755.
[67]
Tawfeek, H.M.; Abdellatif, A.A.H.; Abdel-Aleem, J.A.; Hassan, Y.A.; Fathalla, D. Transfersomal gel nanocarriers for enhancement the permeation of lornoxicam. J. Drug Deliv. Sci. Technol., 2020, 56, 101540.
[http://dx.doi.org/10.1016/j.jddst.2020.101540]
[68]
Yuan, M.; Niu, J.; Xiao, Q.; Ya, H.; Zhang, Y.; Fan, Y.; Li, L.; Li, X. Hyaluronan-modified transfersomes based hydrogel for enhanced transdermal delivery of indomethacin. Drug Deliv., 2022, 29(1), 1232-1242.
[http://dx.doi.org/10.1080/10717544.2022.2053761] [PMID: 35403516]
[69]
Zubaydah, W. O. S.; Andriani, R.; Suryani, S.; Indalifiani, A.; Jannah, S. R. N.; Hidayati, D. Optimization of soya phosphatidylcholine and tween 80 as A preparation of diclofenac sodium transfersome vesicles using design-expert. J. Farmasi Galenik., 2023, 9(1), 86-102.
[70]
Singodia, D.; Gupta, G.K.; Verma, A.; Singh, V.; Shukla, P.; Misra, P.; Sundar, S.; Dube, A.; Mishra, P.R. Development and performance evaluation of amphotericin B transfersomes against resistant and sensitive clinical isolates of visceral leishmaniasis. J. Biomed. Nanotechnol., 2010, 6(3), 293-302.
[http://dx.doi.org/10.1166/jbn.2010.1121] [PMID: 21179947]
[71]
Bavarsad, N.; Fazly Bazzaz, B.S.; Khamesipour, A.; Jaafari, M.R. Colloidal, in vitro and in vivo anti-leishmanial properties of transfersomes containing paromomycin sulfate in susceptible BALB/c mice. Acta Trop., 2012, 124(1), 33-41.
[http://dx.doi.org/10.1016/j.actatropica.2012.06.004] [PMID: 22750480]
[72]
Dar, M.J.; McElroy, C.A.; Khan, M.I.; Satoskar, A.R.; Khan, G.M. Development and evaluation of novel miltefosine-polyphenol co-loaded second generation nano-transfersomes for the topical treatment of cutaneous leishmaniasis. Expert Opin. Drug Deliv., 2020, 17(1), 97-110.
[http://dx.doi.org/10.1080/17425247.2020.1700227] [PMID: 31786952]
[73]
Salim, M.W.; Shabbir, K.; ud-Din, F.; Yousaf, A.M.; Choi, H-G.; Khan, G.M. Preparation, in-vitro and in-vivo evaluation of Rifampicin and Vancomycin Co-loaded transfersomal gel for the treatment of cutaneous leishmaniasis. J. Drug Deliv. Sci. Technol., 2020, 60, 101996.
[http://dx.doi.org/10.1016/j.jddst.2020.101996]
[74]
Zahid, F.; Batool, S.; ud-Din, F.; Ali, Z.; Nabi, M.; Khan, S.; Salman, O.; Khan, G.M. Antileishmanial agents co-loaded in transfersomes with enhanced macrophage uptake and reduced toxicity. AAPS PharmSciTech, 2022, 23(6), 226.
[http://dx.doi.org/10.1208/s12249-022-02384-9] [PMID: 35970966]
[75]
Hussain, A.; Singh, S.; Sharma, D.; Webster, T.; Shafaat, K.; Faruk, A. Elastic liposomes as novel carriers: Recent advances in drug delivery. Int. J. Nanomedicine, 2017, 12, 5087-5108.
[http://dx.doi.org/10.2147/IJN.S138267] [PMID: 28761343]
[76]
Jiang, T.; Wang, T.; Li, T.; Ma, Y.; Shen, S.; He, B.; Mo, R. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano, 2018, 12(10), 9693-9701.
[http://dx.doi.org/10.1021/acsnano.8b03800] [PMID: 30183253]
[77]
Chen, M.; Shamim, M.A.; Shahid, A.; Yeung, S.; Andresen, B.T.; Wang, J.; Nekkanti, V.; Meyskens, F.L., Jr; Kelly, K.M.; Huang, Y. Topical delivery of carvedilol loaded nano-transfersomes for skin cancer chemoprevention. Pharmaceutics, 2020, 12(12), 1151.
[http://dx.doi.org/10.3390/pharmaceutics12121151] [PMID: 33260886]
[78]
Demartis, S.; Rassu, G.; Murgia, S.; Casula, L.; Giunchedi, P.; Gavini, E. Improving dermal delivery of rose bengal by deformable lipid nanovesicles for topical treatment of melanoma. Mol. Pharm., 2021, 18(11), 4046-4057.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00468] [PMID: 34554752]
[79]
Gadag, S.; Narayan, R.; Sabhahit, J.N.; Hari, G.; Nayak, Y.; Pai, K.S.R.; Garg, S.; Nayak, U.Y. Transpapillary iontophoretic delivery of resveratrol loaded transfersomes for localized delivery to breast cancer. Biomater. Adv., 2022, 140, 213085.
[http://dx.doi.org/10.1016/j.bioadv.2022.213085] [PMID: 36037762]
[80]
Sundralingam, U.; Chakravarthi, S.; Radhakrishnan, A.K.; Muniyandy, S.; Palanisamy, U.D. Efficacy of emu oil transfersomes for local transdermal delivery of 4-OH tamoxifen in the treatment of breast cancer. Pharmaceutics, 2020, 12(9), 807.
[http://dx.doi.org/10.3390/pharmaceutics12090807] [PMID: 32854385]
[81]
Bollareddy, S.R.; Krishna, V.; Roy, G.; Dasari, D.; Dhar, A.; Venuganti, V.V.K. Transfersome hydrogel containing 5-fluorouracil and etodolac combination for synergistic oral cancer treatment. AAPS PharmSciTech, 2022, 23(2), 70.
[http://dx.doi.org/10.1208/s12249-022-02221-z] [PMID: 35132496]
[82]
Shamim, M.A.; Shahid, A.; Sardar, P.K.; Yeung, S.; Reyes, J.; Kim, J.; Parsa, C.; Orlando, R.; Wang, J.; Kelly, K.M.; Meyskens, F.L., Jr; Andresen, B.T.; Huang, Y. Transfersome encapsulated with the r-carvedilol enantiomer for skin cancer chemoprevention. Nanomaterials, 2023, 13(5), 929.
[http://dx.doi.org/10.3390/nano13050929] [PMID: 36903807]
[83]
Kumar, L.; Utreja, P. Transcending the cutaneous barrier through nanocarrier exploration for passive delivery of anti-hypertensive drugs: A critical review. Recent Pat. Nanotechnol., 2020, 14(3), 193-209.
[http://dx.doi.org/10.2174/1872210514666200519071734] [PMID: 32427090]
[84]
Ita, K.; Ashong, S. Percutaneous delivery of antihypertensive agents: Advances and challenges. AAPS PharmSciTech, 2020, 21(2), 56.
[http://dx.doi.org/10.1208/s12249-019-1583-9] [PMID: 31909450]
[85]
Ahad, A.; Al-Saleh, A.A.; Al-Mohizea, A.M.; Al-Jenoobi, F.I.; Raish, M.; Yassin, A.E.B.; Alam, M.A. Formulation and characterization of Phospholipon 90 G and tween 80 based transfersomes for transdermal delivery of eprosartan mesylate. Pharm. Dev. Technol., 2018, 23(8), 787-793.
[http://dx.doi.org/10.1080/10837450.2017.1330345] [PMID: 28504046]
[86]
Khan, R.; Jain, P.K.; Khare, B.; Jain, M.; Thakur, B.S.; Jain, A.; Jain, A.P. Formulation and characterization of novel transfersomes gel for enhance TDDS of losartan potassium. J. Drug Deliv. Ther., 2022, 12(4-S), 96-100.
[http://dx.doi.org/10.22270/jddt.v12i4-S.5525]
[87]
Vasanth, S.; Dubey, A.; G S, R.; Lewis, S.A.; Ghate, V.M.; El-Zahaby, S.A.; Hebbar, S. Development and investigation of vitamin C-enriched adapalene-loaded transfersome gel: A collegial approach for the treatment of acne vulgaris. AAPS PharmSciTech, 2020, 21(2), 61.
[http://dx.doi.org/10.1208/s12249-019-1518-5] [PMID: 31915948]
[88]
Wu, P.S.; Li, Y.S.; Kuo, Y.C.; Tsai, S.J.; Lin, C.C. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules, 2019, 24(3), 600.
[http://dx.doi.org/10.3390/molecules24030600] [PMID: 30743989]
[89]
Harmita, H.; Iskandarsyah, I.; Afifah, S. F. Effect of transfersome formulation on the stability and antioxidant activity of N-acetylcysteine in anti-aging cream. Int. J. Appl. Pharmaceut., 2020, 156-162.
[90]
Saraf, S.; Jeswani, G.; Kaur, C.D.; Saraf, S. Development of novel herbal cosmetic cream with Curcuma longa extract loaded transfersomes for antiwrinkle effect. Afr. J. Pharm. Pharmacol., 2011, 5(8), 1054-1062.
[91]
De Marco Almeida, F.; Silva, C.N.; de Araujo Lopes, S.C.; Santos, D.M.; Torres, F.S.; Cardoso, F.L.; Martinelli, P.M.; da Silva, E.R.; de Lima, M.E.; Miranda, L.A.F.; Oliveira, M.C. Physicochemical characterization and skin permeation of cationic transfersomes containing the synthetic peptide PnPP-19. Curr. Drug Deliv., 2018, 15(7), 1064-1071.
[http://dx.doi.org/10.2174/1567201815666180108170206] [PMID: 29318970]
[92]
Kaur, C.D.; Saraf, S. Topical vesicular formulations of Curcuma longa extract on recuperating the ultraviolet radiation-damaged skin. J. Cosmet. Dermatol., 2011, 10(4), 260-265.
[http://dx.doi.org/10.1111/j.1473-2165.2011.00586.x] [PMID: 22151933]
[93]
Bermingham, N.A; Bettencourt, B.R. Methods for the treatment of nucleotide repeat expansion disorders associated with MSH3 activity. A.U. Patent 2022291644A1, 2023.
[94]
Joseph, J. Topical formulations containing erythritol and methods of treating skin conditions. W.O. Patent 2023009829A1, 2023.
[95]
Keneddy, J.P. Compositions for treating obesity. A.U. Patent 2023200284A1, 2023.
[96]
Keneddy, J.P. Compositions for treating dermatological diseases. A.U. Patent 2023200286A1, 2023.
[97]
Wootten, S. Biologic preserving composition and methods of use. U.S. Patent 20230018930A1, 2023.
[98]
Angelo, N.D; Weiss, M. Composition for stimulating facial hair growth and methods of manufacturing a composition for stimulating facial hair growth. U.S. Patent 20230000746A1, 2023.
[99]
Gupta, D.S. A system to produce acyclovir using transfersomes and to overcome the barrier function of the skin. D.E. Patent 202021106867U1, 2022.
[100]
System for developing a neem oil-loaded transethosomal gel and its composition.. D.E. Patent 202022104296U1, 2022.
[101]
Charisse, K; Kuchimanchi, S; Maier, M; Manoharan, M; Rajeev, K.G; Zimmermann, T. RNAi agents, compositions, and methods of use thereof for treating transthyretin (ttr) associated diseases. A.U. Patent 2022231749A1, 2022.
[102]
Kasperkovitz, P; Gollob, J Dosages and methods for delivering lipid formulated nucleic acid molecules. U.S. Patent 20210388355A1, 2022.
[103]
Seiberg, M. Compositions containing natural extracts and use thereof for skin and hair. A.U. Patent 2022204824A1, 2022.
[104]
Lademann, J; Meinke, M; Klein, A.L; Busch, L; Keck, C; Pelikh, O. Composition for particle-mediated transport of a dissolved active agent into hair follicles. W.O. Patent 2022268971A1, 2022.
[105]
Manca, M.L; Manconi, M; Fadda, A.M. Phospholipid three-dimensional vesicular aggregates scattered in alcoholic mixtures with no or low water content, their preparation and use in formulations for topical application. E.P. Patent 3381517B1, 2022.
[106]
Verbeck, G; Mckinley, R.S. Products of manufacture and methods for transdermal delivery of pharmaceuticals, electrolytes, and nutraceuticals. U.S. Patent 20220211638A1, 2022.
[107]
Garraway, R.W; Henry, W. Vesicles. U.S. Patent 20220031615A1, 2022.
[108]
El-Say, K.M; Al-Hejaili, O.D; Alamoudi, A.A; Ahmed, O.A.A. Transfersome-containing transdermal film formulations and methods of use. U.S. Patent 11185513B1, 2021.
[109]
Topical cetirizine 1% vs minoxidil 5% gel in treatment of androgenetic alopecia. NCT04293822, 2020.
[110]
Ketoprofen in transfersome compared to oral celecoxib and placebo for pain associated with osteoarthritis of the knee. NCT00317733, 2009.
[111]
Study of Epicutaneously Applied Ketoprofen Transfersome® Gel With or Without Combination With Oral Celecoxib for the Treatment of Muscle Pain Induced by Eccentric Exercise. NCT01020279, 2010.
[112]
Study of Safety and Efficacy of Diractin® for the Treatment of Osteoarthritis (OA) of the Knee. NCT00722852, 2009.
[113]
Safety and Efficacy of Two Dosages of Diractin® in Osteoarthritis (OA) NCT00716547, 2009.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy