Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Pharmacological Considerations during Percutaneous Treatment of Heart Failure

Author(s): Jose Antonio Sorolla-Romero, Javier Navarrete-Navarro, Julia Martinez-Sole, Hector M. Garcia Garcia, Jose Luis Diez-Gil, Luis Martinez-Dolz and Jorge Sanz-Sanchez*

Volume 30, Issue 8, 2024

Published on: 20 February, 2024

Page: [565 - 577] Pages: 13

DOI: 10.2174/0113816128284131240209113009

Price: $65

conference banner
Abstract

Heart Failure (HF) remains a global health challenge, marked by its widespread prevalence and substantial resource utilization. Although the prognosis has improved in recent decades due to the treatments implemented, it continues to generate high morbidity and mortality in the medium to long term. Interventional cardiology has emerged as a crucial player in HF management, offering a diverse array of percutaneous treatments for both acute and chronic HF. This article aimed to provide a comprehensive review of the role of percutaneous interventions in HF patients, with a primary focus on key features, clinical effectiveness, and safety outcomes. Despite the growing utilization of these interventions, there remain critical gaps in the existing body of evidence. Consequently, the need for high-quality randomized clinical trials and extensive international registries is emphasized to shed light on the specific patient populations and clinical scenarios that stand to benefit most from these innovative devices.

Keywords: Heart failure, interventional cardiology, Impella, cardiogenic shock, TandemHeart, ECMO, MitraClip, TriClip.

Next »
[1]
McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42(36): 3599-726.
[http://dx.doi.org/10.1093/eurheartj/ehab368] [PMID: 34447992]
[2]
Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure. J Am Coll Cardiol 2022; 79(17): e263-421.
[http://dx.doi.org/10.1016/j.jacc.2021.12.012] [PMID: 35379503]
[3]
Eltayeb M, Squire I, Sze S. Biomarkers in heart failure: A focus on natriuretic peptides. Heart 2023.
[http://dx.doi.org/10.1136/heartjnl-2020-318553]
[4]
Lan T, Liao YH, Zhang J, et al. Mortality and readmission rates after heart failure: A systematic review and meta-analysis. Ther Clin Risk Manag 2021; 17: 1307-20.
[http://dx.doi.org/10.2147/TCRM.S340587] [PMID: 34908840]
[5]
Taylor CJ, Ordóñez-Mena JM, Roalfe AK, et al. Trends in survival after a diagnosis of heart failure in the United Kingdom 2000-2017: Population based cohort study. BMJ 2019; 364: l223.
[http://dx.doi.org/10.1136/bmj.l223] [PMID: 30760447]
[6]
Vahdatpour C, Collins D, Goldberg S. Cardiogenic shock. J Am Heart Assoc 2019; 8(8): e011991.
[http://dx.doi.org/10.1161/JAHA.119.011991] [PMID: 30947630]
[7]
Lee JM, Rhee TM, Hahn JY, et al. Multivessel percutaneous coronary intervention in patients with st-segment elevation myocardial infarction with cardiogenic shock. J Am Coll Cardiol 2018; 71(8): 844-56.
[http://dx.doi.org/10.1016/j.jacc.2017.12.028] [PMID: 29471935]
[8]
Alba AC, Rao V, Ivanov J, Ross HJ, Delgado DH. Usefulness of the INTERMACS scale to predict outcomes after mechanical assist device implantation. J Heart Lung Transplant 2009; 28(8): 827-33.
[http://dx.doi.org/10.1016/j.healun.2009.04.033] [PMID: 19632580]
[9]
Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization. J Am Coll Cardiol 2022; 79(2): e21-e129.
[http://dx.doi.org/10.1016/j.jacc.2021.09.006] [PMID: 34895950]
[10]
Papaioannou TG, Stefanadis C. Basic principles of the intraaortic balloon pump and mechanisms affecting its performance. ASAIO J 2005; 51(3): 296-300.
[http://dx.doi.org/10.1097/01.MAT.0000159381.97773.9B] [PMID: 15968962]
[11]
Thiele H, Zeymer U, Thelemann N, et al. Intraaortic balloon pump in cardiogenic shock complicating acute myocardial infarction. Circulation 2019; 139(3): 395-403.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038201] [PMID: 30586721]
[12]
Vargas KG, Jäger B, Kaufmann CC, et al. Impella in cardiogenic shock following acute myocardial infarction: A systematic review and meta-analysis. Wien Klin Wochenschr 2020; 132(23-24): 716-25.
[http://dx.doi.org/10.1007/s00508-020-01712-y] [PMID: 32691215]
[13]
Zein R, Patel C, Mercado-Alamo A, Schreiber T, Kaki A. A review of the Impella devices. Interv Cardiol 2022; 17: e05.
[http://dx.doi.org/10.15420/icr.2021.11] [PMID: 35474971]
[14]
Anderson MB, Goldstein J, Milano C, et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant 2015; 34(12): 1549-60.
[http://dx.doi.org/10.1016/j.healun.2015.08.018] [PMID: 26681124]
[15]
Zein R. A review of the Impella devices 2021. Available from: https://www.icrjournal.com/articles/review-impella-devices
[16]
Impella ventricular support systems. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf14/p140003s018d.pdf
[17]
Singh V, Yadav PK, Eng MH, et al. Outcomes of hemodynamic support with Impella in very high-risk patients undergoing balloon aortic valvuloplasty: Results from the Global cVAD Registry. Int J Cardiol 2017; 240: 120-5.
[http://dx.doi.org/10.1016/j.ijcard.2017.03.071] [PMID: 28377189]
[18]
Impella ECP early feasibility study - Full text view. Available from: https://clinicaltrials.gov/ct2/show/NCT04477603
[19]
Seyfarth M, Sibbing D, Bauer I, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol 2008; 52(19): 1584-8.
[http://dx.doi.org/10.1016/j.jacc.2008.05.065] [PMID: 19007597]
[20]
Ouweneel DM, Eriksen E, Sjauw KD, et al. Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol 2017; 69(3): 278-87.
[http://dx.doi.org/10.1016/j.jacc.2016.10.022] [PMID: 27810347]
[21]
Schrage B, Ibrahim K, Loehn T, et al. Impella support for acute myocardial infarction complicated by cardiogenic shock. Circulation 2019; 139(10): 1249-58.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.036614] [PMID: 30586755]
[22]
O’Neill WW, Kleiman NS, Moses J, et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: The PROTECT II study. Circulation 2012; 126(14): 1717-27.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.098194] [PMID: 22935569]
[23]
Kuchibhotla S, Esposito ML, Breton C, et al. Acute biventricular mechanical circulatory support for cardiogenic shock. J Am Heart Assoc 2017; 6(10): e006670.
[http://dx.doi.org/10.1161/JAHA.117.006670] [PMID: 29054842]
[24]
Cheung AW, White CW, Davis MK, Freed DH. Short-term mechanical circulatory support for recovery from acute right ventricular failure: Clinical outcomes. J Heart Lung Transplant 2014; 33(8): 794-9.
[http://dx.doi.org/10.1016/j.healun.2014.02.028] [PMID: 24726682]
[25]
Pivato CA, Ferrante G, Briani M, Sanz Sanchez J, Reimers B, Pagnotta P. Mitraclip treatment for severe mitral regurgitation due to chordae rupture following Impella CP support in a patient with severe aortic stenosis. Cardiovasc Revasc Med 2021; 28: 118-20.
[http://dx.doi.org/10.1016/j.carrev.2020.08.027] [PMID: 32855084]
[26]
Aragon J, Lee MS, Kar S, Makkar RR. Percutaneous left ventricular assist device: “TandemHeart” for high-risk coronary intervention. Catheter Cardiovasc Interv 2005; 65(3): 346-52.
[http://dx.doi.org/10.1002/ccd.20339] [PMID: 15945107]
[27]
Burkhoff D, Cohen H, Brunckhorst C, O’Neill WW. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J 2006; 152(3): 469.e1-8.
[http://dx.doi.org/10.1016/j.ahj.2006.05.031] [PMID: 16923414]
[28]
Thiele H, Sick P, Boudriot E, et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J 2005; 26(13): 1276-83.
[http://dx.doi.org/10.1093/eurheartj/ehi161] [PMID: 15734771]
[29]
Giesler GM, Gomez JS, Letsou G, Vooletich M, Smalling RW. Initial report of percutaneous right ventricular assist for right ventricular shock secondary to right ventricular infarction. Catheter Cardiovasc Interv 2006; 68(2): 263-6.
[http://dx.doi.org/10.1002/ccd.20846] [PMID: 16819772]
[30]
Takagaki M, Wurzer C, Wade R, et al. Successful conversion of TandemHeart left ventricular assist device to right ventricular assist device after implantation of a HeartMate XVE. Ann Thorac Surg 2008; 86(5): 1677-9.
[http://dx.doi.org/10.1016/j.athoracsur.2008.04.101] [PMID: 19049776]
[31]
Bajona P, Salizzoni S, Brann SH, et al. Prolonged use of right ventricular assist device for refractory graft failure following orthotopic heart transplantation. J Thorac Cardiovasc Surg 2010; 139(3): e53-4.
[http://dx.doi.org/10.1016/j.jtcvs.2008.10.042] [PMID: 19660327]
[32]
Rajdev S, Benza R, Misra V. Use of tandem heart as a temporary hemodynamic support option for severe pulmonary artery hypertension complicated by cardiogenic shock. J Invasive Cardiol 2007; 19(8): E226-9.
[PMID: 17712211]
[33]
Kapur NK, Esposito ML, Bader Y, et al. Mechanical circulatory support devices for acute right ventricular failure. Circulation 2017; 136(3): 314-26.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025290] [PMID: 28716832]
[34]
Ravichandran AK, Baran DA, Stelling K, Cowger JA, Salerno CT. Outcomes with the tandem protek duo dual-lumen percutaneous right ventricular assist device. ASAIO J Am Soc Artif Intern Organs 1992 1992; 64(4): 570-2.
[35]
Combes A, Price S, Slutsky AS, Brodie D. Temporary circulatory support for cardiogenic shock. Lancet 2020; 396(10245): 199-212.
[http://dx.doi.org/10.1016/S0140-6736(20)31047-3] [PMID: 32682486]
[36]
Sheu JJ, Tsai TH, Lee FY, et al. Early extracorporeal membrane oxygenator-assisted primary percutaneous coronary intervention improved 30-day clinical outcomes in patients with ST-segment elevation myocardial infarction complicated with profound cardiogenic shock. Crit Care Med 2010; 38(9): 1810-7.
[http://dx.doi.org/10.1097/CCM.0b013e3181e8acf7] [PMID: 20543669]
[37]
Ouweneel DM, Schotborgh JV, Limpens J, et al. Extracorporeal life support during cardiac arrest and cardiogenic shock: A systematic review and meta-analysis. Intensive Care Med 2016; 42(12): 1922-34.
[http://dx.doi.org/10.1007/s00134-016-4536-8] [PMID: 27647331]
[38]
Rupprecht L, Lunz D, Philipp A, Lubnow M, Schmid C. Pitfalls in percutaneous ECMO cannulation. Heart Lung Vessel 2015; 7(4): 320-6.
[PMID: 26811838]
[39]
Conrad SA, Grier LR, Scott LK, Green R, Jordan M. Percutaneous cannulation for extracorporeal membrane oxygenation by intensivists: A retrospective single-institution case series. Crit Care Med 2015; 43(5): 1010-5.
[http://dx.doi.org/10.1097/CCM.0000000000000883] [PMID: 25746749]
[40]
Makdisi G, Wang IW. Extra corporeal membrane oxygenation (ECMO) review of a lifesaving technology. J Thorac Dis 2015; 7(7): E166-76.
[PMID: 26380745]
[41]
Russo JJ, Aleksova N, Pitcher I, et al. Left ventricular unloading during extracorporeal membrane oxygenation in patients with cardiogenic shock. J Am Coll Cardiol 2019; 73(6): 654-62.
[http://dx.doi.org/10.1016/j.jacc.2018.10.085] [PMID: 30765031]
[42]
Schrage B, Burkhoff D, Rübsamen N, et al. Unloading of the left ventricle during venoarterial extracorporeal membrane oxygenation therapy in cardiogenic shock. JACC Heart Fail 2018; 6(12): 1035-43.
[http://dx.doi.org/10.1016/j.jchf.2018.09.009] [PMID: 30497643]
[43]
Cevasco M, Takayama H, Ando M, Garan AR, Naka Y, Takeda K. Left ventricular distension and venting strategies for patients on venoarterial extracorporeal membrane oxygenation. J Thorac Dis 2019; 11(4): 1676-83.
[http://dx.doi.org/10.21037/jtd.2019.03.29] [PMID: 31179113]
[44]
Pasrija C, Bedeir K, Jeudy J, Kon ZN. Harlequin syndrome during venoarterial extracorporeal membrane oxygenation. Radiol Cardiothorac Imaging 2019; 1(2): e190031.
[http://dx.doi.org/10.1148/ryct.2019190031] [PMID: 33778505]
[45]
Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail 2020; 22(8): 1342-56.
[http://dx.doi.org/10.1002/ejhf.1858] [PMID: 32483830]
[46]
van Riet EES, Hoes AW, Limburg A, Landman MAJ, van der Hoeven H, Rutten FH. Prevalence of unrecognized heart failure in older persons with shortness of breath on exertion. Eur J Heart Fail 2014; 16(7): 772-7.
[http://dx.doi.org/10.1002/ejhf.110] [PMID: 24863953]
[47]
van Riet EES, Hoes AW, Wagenaar KP, Limburg A, Landman MAJ, Rutten FH. Epidemiology of heart failure: The prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail 2016; 18(3): 242-52.
[http://dx.doi.org/10.1002/ejhf.483] [PMID: 26727047]
[48]
Stolfo D, Uijl A, Vedin O, et al. Sex-based differences in heart failure across the ejection fraction spectrum. JACC Heart Fail 2019; 7(6): 505-15.
[http://dx.doi.org/10.1016/j.jchf.2019.03.011] [PMID: 31146874]
[49]
Conrad N, Judge A, Tran J, et al. Temporal trends and patterns in heart failure incidence: A population-based study of 4 million individuals. Lancet 2018; 391(10120): 572-80.
[http://dx.doi.org/10.1016/S0140-6736(17)32520-5] [PMID: 29174292]
[50]
McDonagh TA, Metra M, Adamo M, et al. 2023 focused update of the 2021 esc guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2023; 44(37): 3627-39.
[http://dx.doi.org/10.1093/eurheartj/ehad195] [PMID: 37622666]
[51]
Martinez-Sole J, Sanchez-Martinez JC, Lopez-Vilella R, et al. Overview of the treatment of congestion in heart failure. Curr Pharm Des 2023; 29(20): 1592-601.
[http://dx.doi.org/10.2174/1381612829666230714153404] [PMID: 37455461]
[52]
Goliasch G, Bartko PE, Pavo N, et al. Refining the prognostic impact of functional mitral regurgitation in chronic heart failure. Eur Heart J 2018; 39(1): 39-46.
[http://dx.doi.org/10.1093/eurheartj/ehx402] [PMID: 29020337]
[53]
Asmarats L, Taramasso M, Rodés-Cabau J. Tricuspid valve disease: Diagnosis, prognosis and management of a rapidly evolving field. Nat Rev Cardiol 2019; 16(9): 538-54.
[http://dx.doi.org/10.1038/s41569-019-0186-1] [PMID: 30988448]
[54]
Goel SS, Bajaj N, Aggarwal B, et al. Prevalence and outcomes of unoperated patients with severe symptomatic mitral regurgitation and heart failure: Comprehensive analysis to determine the potential role of MitraClip for this unmet need. J Am Coll Cardiol 2014; 63(2): 185-6.
[http://dx.doi.org/10.1016/j.jacc.2013.08.723] [PMID: 24036029]
[55]
Rossi A, Dini FL, Faggiano P, et al. Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy. Heart 2011; 97(20): 1675-80.
[http://dx.doi.org/10.1136/hrt.2011.225789] [PMID: 21807656]
[56]
Sannino A, Smith RL II, Schiattarella GG, Trimarco B, Esposito G, Grayburn PA. Survival and cardiovascular outcomes of patients with secondary mitral regurgitation. JAMA Cardiol 2017; 2(10): 1130-9.
[http://dx.doi.org/10.1001/jamacardio.2017.2976] [PMID: 28877291]
[57]
Bursi F, Enriquez-Sarano M, Nkomo VT, et al. Heart failure and death after myocardial infarction in the community: The emerging role of mitral regurgitation. Circulation 2005; 111(3): 295-301.
[http://dx.doi.org/10.1161/01.CIR.0000151097.30779.04] [PMID: 15655133]
[58]
Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 2022; 43(7): 561-632.
[http://dx.doi.org/10.1093/eurheartj/ehab395] [PMID: 34453165]
[59]
Maisano F, Torracca L, Oppizzi M, et al. The edge-to-edge technique: A simplified method to correct mitral insufficiency1. Eur J Cardiothorac Surg 1998; 13(3): 240-6.
[http://dx.doi.org/10.1016/S1010-7940(98)00014-1] [PMID: 9628372]
[60]
Feldman T, Foster E, Glower DD, et al. Percutaneous repair or surgery for mitral regurgitation. N Engl J Med 2011; 364(15): 1395-406.
[http://dx.doi.org/10.1056/NEJMoa1009355] [PMID: 21463154]
[61]
Obadia JF, Messika-Zeitoun D, Leurent G, et al. Percutaneous repair or medical treatment for secondary mitral regurgitation. N Engl J Med 2018; 379(24): 2297-306.
[http://dx.doi.org/10.1056/NEJMoa1805374] [PMID: 30145927]
[62]
Stone GW, Lindenfeld J, Abraham WT, et al. Transcatheter mitral-valve repair in patients with heart failure. N Engl J Med 2018; 379(24): 2307-18.
[http://dx.doi.org/10.1056/NEJMoa1806640] [PMID: 30280640]
[63]
Chehab O, Roberts-Thomson R, Ng Yin Ling C, et al. Secondary mitral regurgitation: Pathophysiology, proportionality and prognosis. Heart 2020; 106(10): 716-23.
[http://dx.doi.org/10.1136/heartjnl-2019-316238] [PMID: 32054671]
[64]
Stone GW, Abraham WT, Lindenfeld J, et al. Five-year follow-up after transcatheter repair of secondary mitral regurgitation. N Engl J Med 2023; 388(22): 2037-48.
[http://dx.doi.org/10.1056/NEJMoa2300213] [PMID: 36876756]
[65]
Lim DS, Kar S, Spargias K, et al. Transcatheter valve repair for patients with mitral regurgitation. JACC Cardiovasc Interv 2019; 12(14): 1369-78.
[http://dx.doi.org/10.1016/j.jcin.2019.04.034] [PMID: 31255562]
[66]
Webb JG, Hensey M, Szerlip M, et al. 1-year outcomes for transcatheter repair in patients with mitral regurgitation from the CLASP study. JACC Cardiovasc Interv 2020; 13(20): 2344-57.
[http://dx.doi.org/10.1016/j.jcin.2020.06.019] [PMID: 33092709]
[67]
De Backer O, Wong I, Taramasso M, Maisano F, Franzen O, Søndergaard L. Transcatheter mitral valve repair: An overview of current and future devices. Open Heart 2021; 8(1): e001564.
[http://dx.doi.org/10.1136/openhrt-2020-001564] [PMID: 33911022]
[68]
McInerney A, Marroquin-Donday L, Tirado-Conte G, et al. Transcatheter treatment of mitral regurgitation. J Clin Med 2022; 11(10): 2921.
[http://dx.doi.org/10.3390/jcm11102921] [PMID: 35629048]
[69]
Yoon SH, Whisenant BK, Bleiziffer S, et al. Outcomes of transcatheter mitral valve replacement for degenerated bioprostheses, failed annuloplasty rings, and mitral annular calcification. Eur Heart J 2019; 40(5): 441-51.
[http://dx.doi.org/10.1093/eurheartj/ehy590] [PMID: 30357365]
[70]
Hensey M, Brown RA, Lal S, et al. Transcatheter mitral valve replacement. JACC Cardiovasc Interv 2021; 14(5): 489-500.
[http://dx.doi.org/10.1016/j.jcin.2020.12.038] [PMID: 33663778]
[71]
Yoon SH, Bleiziffer S, Latib A, et al. Predictors of left ventricular outflow tract obstruction after transcatheter mitral valve replacement. JACC Cardiovasc Interv 2019; 12(2): 182-93.
[http://dx.doi.org/10.1016/j.jcin.2018.12.001] [PMID: 30678797]
[72]
Webb J, Hensey M, Fam N, et al. Transcatheter mitral valve replacement with the transseptal EVOQUE system. JACC Cardiovasc Interv 2020; 13(20): 2418-26.
[http://dx.doi.org/10.1016/j.jcin.2020.06.040] [PMID: 33092713]
[73]
Benfari G, Antoine C, Miller WL, et al. Excess mortality associated with functional tricuspid regurgitation complicating heart failure with reduced ejection fraction. Circulation 2019; 140(3): 196-206.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038946] [PMID: 31117814]
[74]
Kilic A, Saha-Chaudhuri P, Rankin JS, Conte JV. Trends and outcomes of tricuspid valve surgery in North America: An analysis of more than 50,000 patients from the Society of Thoracic Surgeons database. Ann Thorac Surg 2013; 96(5): 1546-52.
[http://dx.doi.org/10.1016/j.athoracsur.2013.06.031] [PMID: 24070702]
[75]
Mesnier J, Alperi A, Panagides V, et al. Transcatheter tricuspid valve interventions: Current devices and associated evidence. Prog Cardiovasc Dis 2021; 69: 89-100.
[http://dx.doi.org/10.1016/j.pcad.2021.11.007] [PMID: 34801577]
[76]
Taramasso M, Benfari G, van der Bijl P, et al. Transcatheter versus medical treatment of patients with symptomatic severe tricuspid regurgitation. J Am Coll Cardiol 2019; 74(24): 2998-3008.
[http://dx.doi.org/10.1016/j.jacc.2019.09.028] [PMID: 31568868]
[77]
Lurz P, Stephan von Bardeleben R, Weber M, et al. Transcatheter edge-to-edge repair for treatment of tricuspid regurgitation. J Am Coll Cardiol 2021; 77(3): 229-39.
[http://dx.doi.org/10.1016/j.jacc.2020.11.038] [PMID: 33478646]
[78]
Lurz P, Besler C, Schmitz T, et al. Short-term outcomes of tricuspid edge-to-edge repair in clinical practice. J Am Coll Cardiol 2023; 82(4): 281-91.
[http://dx.doi.org/10.1016/j.jacc.2023.05.008] [PMID: 37207923]
[79]
Kodali S, Hahn RT, Eleid MF, et al. Feasibility study of the transcatheter valve repair system for severe tricuspid regurgitation. J Am Coll Cardiol 2021; 77(4): 345-56.
[http://dx.doi.org/10.1016/j.jacc.2020.11.047] [PMID: 33509390]
[80]
Alperi A, Almendárez M, Álvarez R, et al. Transcatheter tricuspid valve interventions: Current status and future perspectives. Front Cardiovasc Med 2022; 9: 994502.
[http://dx.doi.org/10.3389/fcvm.2022.994502] [PMID: 36187002]
[81]
Abdul-Jawad Altisent O, Benetis R, Rumbinaite E, et al. Caval valve implantation (CAVI): An emerging therapy for treating severe tricuspid regurgitation. J Clin Med 2021; 10(19): 4601.
[http://dx.doi.org/10.3390/jcm10194601] [PMID: 34640619]
[82]
Lauten A, Dreger H, Laule M, Stangl K, Figulla HR, Eng MH. Caval valve implantation. Interv Cardiol Clin 2022; 11(1): 95-102.
[PMID: 34838301]
[83]
Estévez-Loureiro R, Sánchez-Recalde A, Amat-Santos IJ, et al. 6- month outcomes of the tricvalve system in patients with tricuspid regurgitation. JACC Cardiovasc Interv 2022; 15(13): 1366-77.
[http://dx.doi.org/10.1016/j.jcin.2022.05.022] [PMID: 35583363]
[84]
Dreger H, Mattig I, Hewing B, et al. Treatment of severe tricuspid regurgitation in patients with advanced heart failure with caval vein implantation of the edwards sapien xt valve (TRICAVAL): A randomised controlled trial. EuroIntervention 2020; 15(17): 1506-13.
[http://dx.doi.org/10.4244/EIJ-D-19-00901] [PMID: 31929100]
[85]
Nickenig G, Friedrichs KP, Baldus S, et al. Thirty-day outcomes of the cardioband tricuspid system for patients with symptomatic functional tricuspid regurgitation: The TriBAND study. EuroIntervention 2021; 17(10): 809-17.
[http://dx.doi.org/10.4244/EIJ-D-21-00300] [PMID: 34031021]
[86]
Radhoe SP, Veenis JF, Brugts JJ. Invasive devices and sensors for remote care of heart failure patients. Sensors 2021; 21(6): 2014.
[http://dx.doi.org/10.3390/s21062014] [PMID: 33809205]
[87]
Bourge RC, Abraham WT, Adamson PB, et al. Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure: The COMPASS-HF study. J Am Coll Cardiol 2008; 51(11): 1073-9.
[http://dx.doi.org/10.1016/j.jacc.2007.10.061] [PMID: 18342224]
[88]
Adamson PB, Gold MR, Bennett T, et al. Continuous hemodynamic monitoring in patients with mild to moderate heart failure: Results of the reducing decompensation events utilizing intracardiac pressures in patients with chronic heart failure (REDUCEhf) trial. Congest Heart Fail 2011; 17(5): 248-54.
[http://dx.doi.org/10.1111/j.1751-7133.2011.00247.x] [PMID: 21906250]
[89]
Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: A randomised controlled trial. Lancet 2011; 377(9766): 658-66.
[http://dx.doi.org/10.1016/S0140-6736(11)60101-3] [PMID: 21315441]
[90]
Abraham WT, Adamson PB, Costanzo MR, et al. Hemodynamic monitoring in advanced heart failure: Results from the LAPTOP-HF trial. J Card Fail 2016; 22(11): 940.
[http://dx.doi.org/10.1016/j.cardfail.2016.09.012]
[91]
Udelson JE, Barker CM, Meduri C, et al. Six month results from first in human clinical experience of a no-implant interatrial shunt for heart failure with preserved ejection fraction. J Am Coll Cardiol 2022; 79(9) (Suppl.): 229-9.
[http://dx.doi.org/10.1016/S0735-1097(22)01220-7]
[92]
Rod és CJ, Bernier M, Amat -Santos Ignacio J, et al. Interatrial shunting for heart failure. JACC Cardiovasc Interv 2018; 11(2): 2300-10.
[93]
Kaye DM, Nanayakkara S. Interatrial shunt device for heart failure with preserved ejection fraction. Front Cardiovasc Med 2019; 6: 143.
[http://dx.doi.org/10.3389/fcvm.2019.00143] [PMID: 31620452]
[94]
Yi T, Li M, Fan F, et al. Haemodynamic changes of interatrial shunting devices for heart failure: A systematic review and meta-analysis. ESC Heart Fail 2022; 9(3): 1987-95.
[http://dx.doi.org/10.1002/ehf2.13911] [PMID: 35322588]
[95]
Feldman T, Mauri L, Kahwash R, et al. Transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction (REDUCE LAP-HF I [reduce elevated left atrial pressure in patients with heart failure]). Circulation 2018; 137(4): 364-75.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.032094] [PMID: 29142012]
[96]
Shah SJ, Borlaug BA, Chung ES, et al. Atrial shunt device for heart failure with preserved and mildly reduced ejection fraction (REDUCE LAP-HF II): A randomised, multicentre, blinded, sham-controlled trial. Lancet 2022; 399(10330): 1130-40.
[http://dx.doi.org/10.1016/S0140-6736(22)00016-2] [PMID: 35120593]
[97]
Adhyapak SM, Parachuri VR. Architecture of the left ventricle: Insights for optimal surgical ventricular restoration. Heart Fail Rev 2010; 15(1): 73-83.
[http://dx.doi.org/10.1007/s10741-009-9151-0] [PMID: 19757029]
[98]
Rangaswami J, Bhalla V, Blair JEA, et al. Cardiorenal syndrome: Classification, pathophysiology, diagnosis, and treatment strategies: A scientific statement from the american heart association. Circulation 2019; 139(16): e840-78.
[http://dx.doi.org/10.1161/CIR.0000000000000664] [PMID: 30852913]
[99]
Mullens W, Abrahams Z, Francis GS, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 2009; 53(7): 589-96.
[http://dx.doi.org/10.1016/j.jacc.2008.05.068] [PMID: 19215833]
[100]
Nijst P, Martens P, Dupont M, Tang WHW, Mullens W. Intrarenal flow alterations during transition from euvolemia to intravascular volume expansion in heart failure patients. JACC Heart Fail 2017; 5(9): 672-81.
[http://dx.doi.org/10.1016/j.jchf.2017.05.006] [PMID: 28711449]
[101]
Vora AN, Schuyler Jones W, DeVore AD, Ebner A, Clifton W, Patel MR. First-in-human experience with Aortix intraaortic pump. Catheter Cardiovasc Interv 2019; 93(3): 428-33.
[http://dx.doi.org/10.1002/ccd.27857] [PMID: 30311400]
[102]
Zymliński R, Dierckx R, Biegus J, Vanderheyden M, Bartunek J, Ponikowski P. Novel IVC doraya catheter provides congestion relief in patients with acute heart failure. JACC Basic Transl Sci 2022; 7(3): 326-7.
[http://dx.doi.org/10.1016/j.jacbts.2022.02.013] [PMID: 35411326]
[103]
Maron MS, Olivotto I, Betocchi S, et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med 2003; 348(4): 295-303.
[http://dx.doi.org/10.1056/NEJMoa021332] [PMID: 12540642]
[104]
Maron MS, Ommen SR. Exploring new and old therapies for obstructive hypertrophic cardiomyopathy. Circulation 2021; 143(12): 1181-3.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.051330] [PMID: 33750209]
[105]
Zhou M, Ta S, Hahn RT, et al. Percutaneous intramyocardial septal radiofrequency ablation in patients with drug-refractory hypertrophic obstructive cardiomyopathy. JAMA Cardiol 2022; 7(5): 529-38.
[http://dx.doi.org/10.1001/jamacardio.2022.0259] [PMID: 35353129]
[106]
Khan JM, Bruce CG, Greenbaum AB, et al. Transcatheter myotomy to relieve left ventricular outflow tract obstruction: The septal scoring along the midline endocardium procedure in animals. Circ Cardiovasc Interv 2022; 15(6): e011686.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.121.011686] [PMID: 35378990]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy