Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Research Article

An Alternative Method for the Selective Synthesis of Ortho-nitro Anilines Using Bismuth Nitrate Pentahydrate

Author(s): Brenda V. Loera-Garcia, Socorro Leyva-Ramos, Jaime Cardoso-Ortiz*, Saul Noriega, Antonio Romo-Mancillas, Kim M. Baines and Sarah L. McOnei

Volume 22, Issue 2, 2025

Published on: 19 February, 2024

Page: [234 - 242] Pages: 9

DOI: 10.2174/0115701794273947231206111750

Price: $65

TIMBC 2025
Abstract

Background: Nitroaromatic compounds are important scaffolds used for the synthesis of a variety of compounds, such as explosives, herbicides, dyes, perfumes and pharmaceuticals. Bismuth nitrate pentahydrate is a widely used reagent in organic synthesis; however, its utility as a nitrating agent for anilines is underexplored.

Objective: The aim of this work is to propose and find the proper reaction conditions of an alternative nitrating agent constituted by a mixture of bismuth nitrate / acetic anhydride in DCM with a series of substituted anilines under mild reflux.

Methods: Several anilines having both activating and deactivating substituents in the ortho, meta and para positions were the substrate for the nitration reaction. Experimental conditions were performed in “one-pot” conditions before product purification.

Results: Bi(NO3)3•5H2O demonstrated to be effective and somehow regioselective when it came to the nitration of anilines in the ortho position. Although other products were also identified under these conditions, in most cases, the ortho derivative was the major or even the only product obtained with moderate to high yields in the range of 50% – 96%.

Conclusion: Bi(NO3)3•5H2O is an efficient and safe nitrating agent since the use of concentrated and corrosive acids like sulfuric and nitric is avoided; furthermore, bismuth nitrate is low-priced and no special care nor equipment is required.

Keywords: Bismuth (III) nitrate pentahydrate, nitration, substituted aniline, regioselectivity, aromatic compound, SNAr.

Graphical Abstract
[1]
Leyva-Ramos, S.; Pedraza-Alvarez, A. Quinoxaline 1,4-di-N-oxides: A review of the importance of their structure in the development of drugs against infectious diseases and cancer. Med. Chem. Res., 2021, 30(6), 1175-1184.
[http://dx.doi.org/10.1007/s00044-021-02731-8]
[2]
Cheng, G.; Sa, W.; Cao, C.; Guo, L.; Hao, H.; Liu, Z.; Wang, X.; Yuan, Z. Quinoxaline 1,4-di-N-oxides: Biological activities and mechanisms of actions. Front. Pharmacol., 2016, 7(64), 64.
[http://dx.doi.org/10.3389/fphar.2016.00064] [PMID: 27047380]
[3]
Viktorsson, E.Ö.; Aesoy, R.; Støa, S.; Lekve, V.; Døskeland, S.O.; Herfindal, L.; Rongved, P. New prodrugs and analogs of the phenazine 5,10-dioxide natural products iodinin and myxin promote selective cytotoxicity towards human acute myeloid leukemia cells. RSC Med. Chem., 2021, 12(5), 767-778.
[http://dx.doi.org/10.1039/D1MD00020A] [PMID: 34124675]
[4]
Dib, N.; Fernández, L.; Santo, M.; Otero, L.; Alustiza, F.; Liaudat, A.C.; Bosch, P.; Lavaggi, M.L.; Cerecetto, H.; González, M. Formation of dendrimer-guest complexes as a strategy to increase the solubility of a phenazine N,N′-dioxide derivative with antitumor activity. Heliyon, 2019, 5(4), 1-23.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01528]
[5]
Lavaggi, M.L.; Aguirre, G.; Boiani, L.; Orelli, L.; García, B.; Cerecetto, H.; González, M. Pyrimido[1,2-a]quinoxaline 6-oxide and phenazine 5,10-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi. Eur. J. Med. Chem., 2008, 43(8), 1737-1741.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.031] [PMID: 18068272]
[6]
Boiani, M.; Boiani, L.; Denicola, A.; Torres de Ortiz, S.; Serna, E.; Vera de Bilbao, N.; Sanabria, L.; Yaluff, G.; Nakayama, H.; Rojas de Arias, A.; Vega, C.; Rolan, M.; Gómez-Barrio, A.; Cerecetto, H.; González, M. 2H-benzimidazole 1,3-dioxide derivatives: A new family of water-soluble anti-trypanosomatid agents. J. Med. Chem., 2006, 49(11), 3215-3224.
[http://dx.doi.org/10.1021/jm0600343] [PMID: 16722639]
[7]
Lima, L.M.; Amaral, D.N. Beirut reaction and its application in the synthesis of quinoxaline-N,N′-dioxides bioactive compounds. Revista Virtual de Química, 2013, 5(6), 1075-1100.
[http://dx.doi.org/10.5935/1984-6835.20130079]
[8]
Torres, E.; Moreno-Viguri, E.; Galiano, S.; Devarapally, G.; Crawford, P.W.; Azqueta, A.; Arbillaga, L.; Varela, J.; Birriel, E.; Di Maio, R.; Cerecetto, H.; González, M.; Aldana, I.; Monge, A.; Pérez-Silanes, S. Novel quinoxaline 1,4-di-N-oxide derivatives as new potential antichagasic agents. Eur. J. Med. Chem., 2013, 66, 324-334.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.065] [PMID: 23811257]
[9]
Zhang, H.; Zhang, J.; Qu, W.; Xie, S.; Huang, L.; Chen, D.; Tao, Y.; Liu, Z.; Pan, Y.; Yuan, Z. Design, synthesis and biological evaluation of novel thiazolidinone-containing quinoxaline-1,4-di-N-oxides as antimycobacterial and antifungal agents. Front Chem., 2020, 8, 1-15.
[http://dx.doi.org/10.3389/fchem.2020.00598]
[10]
Buravchenko, G.I.; Scherbakov, A.M.; Korlukov, A.A.; Dorovatovskii, P.V.; Shchekotikhin, A.E. Revision of the regioselectivity of the Beirut reaction of monosubstituted benzofuroxans with benzoylacetonitrile. 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides: Structural characterization and estimation of anticancer activity and hypoxia selectivity. Curr. Org. Synth., 2020, 17(1), 29-39.
[http://dx.doi.org/10.2174/1570179416666191210100754] [PMID: 32103715]
[11]
Cerecetto, H.; González, M.; Lavaggi, M.L.; Porcal, W. Preparation of phenazine N5,N10-dioxides: Effects of benzofuroxan substituents in the outcome of their expansion reaction with phenolates. J. Braz. Chem. Soc., 2005, 16(6a), 1290-1296.
[http://dx.doi.org/10.1590/S0103-50532005000700030]
[12]
Chugunova, E.A.; Samsonov, V.A.; Gazizov, A.S.; Burilov, A.R.; Pudovik, M.A.; Sinyashin, O.G. 2H-Benzimidazole N-oxides: Synthesis, chemical properties, and biological activity. Russ. Chem. Bull., 2018, 67(11), 1955-1970.
[http://dx.doi.org/10.1007/s11172-018-2315-0]
[13]
Fernandes, G.F.S.; Campos, D.L.; Da Silva, I.C.; Prates, J.L.B.; Pavan, A.R.; Pavan, F.R.; Dos Santos, J.L. Benzofuroxan derivatives as potent agents against multidrug-resistant Mycobacterium tuberculosis. ChemMedChem, 2021, 16(8), 1268-1282.
[http://dx.doi.org/10.1002/cmdc.202000899] [PMID: 33410233]
[14]
Chugunova, E.A.; Gazizov, A.S.; Burilov, A.R.; Yusupova, L.M.; Pudovik, M.A.; Sinyashin, O.G. Benzofuroxans: Their synthesis, properties, and biological activity. Russ. Chem. Bull., 2019, 68(5), 887-910.
[http://dx.doi.org/10.1007/s11172-019-2503-6]
[15]
Jovené, C.; Chugunova, E.A.; Goumont, R. The properties and the use of substituted benzofuroxans in pharmaceutical and medicinal chemistry: A comprehensive review. Mini Rev. Med. Chem., 2013, 13(8), 1089-1136.
[http://dx.doi.org/10.2174/1389557511313080001] [PMID: 23544466]
[16]
Sartini, S.; Cosconati, S.; Marinelli, L.; Barresi, E.; Di Maro, S.; Simorini, F.; Taliani, S.; Salerno, S.; Marini, A.M.; Da Settimo, F.; Novellino, E.; La Motta, C. Benzofuroxane derivatives as multi-effective agents for the treatment of cardiovascular diabetic complications. Synthesis, functional evaluation, and molecular modeling studies. J. Med. Chem., 2012, 55(23), 10523-10531.
[http://dx.doi.org/10.1021/jm301124s] [PMID: 23134227]
[17]
Cerecetto, H.; Porcal, W. Pharmacological properties of furoxans and benzofuroxans: Recent developments. Mini Rev. Med. Chem., 2005, 5(1), 57-71.
[http://dx.doi.org/10.2174/1389557053402864] [PMID: 15638792]
[18]
Sikder, A.K.; Salunke, R.B.; Sikder, N. Synthesis, characterization and explosives properties of 7-(1h -1,2,4-triazol-3-amino)-4,6-dinitrobenzofuroxan (TADNB) and 7-(1h-1,2,3,4-tetrazol-5-amino)-4,6-dinitrobenzofuroxan (TEADNBF). J. Energ. Mater., 2002, 20(1), 39-51.
[http://dx.doi.org/10.1080/07370650208244813]
[19]
Callan, J.F.; de Silva, A.P.; Ferguson, J.; Huxley, A.J.M.; O’Brien, A.M. Fluorescent photoionic devices with two receptors and two switching mechanisms: Applications to pH sensors and implications for metal ion detection. Tetrahedron, 2004, 60(49), 11125-11131.
[http://dx.doi.org/10.1016/j.tet.2004.08.057]
[20]
Wang, L.; Li, C.; Zhang, Y.; Qiao, C.; Ye, Y. Synthesis and biological evaluation of benzofuroxan derivatives as fungicides against phytopathogenic fungi. J. Agric. Food Chem., 2013, 61(36), 8632-8640.
[http://dx.doi.org/10.1021/jf402388x] [PMID: 23937418]
[21]
Zhang, Y.F.; Mellah, M. Convenient electrocatalytic synthesis of azobenzenes from nitroaromatic derivatives using SmI2. ACS Catal., 2017, 7(12), 8480-8486.
[http://dx.doi.org/10.1021/acscatal.7b02940]
[22]
Li, J.; Liu, H.; Huo, X.; Gramatica, P. Structure-activity relationship analysis of the thermal stabilities of nitroaromatic compounds following different decomposition mechanisms. Mol. Inform., 2013, 32(2), 193-202.
[http://dx.doi.org/10.1002/minf.201200089] [PMID: 27481280]
[23]
Brai, A.; Riva, V.; Saladini, F.; Zamperini, C.; Trivisani, C.I.; Garbelli, A.; Pennisi, C.; Giannini, A.; Boccuto, A.; Bugli, F.; Martini, M.; Sanguinetti, M.; Zazzic, M.; Dreassi, E.; Botta, M.; Maga, G. DDX3X inhibitors, an effective way to overcome HIV-1 resistance targeting host proteins. Eur. J. Med. Chem., 2020, 200, 1-12.
[http://dx.doi.org/10.1016/j.ejmech.2020.112319]
[24]
Garrison, A.T.; Abouelhassan, Y.; Kallifidas, D.; Tan, H.; Kim, Y.S.; Jin, S.; Luesch, H.; Huigens, R.W. III Huigens R.W III. An efficient Buchwald-Hartwig/reductive cyclization for the scaffold diversification of halogenated phenazines: Potent antibacterial targeting, biofilm eradication, and prodrug exploration. J. Med. Chem., 2018, 61(9), 3962-3983.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01903] [PMID: 29638121]
[25]
Janakiramudu, D.B.; Subba Rao, D.; Srikanth, C.; Madhusudhana, S.; Sreenivasa Murthy, P.; Nagalakshmidevamma, M.; Chalapathi, P.V.; Naga Raju, C. Sulfonamides and carbamates of 3-fluoro-4-morpholinoaniline (linezolid intermediate): Synthesis, antimicrobial activity and molecular docking study. Res. Chem. Intermed., 2018, 44(1), 469-489.
[http://dx.doi.org/10.1007/s11164-017-3114-1]
[26]
Park, S.; Kim, E.; Kim, W.Y.; Kang, C.; Kim, J.S. Biotin-guided anticancer drug delivery with acidity-triggered drug release. Chem. Commun., 2015, 51(45), 9343-9345.
[http://dx.doi.org/10.1039/C5CC03003J] [PMID: 25959901]
[27]
Nepali, K.; Lee, H.Y.; Liou, J.P. Nitro-group-containing drugs. J. Med. Chem., 2019, 62(6), 2851-2893.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00147] [PMID: 30295477]
[28]
Noriega, S.; Cardoso-Ortiz, J.; López-Luna, A.; Cuevas-Flores, M.D.R.; Flores De La Torre, J.A. The diverse biological activity of recently synthesized nitro compounds. Pharmaceuticals, 2022, 15(6), 1-14.
[http://dx.doi.org/10.3390/ph15060717]
[29]
Yan, G.; Yang, M. Recent advances in the synthesis of aromatic nitro compounds. Org. Biomol. Chem., 2013, 11(16), 2554-2566.
[http://dx.doi.org/10.1039/c3ob27354g] [PMID: 23443836]
[30]
Nishiwaki, N. Synthesis of nitroso, nitro, and related compounds. In: Comprehensive Organic Synthesis; Elsevier: Oxford, UK, 2014; 6, pp. 100-130.
[http://dx.doi.org/10.1016/B978-0-08-097742-3.00604-2]
[31]
Adamiak, J.; Tomaszewski, W.; Skupiński, W. Interaction of nitromethane with MoO3/SiO2 and its influence on toluene nitration. Catal. Commun., 2012, 29, 92-95.
[http://dx.doi.org/10.1016/j.catcom.2012.09.026]
[32]
Smith, K.; El-Hiti, G.A. Use of zeolites for greener and more para-selective electrophilic aromatic substitution reactions. Green Chem., 2011, 13(7), 1579-1608.
[http://dx.doi.org/10.1039/c0gc00689k]
[33]
Ma, X.M.; Li, B.D.; Chen, L.; Lu, M.; Lv, C.X. Selective nitration of aromatic compounds catalyzed by Hβ zeolite using N2O5. Chin. Chem. Lett., 2012, 23(7), 809-812.
[http://dx.doi.org/10.1016/j.cclet.2012.05.016]
[34]
Gao, M.; Ye, R.; Shen, W.; Xu, B. Copper nitrate: A privileged reagent for organic synthesis. Org. Biomol. Chem., 2018, 16(15), 2602-2618.
[http://dx.doi.org/10.1039/C8OB00332G] [PMID: 29565088]
[35]
Samajdar, S.; Becker, F.F.; Banik, B.K. Surface-mediated highly efficient regioselective nitration of aromatic compounds by bismuth nitrate. Tetrahedron Lett., 2000, 41(42), 8017-8020.
[http://dx.doi.org/10.1016/S0040-4039(00)01397-6]
[36]
Vasudevan, A.K.; Schoenitz, M.; Dreizin, E.L. Mechanochemical nitration of toluene with metal oxide catalysts. Appl. Catal. A Gen., 2020, 201, 117604.
[http://dx.doi.org/10.1016/j.apcata.2020.117604]
[37]
Albadi, J.; Shirini, F.; Ghabezi, B.; Seiadatnasab, T. Melamine trisulfonic acid catalyzed regioselective nitration of aromatic compounds with sodium nitrate under solvent-free conditions. Arab. J. Chem., 2017, 10(S1), S509-S513.
[http://dx.doi.org/10.1016/j.arabjc.2012.10.011]
[38]
Bose, A.; Mal, P. Using weak interactions to control C-H mono-nitration of indolines. Chem. Commun., 2017, 53(82), 11368-11371.
[http://dx.doi.org/10.1039/C7CC06267B] [PMID: 28972219]
[39]
Anuradha, V.; Srinivas, P.V.; Aparna, P.; Rao, J.M. p-Toluenesulfonic acid catalyzed regiospecific nitration of phenols with metal nitrates. Tetrahedron Lett., 2006, 47(28), 4933-4935.
[http://dx.doi.org/10.1016/j.tetlet.2006.05.017]
[40]
Song, L.R.; Fan, Z.; Zhang, A. Recent advances in transition metal-catalyzed C(sp 2)–H nitration. Org. Biomol. Chem., 2019, 17(6), 1351-1361.
[http://dx.doi.org/10.1039/C8OB02750A] [PMID: 30644943]
[41]
Gao, Y.; Mao, Y.; Zhang, B.; Zhan, Y.; Huo, Y. Regioselective nitration of anilines with Fe(NO 3) 3 ·9H 2 O as a promoter and a nitro source. Org. Biomol. Chem., 2018, 16(21), 3881-3884.
[http://dx.doi.org/10.1039/C8OB00841H] [PMID: 29745962]
[42]
Shackelford, S.A.; Anderson, M.B.; Christie, L.C.; Goetzen, T.; Guzman, M.C.; Hananel, M.A.; Kornreich, W.D.; Li, H.; Pathak, V.P.; Rabinovich, A.K.; Rajapakse, R.J.; Truesdale, L.K.; Tsank, S.M.; Vazir, H.N. Electrophilic tetraalkylammonium nitrate nitration. II. Improved anhydrous aromatic and heteroaromatic mononitration with tetramethylammonium nitrate and triflic anhydride, including selected microwave examples. J. Org. Chem., 2003, 68(2), 267-275.
[http://dx.doi.org/10.1021/jo026202q] [PMID: 12530848]
[43]
Sana, S.; Reddy, K.R.; Rajanna, K.C.; Venkateswarlu, M.; Ali, M.M. Mortar-pestle and microwave assisted regioselective nitration of aromatic compounds in presence of certain group V and VI metal salts under solvent free conditions. Int. J. Org. Chem., 2012, 2(3), 233-247.
[http://dx.doi.org/10.4236/ijoc.2012.23032]
[44]
Jacoway, J.; Kumar, G.G.K.S.N.; Laali, K.K. Aromatic nitration with bismuth nitrate in ionic liquids and in molecular solvents: A comparative study of Bi(NO3)3·5H2O/[bmim][PF6] and Bi(NO3)3·5H2O/1,2-DCE systems. Tetrahedron Lett., 2012, 53(50), 6782-6785.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.137]
[45]
Yadav, R.R.; Vishwakarma, R.A.; Bharate, S.B. Catalyst-free ipso-nitration of aryl boronic acids using bismuth nitrate. Tetrahedron Lett., 2012, 53(44), 5958-5960.
[http://dx.doi.org/10.1016/j.tetlet.2012.08.121]
[46]
Guo, F.C.; Ji, M.Z.; Zhang, P.; Guo, Z.X. Facile nitration of aromatic compounds using Bi(NO3)3·5H2O/MgSO4 under mechanochemical conditions. Green Proc. Synth., 2018, 7(5), 453-459.
[http://dx.doi.org/10.1515/gps-2017-0069]
[47]
Brahmachari, G.; Begam, S.; Nurjamal, K. Bismuth nitrate catalyzed one-pot multicomponent synthesis of a novel series of diversely 1,8-dioxodecahydroacridines at room temperature. ChemistrySelect, 2017, 2(11), 3311-3316.
[http://dx.doi.org/10.1002/slct.201700265]
[48]
Bandyopadhyay, D.; Maldonado, S.; Banik, B.K. A microwave-assisted bismuth nitrate-catalyzed unique route toward 1,4-dihydropyridines. Molecules, 2012, 17(3), 2643-2662.
[http://dx.doi.org/10.3390/molecules17032643] [PMID: 22391599]
[49]
Brahmachari, G.; Das, S. Bismuth nitrate-catalyzed multicomponent reaction for efficient and one-pot synthesis of densely functionalized piperidine scaffolds at room temperature. Tetrahedron Lett., 2012, 53(12), 1479-1484.
[http://dx.doi.org/10.1016/j.tetlet.2012.01.042]
[50]
Bandyopadhyay, D.; Granados, J.C.; Short, J.D.; Banik, B.K. Polycyclic aromatic compounds as anticancer agents: Evaluation of synthesis and in vitro cytotoxicity. Oncol. Lett., 2012, 3(1), 45-49.
[http://dx.doi.org/10.3892/ol.2011.436] [PMID: 22740854]
[51]
Mukhopadhyay, C.; Datta, A. Bismuth(III) nitrate pentahydrate: A stoichiometric reagent for microwave induced mild and highly efficient aerial oxidation of aromatic aldehydes under solvent-free conditions. Catal. Commun., 2008, 9(15), 2588-2592.
[http://dx.doi.org/10.1016/j.catcom.2008.07.019]
[52]
Azarifar, D.; Maleki, B. Microwave-assisted aromatization of 1,3,5-trisubstituted 2-pyrazolines by Bi(NO3)3·5H2O, as a novel and convenient oxidizing agent. Synth. Commun., 2005, 35(19), 2581-2585.
[http://dx.doi.org/10.1080/00397910500214136]
[53]
Khodaei, M.M.; Mohammadpoor-Baltork, I.; Nikoofar, K. Bismuth (III) nitrate pentahydrate Bi(NO3)3·5H2O: An inexpensive and mild reagent for the efficient and clean oxidation of thiols to disulfides. Bull. Korean Chem. Soc., 2003, 24(7), 885-886.
[http://dx.doi.org/10.5012/bkcs.2003.24.7.885]
[54]
Lu, Y.; Li, Y.; Zhang, R.; Jin, K.; Duan, C. Regioselective ortho-nitration of N-phenyl carboxamides and primary anilines using bismuth nitrate/acetic anhydride. Tetrahedron, 2013, 69(45), 9422-9427.
[http://dx.doi.org/10.1016/j.tet.2013.08.076]
[55]
McConnell, N.; Frett, B.; Li, H. Microwave-assisted green synthesis of anilines, phenols, and benzenediamines without transition metals, ligands, or organic solvents. Green Chem. Lett. Rev., 2018, 11(3), 286-295.
[http://dx.doi.org/10.1080/17518253.2018.1486464] [PMID: 30984284]
[56]
Patil, V.V.; Shankarling, G.S. Steric-hindrance-induced regio- and chemoselective oxidation of aromatic amines. J. Org. Chem., 2015, 80(16), 7876-7883.
[http://dx.doi.org/10.1021/acs.joc.5b00582] [PMID: 26212905]
[57]
Ilangovan, A.; Sakthivel, P.; Sakthivel, P. Green and practical transition metal-free one-pot conversion of substituted benzoic acids to anilines using tosyl azide. Org. Chem. Front., 2016, 3(12), 1680-1685.
[http://dx.doi.org/10.1039/C6QO00343E]
[58]
Pawar, G.G.; Brahmanandan, A.; Kapur, M. Palladium(II)-catalyzed, heteroatom-directed, regioselective C-H nitration of anilines using pyrimidine as a removable directing group. Org. Lett., 2016, 18(3), 448-451.
[http://dx.doi.org/10.1021/acs.orglett.5b03493] [PMID: 26799985]
[59]
Ma̧kosza, M.; Białecki, M. Nitroarylamines via the vicarious nucleophilic substitution of hydrogen: Amination, alkylamination, and arylamination of nitroarenes with sulfenamides. J. Org. Chem., 1998, 63(15), 4878-4888.
[http://dx.doi.org/10.1021/jo970582b]
[60]
Leyva, S.; Castanedo, V.; Leyva, E. Synthesis of novel fluorobenzofuroxans by oxidation of anilines and thermal cyclization of arylazides. J. Fluor. Chem., 2003, 121(2), 171-175.
[http://dx.doi.org/10.1016/S0022-1139(03)00011-3]
[61]
Liang, Y.; Gao, S.; Wan, H.; Wang, J.; Chen, H.; Zheng, Z.; Hu, X. Syntheses and resolutions of new chiral biphenyl backbones: 2-amino-2′-hydroxy-6,6′-dimethyl-1,1′-biphenyl and 2-amino-2′-hydroxy-4,4′,6,6′-tetramethyl-1,1′-biphenyl. Tetrahedron Asymmetry, 2003, 14(10), 1267-1273.
[http://dx.doi.org/10.1016/S0957-4166(03)00217-9]
[62]
Jin, M.; Xu, H.; Hong, H.; Bao, C.; Pu, H.; Wan, D.; Zhu, L. Micropatterning of polymethacrylates by single‐ or two‐photon irradiation using π‐conjugated o ‐nitrobenzyl ester phototrigger as side chains. J. Appl. Polym. Sci., 2013, 130(6), 4099-4106.
[http://dx.doi.org/10.1002/app.39683]
[63]
Hernando, E.; Castillo, R.R.; Rodríguez, N.; Gómez Arrayás, R.; Carretero, J.C. Copper-catalyzed mild nitration of protected anilines. Chemistry, 2014, 20(43), 13854-13859.
[http://dx.doi.org/10.1002/chem.201404000] [PMID: 25213167]
[64]
Preiss, A.; Levsen, K.; Humpfer, E.; Spraul, M. Application of high-field proton nuclear magnetic resonance ((1)H-NMR) spectroscopy for the analysis of explosives and related compounds in groundwater samples - a comparison with the high-performance liquid chromatography (HPLC) method. Anal. Bioanal. Chem., 1996, 356(7), 445-451.
[http://dx.doi.org/10.1007/s0021663560445] [PMID: 15045226]
[65]
Felpin, F.X.; Fouquet, E. Efficient and practical cross-coupling of arenediazonium tetrafluoroborate salts with boronic acids catalyzed by palladium(0)/barium carbonate. Adv. Synth. Catal., 2008, 350(6), 863-868.
[http://dx.doi.org/10.1002/adsc.200800025]
[66]
Berti, F.A.; Ziti, L.M. The preparation of 2, 6-dinitroaniline. Mem. Inst. Butantan, 1952, 24(1), 9-12.
[PMID: 13012827]
[67]
Murphy, J.T.; Ridd, J.H. The rearrangement of aromatic nitro compounds. Part 1. The reactions of nitroanilines in aqueous sulphuric acid. J. Chem. Soc., Perkin Trans. 2, 1987, 2(12), 1767-1772.
[http://dx.doi.org/10.1039/p29870001767]
[68]
Zhu, Y.; Zhao, M.; Lu, W.; Li, L.; Shen, Z. Acetonitrile as a cyanating reagent: Cu-catalyzed cyanation of arenes. Org. Lett., 2015, 17(11), 2602-2605.
[http://dx.doi.org/10.1021/acs.orglett.5b00886] [PMID: 25988665]
[69]
Muathen, H. Selective nitration of aromatic compounds with bismuth subnitrate and thionyl chloride. Molecules, 2003, 8(7), 593-598.
[http://dx.doi.org/10.3390/80700593]
[70]
Canales, L.; Bandyopadhyay, D.; Banik, B.K. Bismuth nitrate pentahydrate-induced novel nitration of eugenol. Org. Med. Chem. Lett., 2011, 1(9), 1-3.
[http://dx.doi.org/10.1186/2191-2858-1-9] [PMID: 22373430]
[71]
Wąsińska, M.; Korczewska, A.; Giurg, M.; Skarżewski, J. Improved protocol for mononitration of phenols with bismuth(III) and iron(III) nitrates. Synth. Commun., 2015, 45(1), 143-150.
[http://dx.doi.org/10.1080/00397911.2014.954730]
[72]
Prakash, G.K.S.; Panja, C.; Mathew, T.; Surampudi, V.; Petasis, N.A.; Olah, G.A. ipso-nitration of arylboronic acids with chlorotrimethylsilane-nitrate salts. Org. Lett., 2004, 6(13), 2205-2207.
[http://dx.doi.org/10.1021/ol0493249] [PMID: 15200321]
[73]
Patel, S.S.; Patel, D.B.; Patel, H.D. Synthetic protocols for aromatic nitration: A review. ChemistrySelect, 2021, 6(6), 1337-1356.
[http://dx.doi.org/10.1002/slct.202004695]
[74]
Agasti, S.; Maiti, S.; Maity, S.; Anniyappan, M.; Talawar, M.B.; Maiti, D. Bismuth nitrate as a source of nitro radical in ipso-nitration of carboxylic acids. Polyhedron, 2019, 172, 120-124.
[http://dx.doi.org/10.1016/j.poly.2019.04.005]
[75]
Bandyopadhyay, D.; Krishna, B.B. Versatile bismuth salts-induced reactions from our laboratory: A perspective. Heterocycl. Lett., 2020, 10(2), 341.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy