Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

The Association between NADPH Oxidase 2 (NOX2) and Drug Resistance in Cancer

Author(s): Shiqi Dong, Chao Chen, Chang Di, Shufan Wang, Quan Dong, Wenxin Lin and Duo Liu*

Volume 24, Issue 12, 2024

Published on: 15 February, 2024

Page: [1195 - 1212] Pages: 18

DOI: 10.2174/0115680096277328240110062433

Price: $65

conference banner
Abstract

NADPH oxidase, as a major source of intracellular reactive oxygen species (ROS), assumes an important role in the immune response and oxidative stress response of the body. NADPH oxidase 2 (NOX2) is the first and most representative member of the NADPH oxidase family, and its effects on the development of tumor cells are gaining more and more attention. Our previous study suggested that NCF4 polymorphism in p40phox, a key subunit of NOX2, affected the outcome of diffuse large B-cell lymphoma patients treated with rituximab. It hypothesized that NOX2-mediated ROS could enhance the cytotoxic effects of some anti-tumor drugs in favor of patients with tumors. Several reviews have summarized the role of NOX2 and its congeners-mediated ROS in anti-tumor therapy, but few studies focused on the relationship between the expression of NOX2 and anti-tumor drug resistance. In this article, we systematically introduced the NOX family, represented by NOX2, and a classification of the latest inhibitors and agonists of NOX2. It will help researchers to have a more rational and objective understanding of the dual role of NOX2 in tumor drug resistance and is expected to provide new ideas for oncology treatment and overcoming drug resistance in cancer.

Keywords: ROS, NADPH oxidase 2, cancer drug development, drug resistance, cancer, tumor.

Graphical Abstract
[1]
Farhan, M. Insights on the role of polyphenols in combating cancer drug resistance. Biomedicines, 2023, 11(6), 1709.
[http://dx.doi.org/10.3390/biomedicines11061709] [PMID: 37371804]
[2]
Lim, S.H.; Hwang, I.G.; Ji, J.H.; Oh, S.Y.; Yi, J.H.; Lim, D.H.; Lim, H.Y.; Lee, S.J.; Park, S.H. Intrinsic resistance to sunitinib in patients with metastatic renal cell carcinoma. Asia Pac. J. Clin. Oncol., 2017, 13(1), 61-67.
[http://dx.doi.org/10.1111/ajco.12465] [PMID: 27030134]
[3]
Li, Y.; Wang, Z.; Ajani, J.A.; Song, S. Drug resistance and Cancer stem cells. Cell Commun. Signal., 2021, 19(1), 19.
[http://dx.doi.org/10.1186/s12964-020-00627-5] [PMID: 33588867]
[4]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[5]
Khamisipour, G.; Jadidi-Niaragh, F.; Jahromi, A.S.; zandi, K.; Hojjat-Farsangi, M. Mechanisms of tumor cell resistance to the current targeted-therapy agents. Tumour Biol., 2016, 37(8), 10021-10039.
[http://dx.doi.org/10.1007/s13277-016-5059-1] [PMID: 27155851]
[6]
Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The challenge of drug resistance in cancer treatment: A current overview. Clin. Exp. Metastasis, 2018, 35(4), 309-318.
[http://dx.doi.org/10.1007/s10585-018-9903-0] [PMID: 29799080]
[7]
Ciszewski, W.M.; Sobierajska, K.; Stasiak, A.; Wagner, W. Lactate drives cellular DNA repair capacity: Role of lactate and related short-chain fatty acids in cervical cancer chemoresistance and viral infection. Front. Cell Dev. Biol., 2022, 10, 1012254.
[http://dx.doi.org/10.3389/fcell.2022.1012254] [PMID: 36340042]
[8]
Asić, K. Dominant mechanisms of primary resistance differ from dominant mechanisms of secondary resistance to targeted therapies. Crit. Rev. Oncol. Hematol., 2016, 97, 178-196.
[http://dx.doi.org/10.1016/j.critrevonc.2015.08.004] [PMID: 26364890]
[9]
Yadav, D.; Rao, G.S.N.K.; Paliwal, D.; Singh, A.; Shadab, S. Insight into the basic mechanisms and various modulation strategies involved in cancer drug resistance. Curr. Cancer Drug Targets, 2023, 23(10), 778-791.
[http://dx.doi.org/10.2174/1568009623666230508110258] [PMID: 37157204]
[10]
Hu, G.; Zhang, Y.; Ouyang, K.; Xie, F.; Fang, H.; Yang, X.; Liu, K.; Wang, Z.; Tang, X.; Liu, J.; Yang, L.; Jiang, Z.; Tao, W.; Zhou, H.; Zhang, L. In vivo acquired sorafenib-resistant patient-derived tumor model displays alternative angiogenic pathways, multi-drug resistance and chromosome instability. Oncol. Lett., 2018.
[http://dx.doi.org/10.3892/ol.2018.9078]
[11]
Taylor, S.T.; Hickman, J.A.; Dive, C. Epigenetic determinants of resistance to etoposide regulation of Bcl-X(L) and Bax by tumor microenvironmental factors. J. Natl. Cancer Inst., 2000, 92(1), 18-23.
[http://dx.doi.org/10.1093/jnci/92.1.18] [PMID: 10620629]
[12]
Jiang, E.; Yan, T.; Xu, Z.; Shang, Z. Tumor microenvironment and cell fusion. BioMed Res. Int., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/5013592] [PMID: 31380426]
[13]
Rebucci, M.; Michiels, C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem. Pharmacol., 2013, 85(9), 1219-1226.
[http://dx.doi.org/10.1016/j.bcp.2013.02.017] [PMID: 23435357]
[14]
Yang, Y.; Neo, S.Y.; Chen, Z.; Cui, W.; Chen, Y.; Guo, M.; Wang, Y.; Xu, H.; Kurzay, A.; Alici, E.; Holmgren, L.; Haglund, F.; Wang, K.; Lundqvist, A. Thioredoxin activity confers resistance against oxidative stress in tumor-infiltrating NK cells. J. Clin. Invest., 2020, 130(10), 5508-5522.
[http://dx.doi.org/10.1172/JCI137585] [PMID: 32673292]
[15]
Lin, L.S.; Wang, J.F.; Song, J.; Liu, Y.; Zhu, G.; Dai, Y.; Shen, Z.; Tian, R.; Song, J.; Wang, Z.; Tang, W.; Yu, G.; Zhou, Z.; Yang, Z.; Huang, T.; Niu, G.; Yang, H.H.; Chen, Z.Y.; Chen, X. Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics, 2019, 9(24), 7200-7209.
[http://dx.doi.org/10.7150/thno.39831] [PMID: 31695762]
[16]
Kiyokawa, H.; Hoshino, Y.; Sakaguchi, K.; Muro, S.; Yodoi, J. Redox regulation in aging lungs and therapeutic implications of antioxidants in COPD. Antioxidants, 2021, 10
[17]
Cho, K.J.; Seo, J.M.; Kim, J.H. Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Mol. Cells, 2011, 32(1), 1-5.
[http://dx.doi.org/10.1007/s10059-011-1021-7] [PMID: 21424583]
[18]
Kohler, A.; Barrientos, A.; Fontanesi, F.; Ott, M. The functional significance of mitochondrial respiratory chain supercomplexes. EMBO Rep., 2023, 24(11), e57092.
[http://dx.doi.org/10.15252/embr.202357092] [PMID: 37828827]
[19]
Ameziane El Hassani, R.; Buffet, C.; Leboulleux, S.; Dupuy, C. Oxidative stress in thyroid carcinomas: Biological and clinical significance. End.-Related Cancer, 2019, 26, R131-R143.
[20]
Srinivas, U.S.; Vellayappan, B.A. Jeyasekharan, ROS and the DNA damage response in cancer. Redox Biol., 2019, 25, 101084.
[21]
Pavlova, N.N.; Zhu, J.; Thompson, C.B. The hallmarks of cancer metabolism: Still emerging. Cell Metab., 2022, 34(3), 355-377.
[http://dx.doi.org/10.1016/j.cmet.2022.01.007] [PMID: 35123658]
[22]
Mendes, F.; Pereira, E.; Martins, D.; Tavares-Silva, E.; Pires, A.S.; Abrantes, A.M.; Figueiredo, A.; Botelho, M.F. Oxidative stress in bladder cancer: An ally or an enemy? Mol. Biol. Rep., 2021, 48(3), 2791-2802.
[http://dx.doi.org/10.1007/s11033-021-06266-4] [PMID: 33733384]
[23]
Wang, Y.; Qi, H.; Liu, Y.; Duan, C.; Liu, X.; Xia, T.; Chen, D.; Piao, H.; Liu, H.X. The double-edged roles of ROS in cancer prevention and therapy. Theranostics, 2021, 11(10), 4839-4857.
[http://dx.doi.org/10.7150/thno.56747] [PMID: 33754031]
[24]
Kotsantis, P.; Petermann, E.; Boulton, S.J. Mechanisms of oncogene-induced replication stress: Jigsaw falling into place. Cancer Discov., 2018, 8(5), 537-555.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1461] [PMID: 29653955]
[25]
Barrera, G.; Cucci, M.A.; Grattarola, M.; Dianzani, C.; Muzio, G.; Pizzimenti, S. Control of oxidative stress in cancer chemoresistance: Spotlight on Nrf2 role. Antioxidants, 2021, 10.
[26]
Weinberg, F.; Ramnath, N.; Nagrath, D. Reactive oxygen species in the tumor microenvironment: An overview. Cancers, 2019, 11(8), 1191.
[http://dx.doi.org/10.3390/cancers11081191] [PMID: 31426364]
[27]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[28]
Kim, T.H.; Lee, H.C.; Kim, J.H.; Hewawaduge, C.Y.; Chathuranga, K.; Chathuranga, W.A.G.; Ekanayaka, P.; Wijerathne, H.M.S.M.; Kim, C.J.; Kim, E.; Lee, J.S. Fas-associated factor 1 mediates NADPH oxidase-induced reactive oxygen species production and proinflammatory responses in macrophages against Listeria infection. PLoS Pathog., 2019, 15(8), e1008004.
[http://dx.doi.org/10.1371/journal.ppat.1008004] [PMID: 31412082]
[29]
Xu, W.T.; Shen, G.N.; Li, T.Z.; Zhang, Y.; Zhang, T.; Xue, H.; Zuo, W.B.; Li, Y.N.; Zhang, D.J.; Jin, C.H. Isoorientin induces the apoptosis and cell cycle arrest of A549 human lung cancer cells via the ROS-regulated MAPK, STAT3 and NF-κB signaling pathways. Int. J. Oncol., 2020, 57(2), 550-561.
[http://dx.doi.org/10.3892/ijo.2020.5079] [PMID: 32626938]
[30]
Wang, J.; Li, Y.; Zhang, J.; Luo, C. Isoliquiritin modulates ferroptosis via NF-κB signalling inhibition and alleviates doxorubicin resistance in breast cancer. Immunopharmacol. Immunotoxicol., 2023, 45(4), 443-454.
[31]
Mortezaee, K.; Goradel, N.H.; Amini, P.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. NADPH oxidase as a target for modulation of radiation response; implications to carcinogenesis and radiotherapy. Curr. Mol. Pharmacol., 2019, 12(1), 50-60.
[http://dx.doi.org/10.2174/1874467211666181010154709] [PMID: 30318012]
[32]
Paolillo, R.; Boulanger, M.; Gâtel, P.; Gabellier, L.; De Toledo, M.; Tempé, D.; Hallal, R.; Akl, D.; Moreaux, J.; Baik, H.; Gueret, E.; Recher, C.; Sarry, J.E.; Cartron, G.; Piechaczyk, M.; Bossis, G. The NADPH oxidase NOX2 is a marker of adverse prognosis involved in chemoresistance of acute myeloid leukemias. Haematologica, 2022, 107(11), 2562-2575.
[http://dx.doi.org/10.3324/haematol.2021.279889] [PMID: 35172562]
[33]
Weng, M.S.; Chang, J.H.; Hung, W.Y.; Yang, Y.C.; Chien, M.H. The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J. Exp. Clin. Cancer Res., 2018, 37(1), 61.
[http://dx.doi.org/10.1186/s13046-018-0728-0] [PMID: 29548337]
[34]
Trevelin, S.C.; Shah, A.M.; Lombardi, G. Beyond bacterial killing: NADPH oxidase 2 is an immunomodulator. Immunol. Lett., 2020, 221, 39-48.
[http://dx.doi.org/10.1016/j.imlet.2020.02.009] [PMID: 32092360]
[35]
Ogboo, B.C.; Grabovyy, U.V.; Maini, A.; Scouten, S.; van der Vliet, A.; Mattevi, A.; Heppner, D.E. Architecture of the NADPH oxidase family of enzymes. Redox Biol., 2022, 52, 102298.
[36]
Taylor, J.P.; Tse, H.M. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol., 2021, 48, 102159.
[37]
Shanmugasundaram, K.; Nayak, B.K.; Friedrichs, W.E.; Kaushik, D.; Rodriguez, R.; Block, K. NOX4 functions as a mitochondrial energetic sensor coupling cancer metabolic reprogramming to drug resistance. Nat. Commun., 2017, 8(1), 997.
[http://dx.doi.org/10.1038/s41467-017-01106-1] [PMID: 29051480]
[38]
Smith, D.; Lloyd, L.; Wei, E.; Radmanesh, P.; Wei, C.C. Calmodulin binding to the dehydrogenase domain of NADPH oxidase 5 alters its oligomeric state. Biochem. Biophys. Rep., 2022, 29, 101198.
[http://dx.doi.org/10.1016/j.bbrep.2021.101198] [PMID: 35079639]
[39]
Aviello, G.; Singh, A.K.; O’Neill, S.; Conroy, E.; Gallagher, W.; D’Agostino, G.; Walker, A.W.; Bourke, B.; Scholz, D.; Knaus, U.G. Colitis susceptibility in mice with reactive oxygen species deficiency is mediated by mucus barrier and immune defense defects. Mucosal Immunol., 2019, 12(6), 1316-1326.
[http://dx.doi.org/10.1038/s41385-019-0205-x] [PMID: 31554901]
[40]
Wang, F.T.; Hassan, M.; Ansari, K.; Xu, G.L.; Li, X.P.; Fan, Y.Z. Upregulated NOX1 expression in gallbladder cancer-associated fibroblasts predicts a poor prognosis. Oncol. Rep., 2019, 42(4), 1475-1486.
[http://dx.doi.org/10.3892/or.2019.7249] [PMID: 31364740]
[41]
Nocella, C.; D'Amico, A.; Cammisotto, V.; Bartimoccia, S.; Castellani, V.; Loffredo, L.; Marini, L.; Ferrara, G.; Testa, M.; Motta, G.; Benazzi, B.; Zara, F.; Frati, G.; Sciarretta, S.; Pignatelli, P.; Violi, F.; Carnevale, R.; Group, S. Group, structure, activation, and regulation of NOX2: At the crossroad between the innate immunity and oxidative stress-mediated pathologies. Antioxidants, 2023, 12
[42]
Sumimoto, H.; Minakami, R.; Miyano, K. Soluble regulatory proteins for activation of NOX family NADPH oxidases. In: NADPH Oxidases; Humana, 2019; pp. 121-137.
[http://dx.doi.org/10.1007/978-1-4939-9424-3_8]
[43]
Giusti, N.; Gillotay, P.; Trubiroha, A.; Opitz, R.; Dumont, J.E.; Costagliola, S.; De Deken, X. Inhibition of the thyroid hormonogenic H2O2 production by Duox/DuoxA in zebrafish reveals VAS2870 as a new goitrogenic compound. Mol. Cell. Endocrinol., 2020, 500, 110635.
[http://dx.doi.org/10.1016/j.mce.2019.110635] [PMID: 31678421]
[44]
Han, M.; Zhang, T.; Yang, L.; Wang, Z.; Ruan, J.; Chang, X. Association between NADPH oxidase (NOX) and lung cancer: A systematic review and meta-analysis. J. Thorac. Dis., 2016, 8(7), 1704-1711.
[http://dx.doi.org/10.21037/jtd.2016.06.31] [PMID: 27499960]
[45]
Kuhns, D.B.; Alvord, W.G.; Heller, T.; Feld, J.J.; Pike, K.M.; Marciano, B.E.; Uzel, G.; DeRavin, S.S.; Priel, D.A.L.; Soule, B.P.; Zarember, K.A.; Malech, H.L.; Holland, S.M.; Gallin, J.I. Residual NADPH oxidase and survival in chronic granulomatous disease. N. Engl. J. Med., 2010, 363(27), 2600-2610.
[http://dx.doi.org/10.1056/NEJMoa1007097] [PMID: 21190454]
[46]
Henríquez-Olguín, C.; Boronat, S.; Cabello-Verrugio, C.; Jaimovich, E.; Hidalgo, E.; Jensen, T.E. The emerging roles of nicotinamide adenine dinucleotide phosphate oxidase 2 in skeletal muscle redox signaling and metabolism. Antioxid. Redox Signal., 2019, 31(18), 1371-1410.
[http://dx.doi.org/10.1089/ars.2018.7678] [PMID: 31588777]
[47]
Coats, B.R.; Schoenfelt, K.Q.; Barbosa-Lorenzi, V.C.; Peris, E.; Cui, C.; Hoffman, A.; Zhou, G.; Fernandez, S.; Zhai, L.; Hall, B.A.; Haka, A.S.; Shah, A.M.; Reardon, C.A.; Brady, M.J.; Rhodes, C.J.; Maxfield, F.R.; Becker, L. Metabolically activated adipose tissue macrophages perform detrimental and beneficial functions during diet-induced obesity. Cell Reports, 2017, 20, 3149-3161.
[48]
Vlajkovic, S.M.; Lin, S.C.; Wong, A.C. Thorne, Noise-induced changes in expression levels of NADPH oxidases in the cochlea. Hearing Res., 2020, 41(4), 305-316.
[http://dx.doi.org/10.1002/jcc.26103] [PMID: 31713255]
[49]
Martner, A.; Aydin, E.; Hellstrand, K.; Dolg, M. NOX2 in autoimmunity, tumor growth and metastasis. J. pathol., 2019, 247, 151-154.
[50]
Cao, X.; Wu, L.; Zhang, J.; Dolg, M. Density functional studies of coenzyme NADPH and its oxidized form NADP + : Structures, UV-Vis spectra, and the oxidation mechanism of NADPH. J. Comput. Chem., 2020, 41(4), 305-316.
[http://dx.doi.org/10.1002/jcc.26103] [PMID: 31713255]
[51]
Liu, R.; Song, K.; Wu, J.X.; Geng, X.P.; Zheng, L.; Gao, X.; Peng, H.; Chen, L. Structure of human phagocyte NADPH oxidase in the resting state. eLife, 2022, 11, e83743.
[http://dx.doi.org/10.7554/eLife.83743] [PMID: 36413210]
[52]
Reshetnikov, V.; Hahn, J.; Maueröder, C.; Czegley, C.; Munoz, L.E.; Herrmann, M.; Hoffmann, M.H.; Mokhir, A. Chemical tools for targeted amplification of reactive oxygen species in neutrophils. Front. Immunol., 2018, 9, 1827.
[http://dx.doi.org/10.3389/fimmu.2018.01827] [PMID: 30150984]
[53]
Rastogi, R.; Geng, X.; Li, F.; Ding, Y. NOX activation by subunit interaction and underlying mechanisms in disease. Front. Cell. Neurosci., 2017, 10, 301.
[http://dx.doi.org/10.3389/fncel.2016.00301] [PMID: 28119569]
[54]
Avagimyan, A.; Popov, S.; Shalnova, S. The pathophysiological basis of diabetic cardiomyopathy development. Curr. Probl. Cardiol., 2022, 47(9), 101156.
[http://dx.doi.org/10.1016/j.cpcardiol.2022.101156] [PMID: 35192869]
[55]
Damascena, H.L.; Silveira, W.A.A.; Castro, M.S.; Fontes, W. Neutrophil activated by the famous and potent PMA (Phorbol Myristate Acetate). Cells, 2022, 11
[56]
Mattos, R.T.; Bosco, A.A.; Nogueira-Machado, J.A. Rosiglitazone, a PPAR-γ agonist, inhibits VEGF secretion by peripheral blood mononuclear cells and ROS production by human leukocytes. Inflamm. Res., 2012, 61(1), 37-41.
[http://dx.doi.org/10.1007/s00011-011-0386-6] [PMID: 21986923]
[57]
Ebner, J.K.; König, G.M.; Kostenis, E.; Siegert, P.; Aktories, K.; Orth, J.H.C. Activation of Gq signaling by Pasteurella multocida toxin inhibits the osteoblastogenic-like actions of Activin A in C2C12 myoblasts, a cell model of fibrodysplasia ossificans progressiva. Bone, 2019, 127, 592-601.
[58]
Freitas, M.; Porto, G.; Fernandes, E. Zinc activates neutrophils’ oxidative burst. Biometals, 2010, 23, 31-41.
[59]
Mondola, P.; Santillo, M.; Serù, R.; Damiano, S.; Alvino, C.; Ruggiero, G.; Formisano, P.; Terrazzano, G.; Secondo, A.; Annunziato, L. Cu,Zn superoxide dismutase increases intracellular calcium levels via a phospholipase C-protein kinase C pathway in SK-N-BE neuroblastoma cells. Biochem. Biophys. Res. Commun., 2004, 324(2), 887-892.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.131] [PMID: 15474511]
[60]
Schepetkin, I.A.; Kirpotina, L.N.; Khlebnikov, A.I.; Quinn, M.T. High-throughput screening for small-molecule activators of neutrophils: identification of novel N-formyl peptide receptor agonists. Mol. Pharmacol., 2007, 71(4), 1061-1074.
[http://dx.doi.org/10.1124/mol.106.033100] [PMID: 17229869]
[61]
Liu, W.; Huang, J.; Doycheva, D.; Gamdzyk, M.; Tang, J.; Zhang, J.H. RvD1binding with FPR2 attenuates inflammation via Rac1/NOX2 pathway after neonatal hypoxic-ischemic injury in rats. Exp. Neurol., 2019, 320, 112982.
[http://dx.doi.org/10.1016/j.expneurol.2019.112982] [PMID: 31247196]
[62]
Sundqvist, M.; Holdfeldt, A.; Wright, S.C.; Møller, T.C.; Siaw, E.; Jennbacken, K.; Franzyk, H.; Bouvier, M.; Dahlgren, C.; Forsman, H. Barbadin selectively modulates FPR2-mediated neutrophil functions independent of receptor endocytosis. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(12), 118849.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118849] [PMID: 32916203]
[63]
Cristóvão, A.C.; Barata, J.; Je, G.; Kim, Y.S. PKCδ mediates paraquat-induced Nox1 expression in dopaminergic neurons. Biochem. Biophys. Res. Commun., 2013, 437(3), 380-385.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.085] [PMID: 23827392]
[64]
Wang, X.; Luo, F.; Zhao, H. Paraquat-induced reactive oxygen species inhibit neutrophil apoptosis via a p38 MAPK/NF-κB-IL-6/TNF-α positive-feedback circuit. PLoS One, 2014, 9(4), e93837.
[http://dx.doi.org/10.1371/journal.pone.0093837] [PMID: 24714343]
[65]
Liang, W.; Zhang, Y.; Song, L.; Li, Z. 2,3‘4,4’,5-Pentachlorobiphenyl induces hepatocellular carcinoma cell proliferation through pyruvate kinase M2-dependent glycolysis. Toxicol. Lett., 2019, 313, 108-119.
[http://dx.doi.org/10.1016/j.toxlet.2019.06.006] [PMID: 31251971]
[66]
Liu, Z.; Duan, X.; Yuan, M.; Yu, J.; Hu, X.; Han, X.; Lan, L.; Liu, B.; Wang, Y.; Qin, J. Glucagon-like peptide-1 receptor activation by liraglutide promotes breast cancer through NOX4/ROS/VEGF pathway. Life Sci., 2022, 294, 120370.
[http://dx.doi.org/10.1016/j.lfs.2022.120370] [PMID: 35124000]
[67]
Choi, J.Y.; Lee, N.K.; Wang, Y.Y.; Hong, J.P.; Son, S.R.; Gu, D.H.; Jang, D.S.; Choi, J.H. 1'-acetoxyeugenol acetate isolated from thai ginger induces apoptosis in human ovarian cancer cells by ROS production via NADPH oxidase. Antioxidants, 2022, 11
[68]
Chocry, M.; Leloup, L. The NADPH oxidase family and its inhibitors. Antioxid Redox Signal, 2020, 33, 332-353.
[69]
Wedgwood, S.; Lakshminrusimha, S.; Farrow, K.N.; Czech, L.; Gugino, S.F.; Soares, F.; Russell, J.A.; Steinhorn, R.H. Apocynin improves oxygenation and increases eNOS in persistent pulmonary hypertension of the newborn. Am. J. Physiol. Lung Cell. Mol. Physiol., 2012, 302(6), L616-L626.
[http://dx.doi.org/10.1152/ajplung.00064.2011] [PMID: 22198908]
[70]
Heumüller, S.; Wind, S.; Barbosa-Sicard, E.; Schmidt, H.H.; Busse, R.; Schröder, K.; Brandes, R.P. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension, 2008, 51, 211-217.
[71]
Szilagyi, J.T.; Mishin, V.; Heck, D.E.; Jan, Y.H.; Aleksunes, L.M.; Richardson, J.R.; Heindel, N.D.; Laskin, D.L.; Laskin, J.D. Selective targeting of heme protein in cytochrome P450 and nitric oxide synthase by diphenyleneiodonium. Toxicol. Sci., 2016, 151, 150-159.
[72]
Smith, S.M.E.; Min, J.; Ganesh, T.; Diebold, B.; Kawahara, T.; Zhu, Y.; McCoy, J.; Sun, A.; Snyder, J.P.; Fu, H.; Du, Y.; Lewis, I.; Lambeth, J.D. Ebselen and congeners inhibit NADPH oxidase 2-dependent superoxide generation by interrupting the binding of regulatory subunits. Chem. Biol., 2012, 19(6), 752-763.
[http://dx.doi.org/10.1016/j.chembiol.2012.04.015] [PMID: 22726689]
[73]
Reis, J.; Massari, M.; Marchese, S.; Ceccon, M.; Aalbers, F.S.; Corana, F.; Valente, S.; Mai, A.; Magnani, F.; Mattevi, A. A closer look into NADPH oxidase inhibitors: Validation and insight into their mechanism of action. Redox Biol., 2020, 32, 101466.
[http://dx.doi.org/10.1016/j.redox.2020.101466] [PMID: 32105983]
[74]
Grauers Wiktorin, H.; Nilsson, M.S.; Kiffin, R.; Sander, F.E.; Lenox, B.; Rydstrom, A.; Hellstrand, K.; Martner, A. Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade. Cancer Immunol. Immunother., 2019, 68, 163-174.
[75]
Kiffin, R.; Grauers Wiktorin, H.; Kiffin, R. Anti-leukemic properties of histamine in monocytic leukemia: The role of NOX2. Front. Oncol., 2018, 8, 218.
[76]
Seredenina, T.; Chiriano, G.; Filippova, A.; Nayernia, Z.; Mahiout, Z.; Fioraso-Cartier, L.; Plastre, O.; Scapozza, L.; Krause, K.H.; Jaquet, V. A subset of N-substituted phenothiazines inhibits NADPH oxidases. Free Radic. Biol. Med., 2015, 86, 239-249.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.023] [PMID: 26013584]
[77]
Cui, W.; Matsuno, K.; Iwata, K.; Ibi, M.; Katsuyama, M.; Kakehi, T.; Sasaki, M.; Ikami, K.; Zhu, K.; Yabe-Nishimura, C. NADPH oxidase isoforms and anti-hypertensive effects of atorvastatin demonstrated in two animal models. J. Pharmacol. Sci., 2009, 111(3), 260-268.
[http://dx.doi.org/10.1254/jphs.09148FP] [PMID: 19881226]
[78]
Jaquet, V.; Marcoux, J.; Forest, E.; Leidal, K.G.; McCormick, S.; Westermaier, Y.; Perozzo, R.; Plastre, O.; Fioraso-Cartier, L.; Diebold, B.; Scapozza, L.; Nauseef, W.M.; Fieschi, F.; Krause, K.H.; Bedard, K. NADPH oxidase (NOX) isoforms are inhibited by celastrol with a dual mode of action. Br. J. Pharmacol., 2011, 164(2b), 507-520.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01439.x] [PMID: 21501142]
[79]
Liu, Z.M.; Shen, P.C.; Lu, C.C.; Chou, S.H.; Tien, Y.C. Suramin enhances chondrogenic properties by regulating the p67 phox/PI3K/AKT/SOX9 signalling pathway. Bone Joint Res., 2022, 11(10), 723-738.
[http://dx.doi.org/10.1302/2046-3758.1110.BJR-2022-0013.R2] [PMID: 36222195]
[80]
Smith, R.M.; Kruzliak, P.; Adamcikova, Z.; Zulli, A. Role of Nox inhibitors plumbagin, ML 090 and gp91ds-tat peptide on homocysteine thiolactone induced blood vessel dysfunction. Clin. Exp. Pharmacol. Physiol., 2015, 42(8), 860-864.
[http://dx.doi.org/10.1111/1440-1681.12427] [PMID: 25998981]
[81]
Padilha, E.C.; Shah, P.; Rai, G.; Xu, X. NOX2 inhibitor GSK2795039 metabolite identification towards drug optimization. J. Pharm. Biomed. Anal., 2021, 201, 114102.
[http://dx.doi.org/10.1016/j.jpba.2021.114102] [PMID: 33992989]
[82]
Xue, N.; Wang, L.; Wang, B.; Hu, J.; Zhang, S. NOX2 oxidase inhibitor GSK2795039 possess antiviral activity against H1N1 influenza A virus in vitro and in vivo. Microb. Pathog., 2023, 174, 105942.
[http://dx.doi.org/10.1016/j.micpath.2022.105942] [PMID: 36502994]
[83]
Li, Y.; Cifuentes-Pagano, E.; DeVallance, E.R.; de Jesus, D.S.; Sahoo, S.; Meijles, D.N.; Koes, D.; Camacho, C.J.; Ross, M.; St Croix, C.; Pagano, P.J. NADPH oxidase 2 inhibitors CPP11G and CPP11H attenuate endothelial cell inflammation & vessel dysfunction and restore mouse hind-limb flow. Redox Biol., 2019, 22, 101143.
[http://dx.doi.org/10.1016/j.redox.2019.101143] [PMID: 30897521]
[84]
Gatto, G.J., Jr; Ao, Z.; Kearse, M.G.; Zhou, M.; Morales, C.R.; Daniels, E.; Bradley, B.T.; Goserud, M.T.; Goodman, K.B.; Douglas, S.A.; Harpel, M.R.; Johns, D.G. NADPH oxidase-dependent and -independent mechanisms of reported inhibitors of reactive oxygen generation. J. Enzyme Inhib. Med. Chem., 2013, 28(1), 95-104.
[http://dx.doi.org/10.3109/14756366.2011.636360] [PMID: 22136506]
[85]
Wang, Q.; Zhou, H.; Gao, H.; Chen, S.H.; Chu, C.H.; Wilson, B.; Hong, J.S. Naloxone inhibits immune cell function by suppressing superoxide production through a direct interaction with gp91 phox subunit of NADPH oxidase. J. Neuroinflammation, 2012, 9(1), 32.
[http://dx.doi.org/10.1186/1742-2094-9-32] [PMID: 22340895]
[86]
Lee, Y.C.; Chiou, J.T.; Wang, L.J.; Shi, Y.J.; Chen, Y.J.; Chang, L.S. Carboxyl group-modified myoglobin induces TNF-α-mediated apoptosis in leukemia cells. Pharmaceuticals, 2022, 15
[87]
Liu, D.; Wu, N.; Sun, H.; Dong, M.; Guo, T.; Chi, P.; Li, G.; Sun, D.; Jin, Y. ABCG2 and NCF4 polymorphisms are associated with clinical outcomes in diffuse large B-cell lymphoma patients treated with R-CHOP. Oncotarget, 2017, 8(35), 58292-58303.
[http://dx.doi.org/10.18632/oncotarget.16869] [PMID: 28938556]
[88]
Wang, N.; Song, L.; Xu, Y.; Zhang, L.; Wu, Y.; Guo, J.; Ji, W.; Li, L.; Zhao, J.; Zhang, X.; Zhan, L. Loss of Scribble confers cisplatin resistance during NSCLC chemotherapy via Nox2/ROS and Nrf2/PD-L1 signaling. EBioMedicine, 2019, 47, 65-77.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.057] [PMID: 31495720]
[89]
Jamali, T.; Kavoosi, G.; Jamali, Y.; Mortezazadeh, S.; Ardestani, S.K. In-vitro, in-vivo, and in-silico assessment of radical scavenging and cytotoxic activities of Oliveria decumbens essential oil and its main components. Sci. Rep., 2021, 11(1), 14281.
[http://dx.doi.org/10.1038/s41598-021-93535-8] [PMID: 34253776]
[90]
Tsai, M.H.; Liu, J.F.; Chiang, Y.C.; Chu-Sung Hu, S.; Hsu, L.F.; Lin, Y.C.; Lin, Z.C.; Lee, H.C.; Chen, M.C.; Huang, C.L.; Lee, C.W. Artocarpin, an isoprenyl flavonoid, induces p53-dependent or independent apoptosis via ROS-mediated MAPKs and Akt activation in non-small cell lung cancer cells. Oncotarget, 2017, 8(17), 28342-28358.
[http://dx.doi.org/10.18632/oncotarget.16058] [PMID: 28423703]
[91]
Han, Z.; Kang, D.; Joo, Y.; Lee, J.; Oh, G.H.; Choi, S.; Ko, S.; Je, S.; Choi, H.J.; Song, J.J. TGF-β downregulation-induced cancer cell death is finely regulated by the SAPK signaling cascade. Exp. Mol. Med., 2018, 50(12), 1-19.
[http://dx.doi.org/10.1038/s12276-018-0189-8] [PMID: 30523245]
[92]
Chiou, J.T.; Lee, Y.C.; Wang, L.J.; Chang, L.S. BCL2 inhibitor ABT-199 and BCL2L1 inhibitor WEHI-539 coordinately promote NOXA-mediated degradation of MCL1 in human leukemia cells. Chem. Biol. Interact., 2022, 361, 109978.
[http://dx.doi.org/10.1016/j.cbi.2022.109978] [PMID: 35561756]
[93]
Liu, L.; Rezvani, H.R.; Back, J.H.; Hosseini, M.; Tang, X.; Zhu, Y.; Mahfouf, W.; Raad, H.; Raji, G.; Athar, M.; Kim, A.L.; Bickers, D.R. Inhibition of p38 MAPK signaling augments skin tumorigenesis via NOX2 driven ROS generation. PLoS One, 2014, 9(5), e97245.
[http://dx.doi.org/10.1371/journal.pone.0097245] [PMID: 24824222]
[94]
Ishii, T. Close teamwork between Nrf2 and peroxiredoxins 1 and 6 for the regulation of prostaglandin D2 and E2 production in macrophages in acute inflammation. Free Radic. Biol. Med., 2015, 88(Pt B), 189-198.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.034] [PMID: 25968070]
[95]
Cha, M.Y.; Lee, K.O.; Kim, M.; Song, J.Y.; Lee, K.H.; Park, J.; Chae, Y.J.; Kim, Y.H.; Suh, K.H.; Lee, G.S.; Park, S.B.; Kim, M.S. Antitumor activity of HM781-36B, a highly effective pan-HER inhibitor in erlotinib-resistant NSCLC and other EGFR-dependent cancer models. Int. J. Cancer, 2012, 130(10), 2445-2454.
[http://dx.doi.org/10.1002/ijc.26276] [PMID: 21732342]
[96]
Hong, S.W.; Park, N.S.; Noh, M.H.; Shim, J.A.; Ahn, B.N.; Kim, Y.S.; Kim, D.; Lee, H.K.; Hur, D.Y. Combination treatment with erlotinib and ampelopsin overcomes erlotinib resistance in NSCLC cells via the Nox2-ROS-Bim pathway. Lung Cancer, 2017, 106, 115-124.
[http://dx.doi.org/10.1016/j.lungcan.2017.02.009] [PMID: 28285685]
[97]
Leung, E.L.H.; Fan, X.X.; Wong, M.P.; Jiang, Z.H.; Liu, Z.Q.; Yao, X.J.; Lu, L.L.; Zhou, Y.L.; Yau, L.F.; Tin, V.P.C.; Liu, L. Targeting tyrosine kinase inhibitor-resistant non-small cell lung cancer by inducing epidermal growth factor receptor degradation via methionine 790 oxidation. Antioxid. Redox Signal., 2016, 24(5), 263-279.
[http://dx.doi.org/10.1089/ars.2015.6420] [PMID: 26528827]
[98]
Zhang, Z.; Zhang, H.; Li, D.; Zhou, X.; Qin, Q.; Zhang, Q. Caspase-3-mediated GSDME induced Pyroptosis in breast cancer cells through the ROS/JNK signalling pathway. J. Cell. Mol. Med., 2021, 25(17), 8159-8168.
[http://dx.doi.org/10.1111/jcmm.16574] [PMID: 34369076]
[99]
McLaughlin, D.; Zhao, Y.; O’Neill, K.M.; Edgar, K.S.; Dunne, P.D.; Kearney, A.M.; Grieve, D.J.; McDermott, B.J. Signalling mechanisms underlying doxorubicin and Nox2 NADPH oxidase-induced cardiomyopathy: involvement of mitofusin-2. Br. J. Pharmacol., 2017, 174(21), 3677-3695.
[http://dx.doi.org/10.1111/bph.13773] [PMID: 28261787]
[100]
Lanza-Jacoby, S.; Cheng, G. 3,3′-Diindolylmethane enhances apoptosis in docetaxel-treated breast cancer cells by generation of reactive oxygen species. Pharm. Biol., 2018, 56(1), 407-414.
[http://dx.doi.org/10.1080/13880209.2018.1495747] [PMID: 30301388]
[101]
Guo, Y.; Han, B.; Luo, K.; Ren, Z.; Cai, L.; Sun, L. NOX2-ROS-HIF-1α signaling is critical for the inhibitory effect of oleanolic acid on rectal cancer cell proliferation. Biomed. Pharmacother., 2017, 85, 733-739.
[http://dx.doi.org/10.1016/j.biopha.2016.11.091] [PMID: 27938946]
[102]
Ishaq, M.; Evans, M.D.; Ostrikov, K.K. Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2-ASK1 apoptosis pathways and oxidative stress is mitigated by Srx-Nrf2 anti-oxidant system. Biochimic. et Biophys. Acta., 2014, 1843, 2827-2837.
[103]
Saber, M.M.; Al-Mahallawi, A.M. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes. BMC Cancer, 2018, 18, 822.
[104]
Hacioglu, C. Capsaicin inhibits cell proliferation by enhancing oxidative stress and apoptosis through SIRT1/NOX4 signaling pathways in HepG2 and HL-7702 cells. J. Biochem. Mol. Toxicol., 2022, 36(3), e22974.
[http://dx.doi.org/10.1002/jbt.22974] [PMID: 34939720]
[105]
Liu, L.; Yang, Z.; Xu, Y.; Li, J.; Xu, D.; Zhang, L.; Sun, J.; Xia, S.; Zou, F.; Liu, Y. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells. PLoS One, 2013, 8(8), e73038.
[http://dx.doi.org/10.1371/journal.pone.0073038] [PMID: 24023668]
[106]
Ko, Y.H.; Jeong, M.; Jang, D.S.; Choi, J.H. Gomisin L1, a lignan isolated from schisandra berries, induces apoptosis by regulating NADPH oxidase in human ovarian cancer cells. Life, 2021, 11
[107]
Yang, W.H.; Huang, Z.; Wu, J.; Ding, C.K.C.; Murphy, S.K.; Chi, J.T. A TAZ-ANGPTL4-NOX2 Axis Regulates Ferroptotic Cell Death and Chemoresistance in Epithelial Ovarian Cancer. Mol. Cancer Res., 2020, 18(1), 79-90.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0691] [PMID: 31641008]
[108]
Zheng, K.; Jiang, Y.; Liao, C.; Hu, X.; Li, Y.; Zeng, Y.; Zhang, J.; Wu, X.; Wu, H.; Liu, L.; Wang, Y.; He, Z. NOX2-Mediated TFEB Activation and Vacuolization Regulate Lysosome-Associated Cell Death Induced by Gypenoside L, a Saponin Isolated from Gynostemma pentaphyllum. J. Agric. Food Chem., 2017, 65(31), 6625-6637.
[http://dx.doi.org/10.1021/acs.jafc.7b02296] [PMID: 28697598]
[109]
Waghela, B.N.; Vaidya, F.U.; Pathak, C. Upregulation of NOX-2 and Nrf-2 Promotes 5-Fluorouracil Resistance of Human Colon Carcinoma (HCT-116) Cells. Biochemistry, 2021, 86(3), 262-274.
[http://dx.doi.org/10.1134/S0006297921030044] [PMID: 33838628]
[110]
Vyas, A.; Duvvuri, U.; Kiselyov, K. Copper-dependent ATP7B up-regulation drives the resistance of TMEM16A-overexpressing head-and-neck cancer models to platinum toxicity. Biochem. J., 2019, 476(24), 3705-3719.
[http://dx.doi.org/10.1042/BCJ20190591] [PMID: 31790150]
[111]
Badia, E.; Morena, M.; Lauret, C.; Boulahtouf, A.; Boulle, N.; Cavaillès, V.; Balaguer, P.; Cristol, J.P. Effect of tamoxifen and fulvestrant long-term treatments on ROS production and (pro/anti)-oxidant enzymes mRNA levels in a MCF-7-derived breast cancer cell line. Breast Cancer, 2016, 23(5), 692-700.
[http://dx.doi.org/10.1007/s12282-015-0626-7] [PMID: 26193841]
[112]
Mukawera, E.; Chartier, S.; Williams, V.; Pagano, P.J.; Lapointe, R.; Grandvaux, N. Redox-modulating agents target NOX2-dependent IKKε oncogenic kinase expression and proliferation in human breast cancer cell lines. Redox Biol., 2015, 6, 9-18.
[http://dx.doi.org/10.1016/j.redox.2015.06.010] [PMID: 26177467]
[113]
Huang, H.S.; Liu, Z.M.; Chen, P.C.; Tseng, H.Y.; Yeh, B.W. TG-interacting factor-induced superoxide production from NADPH oxidase contributes to the migration/invasion of urothelial carcinoma. Free Radic. Biol. Med., 2012, 53(4), 769-778.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.014] [PMID: 22728270]
[114]
Irwin, M.E.; Johnson, B.P.; Manshouri, R.; Amin, H.M.; Chandra, J. A NOX2/Egr-1/Fyn pathway delineates new targets for TKI-resistant malignancies. Oncotarget, 2015, 6, 23631-23646.
[115]
Xiang, H.; Ramil, C.P.; Manshouri, R.; Amin, H.M.; Chandra, J. Brandish, cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol. Res., 2020, 8, 436-450.
[116]
Cui, Q.; Wang, J.Q.; Assaraf, Y.G.; Ren, L.; Gupta, P.; Wei, L.; Ashby, C.R., Jr; Yang, D.H.; Chen, Z.S. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist. Updat., 2018, 41, 1-25.
[http://dx.doi.org/10.1016/j.drup.2018.11.001] [PMID: 30471641]
[117]
Ligtenberg, M.A.; Çınar, Ö.; Holmdahl, R.; Mougiakakos, D.; Kiessling, R. Methylcholanthrene-induced sarcomas develop independently from NOX2-derived ROS. PLoS One, 2015, 10(6), e0129786.
[http://dx.doi.org/10.1371/journal.pone.0129786] [PMID: 26076008]
[118]
Okada, F.; Kobayashi, M.; Tanaka, H.; Kobayashi, T.; Tazawa, H.; Iuchi, Y.; Onuma, K.; Hosokawa, M.; Dinauer, M.C.; Hunt, N.H. The role of nicotinamide adenine dinucleotide phosphate oxidase-derived reactive oxygen species in the acquisition of metastatic ability of tumor cells. Am. J. Pathol., 2006, 169(1), 294-302.
[http://dx.doi.org/10.2353/ajpath.2006.060073] [PMID: 16816381]
[119]
Aydin, E.; Johansson, J.; Nazir, F.H.; Hellstrand, K.; Martner, A. Role of NOX2-derived reactive oxygen species in NK cell-mediated control of murine melanoma metastasis. Cancer Immunol. Res., 2017, 5(9), 804-811.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0382] [PMID: 28760732]
[120]
Grauers Wiktorin, H.; Aydin, E.; Hellstrand, K.; Martner, A. NOX2-derived reactive oxygen species in cancer. Oxid. Med. Cell. Longev., 2020, 2020, 1-15.
[http://dx.doi.org/10.1155/2020/7095902] [PMID: 33312338]
[121]
Su, R.; Chong, G.; Dong, H.; Gu, J.; Zang, J.; He, R.; Sun, J.; Zhang, T.; Zhao, Y.; Zheng, X.; Yang, Y.; Li, Y.; Li, Y. Nanovaccine biomineralization for cancer immunotherapy: a NADPH oxidase-inspired strategy for improving antigen cross-presentation via lipid peroxidation. Biomaterials, 2021, 277, 121089.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121089] [PMID: 34481292]
[122]
Espinosa, A.; Henríquez-Olguín, C.; Jaimovich, E. Reactive oxygen species and calcium signals in skeletal muscle: A crosstalk involved in both normal signaling and disease. Cell Calcium, 2016, 60(3), 172-179.
[http://dx.doi.org/10.1016/j.ceca.2016.02.010] [PMID: 26965208]
[123]
Petrillo, S.; Pietrafusa, N.; Trivisano, M.; Calabrese, C.; Saura, F.; Gallo, M.G.; Bertini, E.S.; Vigevano, F.; Specchio, N.; Piemonte, F. Imbalance of systemic redox biomarkers in children with epilepsy: Role of ferroptosis. Antioxidants, 2021, 10(8), 1267.
[http://dx.doi.org/10.3390/antiox10081267] [PMID: 34439515]
[124]
Cao, Y.; Luo, F.; Peng, J.; Fang, Z.; Liu, Q.; Zhou, S. KMT2B-dependent RFK transcription activates the TNF-α/NOX2 pathway and enhances ferroptosis caused by myocardial ischemia-reperfusion. J. Mol. Cell. Cardiol., 2021, 173, 75-91.
[125]
Dömer, D.; Walther, T.; Möller, S. Neutrophil extracellular traps activate proinflammatory functions of human neutrophils. Front. Immunol., 2021, 12, 636954.
[126]
Parker, H.A.; Jones, H.M.; Kaldor, C.D.; Hampton, M.B.; Winterbourn, C.C. Neutrophil NET formation with microbial stimuli requires late stage NADPH oxidase activity. Antioxidants, 2021, 10
[127]
Tallet, A.V.; Dhermain, F.; Le Rhun, E.; Noël, G.; Kirova, Y.M. Combined irradiation and targeted therapy or immune checkpoint blockade in brain metastases: Toxicities and efficacy. Ann. Oncol., 2017, 28(12), 2962-2976.
[http://dx.doi.org/10.1093/annonc/mdx408] [PMID: 29045524]
[128]
Wu, Q.; Allouch, A.; Paoletti, A.; Leteur, C.; Mirjolet, C.; Martins, I.; Voisin, L.; Law, F.; Dakhli, H.; Mintet, E.; Thoreau, M.; Muradova, Z.; Gauthier, M.; Caron, O.; Milliat, F.; Ojcius, D.M.; Rosselli, F.; Solary, E.; Modjtahedi, N.; Deutsch, E.; Perfettini, J.L. NOX2-dependent ATM kinase activation dictates pro-inflammatory macrophage phenotype and improves effectiveness to radiation therapy. Cell Death Differ., 2017, 24(9), 1632-1644.
[http://dx.doi.org/10.1038/cdd.2017.91] [PMID: 28574504]
[129]
Lu, J.P.; Monardo, L.; Bryskin, I.; Hou, Z.F.; Trachtenberg, J.; Wilson, B.C.; Pinthus, J.H. Androgens induce oxidative stress and radiation resistance in prostate cancer cells though NADPH oxidase. Prostate Cancer Prostatic Dis., 2010, 13(1), 39-46.
[http://dx.doi.org/10.1038/pcan.2009.24] [PMID: 19546883]
[130]
Cooper, K.L.; Volk, L.B.; Dominguez, D.R.; Duran, A.D.; Ke Jian Liu, K.J.; Hudson, L.G. Contribution of NADPH oxidase to the retention of UVR-induced DNA damage by arsenic. Toxicol. Appl. Pharmacol., 2022, 434, 115799.
[http://dx.doi.org/10.1016/j.taap.2021.115799] [PMID: 34798142]
[131]
Zhu, W.; Cui, G.; Li, T.; Chen, H.; Zhu, J.; Ding, Y.; Zhao, L. Docosahexaenoic acid protects traumatic brain injury by regulating NOX2 generation via Nrf2 signaling pathway. Neurochem. Res., 2020, 45(8), 1839-1850.
[http://dx.doi.org/10.1007/s11064-020-03078-z] [PMID: 32676950]
[132]
Yuan, P.; Sun, X.; Liu, X.; Hutterer, G.; Pummer, K.; Hager, B.; Ye, Z.; Chen, Z. Kaempferol alleviates calcium oxalate crystal-induced renal injury and crystal deposition via regulation of the AR/NOX2 signaling pathway. Phytomedicine, 2021, 86, 153555.
[http://dx.doi.org/10.1016/j.phymed.2021.153555] [PMID: 33852977]
[133]
Zhang, R.; Liu, C.; Yang, L.; Ji, T.; Zhang, N.; Dong, X.; Chen, X.; Ma, J.; Gao, W.; Huang, S.; Chen, L. NOX2-derived hydrogen peroxide impedes the AMPK/Akt-mTOR signaling pathway contributing to cell death in neuronal cells. Cell. Signal., 2022, 94, 110330.
[http://dx.doi.org/10.1016/j.cellsig.2022.110330] [PMID: 35390465]
[134]
Cheng, D.; Tu, W.; Chen, L.; Wang, H.; Wang, Q.; Liu, H.; Zhu, N.; Fang, W.; Yu, Q. MSCs enhances the protective effects of valsartan on attenuating the doxorubicin-induced myocardial injury via AngII/NOX/ROS/MAPK signaling pathway. Aging, 2021, 13(18), 22556-22570.
[http://dx.doi.org/10.18632/aging.203569] [PMID: 34587120]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy