Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Research Article

Mild and Efficient Preparation of N-Heterocyclic Organic Molecules by Catalyst-free and Solvent-free Methods

Author(s): Zhiqiang Wu*, Xuesong Li, Yueyi Li, Lin-an Cao, Zhenliang Li, Xuming Wang, Wanyi Liu and Enke Feng*

Volume 22, Issue 2, 2025

Published on: 14 February, 2024

Page: [253 - 262] Pages: 10

DOI: 10.2174/0115701794285717240124053728

Price: $65

TIMBC 2025
Abstract

Aims: The small organic molecular compounds with biological activity containing C-C and C-N or C-O bonding were efficiently prepared without catalyst and solvent in the hydrothermal synthesis reactor.

Objectives: Our goal was to explore new applications for the more environmentally friendly and efficient synthesis of bis(indolyl)methyl, xanthene, quinazolinone, and N-heterocyclic derivatives in hydrothermal synthesis reactors under solvent-free and catalyst-free conditions.

Methods: A greener and more efficient method was successfully developed for the synthesis of bis(indolyl)methyl, heteroanthracene, quinazolinone, and N-heterocyclic derivatives using a hydrothermal synthesis reactor in a solvent- and catalyst-free manner.

Results: In a hydrothermal synthesis reactor, bis(indoyl)methyl, xanthene, quinazolinone, and N-heterocyclic derivatives were synthesized without catalysts and solvents.

Conclusion: Overall, it is proved once again that the catalyst-free and solvent-free synthesis method has universal value and is a more ideal and environmentally friendly new method, especially the hydrothermal reactor for synthesis.

Keywords: Catalyst-free, solvent-free, organic small molecules, synthetic preparation, N-heterocyclic derivatives, hydrothermal.

Graphical Abstract
[1]
Li, C.J. Cross-dehydrogenative coupling (CDC): Exploring C-C bond formations beyond functional group transformations. Acc. Chem. Res., 2009, 42(2), 335-344.
[http://dx.doi.org/10.1021/ar800164n] [PMID: 19220064]
[2]
Xin, J.; Zhang, S.; Yan, D.; Ayodele, O.; Lu, X.; Wang, J. Formation of C–C bonds for the production of bio-alkanes under mild conditions. Green Chem., 2014, 16(7), 3589-3595.
[http://dx.doi.org/10.1039/C4GC00501E]
[3]
Ohkado, R.; Ishikawa, T.; Iida, H. Flavin–iodine coupled organocatalysis for the aerobic oxidative direct sulfenylation of indoles with thiols under mild conditions. Green Chem., 2018, 20(5), 984-988.
[http://dx.doi.org/10.1039/C8GC00117K]
[4]
Liu, Y.; Zhang, Y.; Hu, C.; Wan, J.P.; Wen, C. Synthesis of 3-sulfenylated indoles by a simple NaOH promoted sulfenylation reaction. RSC Advances, 2014, 4(67), 35528-35530.
[http://dx.doi.org/10.1039/C4RA05206D]
[5]
Zhang, X.; Zhou, X.; Xiao, H.; Li, X. A catalyst-free system for 3-sulfenylation of free (N–H) indoles with mercaptobenzoic acid under alkaline conditions. RSC Advances, 2013, 3(44), 22280-22284.
[http://dx.doi.org/10.1039/c3ra44484h]
[6]
Kainz, Q.M.; Matier, C.D.; Bartoszewicz, A.; Zultanski, S.L.; Peters, J.C.; Fu, G.C. Asymmetric copper-catalyzed C-N cross-couplings induced by visible light. Science, 2016, 351(6274), 681-684.
[http://dx.doi.org/10.1126/science.aad8313] [PMID: 26912852]
[7]
Zhou, X.; Li, X. Catalyst-free system for sulfenylation of free (N–H) indoles with 2,2′-dithiosalicylic acid under alkaline conditions. RSC Advances, 2014, 4(3), 1241-1245.
[http://dx.doi.org/10.1039/C3RA46361C]
[8]
Zou, L.H.; Reball, J.; Mottweiler, J.; Bolm, C. Transition metal-free direct C–H bond thiolation of 1,3,4-oxadiazoles and related heteroarenes. Chem. Commun., 2012, 48(92), 11307-11309.
[http://dx.doi.org/10.1039/c2cc36711d] [PMID: 23072812]
[9]
Wang, G.; Wu, Z.; Liang, Y.; Liu, W.; Zhan, H.; Song, M.; Sun, Y. Exploring the coordination confinement effect of divalent palladium/zero palladium doped polyaniline-networking: As an excellent-performance nanocomposite catalyst for C-C coupling reactions. J. Catal., 2020, 384, 177-188.
[http://dx.doi.org/10.1016/j.jcat.2020.02.021]
[10]
Patel, H.A.; Sawant, A.M.; Rao, V.J.; Patel, A.L.; Bedekar, A.V. Polyaniline supported FeCl3: An effective heterogeneous catalyst for biginelli reaction. Catal. Lett., 2017, 147(9), 2306-2312.
[http://dx.doi.org/10.1007/s10562-017-2139-9]
[11]
Gutiérrez-Bonet, Á.; Remeur, C.; Matsui, J.K.; Molander, G.A. Late-Stage C–H alkylation of heterocycles and 1,4-quinones via oxidative homolysis of 1,4-dihydropyridines. J. Am. Chem. Soc., 2017, 139(35), 12251-12258.
[12]
Yue, X.; Wu, Z.; Wang, G.; Liang, Y.; Sun, Y.; Song, M.; Zhan, H.; Bi, S.; Liu, W. High acidity cellulose sulfuric acid from sulfur trioxide: A highly efficient catalyst for the one step synthesis of xanthene and dihydroquinazolinone derivatives. RSC Advances, 2019, 9(49), 28718-28723.
[http://dx.doi.org/10.1039/C9RA05748J] [PMID: 35529635]
[13]
Rathwa, S.K.; Vasava, M.S.; Bhoi, M.N.; Borad, M.A.; Patel, H.D. Recent advances in the synthesis of C-5-substituted analogs of 3,4-dihydropyrimidin-2-ones: A review. Synth. Commun., 2018, 48(9), 963-994.
[http://dx.doi.org/10.1080/00397911.2017.1423503]
[14]
Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J.N. Biginelli reaction: An overview. Tetrahedron Lett., 2016, 57(47), 5135-5149.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.047]
[15]
Patil, R.V.; Chavan, J.U.; Dalal, D.S.; Shinde, V.S.; Beldar, A.G. Biginelli reaction: Polymer supported catalytic approaches. ACS Comb. Sci., 2019, 21(3), 105-148.
[http://dx.doi.org/10.1021/acscombsci.8b00120] [PMID: 30645098]
[16]
Wang, M.; Song, J.; Lu, Q.; Wang, Q. Green biginelli-type reaction: Solvent-free synthesis of 5-unsubstituted 3,4-dihydropyrimdin-2(1 H)-ones. J. Heterocycl. Chem., 2015, 52(6), 1907-1910.
[http://dx.doi.org/10.1002/jhet.2279]
[17]
Achary, L.S.K.; Kumar, A.; Rout, L.; Kunapuli, S.V.S.; Dhaka, R.S.; Dash, P. Phosphate functionalized graphene oxide with enhanced catalytic activity for Biginelli type reaction under microwave condition. Chem. Eng. J., 2018, 331, 300-310.
[http://dx.doi.org/10.1016/j.cej.2017.08.109]
[18]
Zhaleh, S.; Hazeri, N.; Maghsoodlou, M.T. Green protocol for synthesis of 2,3-dihydroquinazolin-4(1H)-ones: Lactic acid as catalyst under solvent-free condition. Res. Chem. Intermed., 2016, 42(7), 6381-6390.
[http://dx.doi.org/10.1007/s11164-016-2469-z]
[19]
Zhao, S.Y.; Chen, Z.Y.; Wei, N.; Liu, L.; Han, Z.B. Highly efficient cooperative catalysis of single-site lewis acid and brønsted acid in a metal–organic framework for the biginelli reaction. Inorg. Chem., 2019, 58(12), 7657-7661.
[http://dx.doi.org/10.1021/acs.inorgchem.9b00816] [PMID: 31124668]
[20]
Narayanan, D.P.; Sankaran, S.; Narayanan, B.N. Novel rice husk ash - reduced graphene oxide nanocomposite catalysts for solvent free Biginelli reaction with a statistical approach for the optimization of reaction parameters. Mater. Chem. Phys., 2019, 222, 63-74.
[http://dx.doi.org/10.1016/j.matchemphys.2018.09.078]
[21]
Wang, R.; Liu, Z.Q. Solvent-free and catalyst-free Biginelli reaction to synthesize ferrocenoyl dihydropyrimidine and kinetic method to express radical-scavenging ability. J. Org. Chem., 2012, 77(8), 3952-3958.
[http://dx.doi.org/10.1021/jo300282y] [PMID: 22489679]
[22]
Sun, J.; Ren, J.; Zhang, S.; Cheng, W. Water as an efficient medium for the synthesis of cyclic carbonate. Tetrahedron Lett., 2009, 50(4), 423-426.
[http://dx.doi.org/10.1016/j.tetlet.2008.11.034]
[23]
Ranu, B.C.; Hajra, A.; Dey, S.S. A practical and green approach towards synthesis of dihydropyrimidinones without any solvent or catalyst. Org. Process Res. Dev., 2002, 6(6), 817-818.
[http://dx.doi.org/10.1021/op0255478]
[24]
Hajjami, M.; Ghiasbeygi, E. First catalyst- and solvent-free synthesis of 3,4-dihydropyrimidin-2(1H)-ones and -thiones. Russ. J. Org. Chem., 2016, 52(3), 429-432.
[http://dx.doi.org/10.1134/S1070428016030222]
[25]
Carvalho, R.B.; Joshi, S.V. Solvent and catalyst free synthesis of 3,4-dihydropyrimidin-2(1 H)-ones/thiones by twin screw extrusion. Green Chem., 2019, 21(8), 1921-1924.
[http://dx.doi.org/10.1039/C9GC00036D]
[26]
Harikrishnan, P.S.; Rajesh, S.M.; Perumal, S.; Almansour, A.I. A microwave-mediated catalyst- and solvent-free regioselective Biginelli reaction in the synthesis of highly functionalized novel tetrahydropyrimidines. Tetrahedron Lett., 2013, 54(9), 1076-1079.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.034]
[27]
Ahmed, E.A.; Khodairy, A.; Abd El Aleem, A.A.E.M.; Ahmed, A.M. One-step, low-cost, operator-friendly, and scalable procedure to synthetize novel tetrazolopyrimidinylbenzopyran-2-ones by benign protocol. Curr. Org. Chem., 2023, 26(24), 2214-2222.
[http://dx.doi.org/10.2174/1385272827666230206162235]
[28]
Abd El Aleem Ali Ali El-Remaily, M.; Elhady, O.M. Green bio‐organic and recoverable catalyst taurine (2‐aminoethanesulfonic acid) for synthesis of bio‐active compounds 3,4‐dihydropyrimidin derivatives in aqueous medium. ChemistrySelect, 2020, 5(39), 12098-12102.
[http://dx.doi.org/10.1002/slct.202002575]
[29]
El-Remaily, M.A.E.A.A.A.; Elhady, O.; Abdou, A.; Alhashmialameer, D.; Eskander, T.N.A.; Abu-Dief, A.M. Development of new 2-(Benzothiazol-2-ylimino)-2,3-dihydro-1H-imidazol-4-ol complexes as a robust catalysts for synthesis of thiazole 6-carbonitrile derivatives supported by DFT studies. J. Mol. Struct., 2023, 1292(24), 136188.
[http://dx.doi.org/10.1016/j.molstruc.2023.136188]
[30]
Wu, Z.; Wang, G.; Yuan, S.; Wu, D.; Liu, W.; Ma, B.; Bi, S.; Zhan, H.; Chen, X. Synthesis of bis(indolyl)methanes under dry grinding conditions, promoted by a Lewis acid–surfactant–SiO 2 -combined nanocatalyst. Green Chem., 2019, 21(13), 3542-3546.
[http://dx.doi.org/10.1039/C9GC01073D]
[31]
Niu, X.; Wei, H.; Tang, K.; Liu, W.; Zhao, G.; Yang, Y. Solvothermal synthesis of 1D nanostructured Mn 2 O 3: effect of Ni 2+ and Co 2+ substitution on the catalytic activity of nanowires. RSC Advances, 2015, 5(81), 66271-66277.
[http://dx.doi.org/10.1039/C5RA14618F]
[32]
Walton, R.I. Solvothermal synthesis of cerium oxides. Prog. Cryst. Growth Charact. Mater., 2011, 57(4), 93-108.
[http://dx.doi.org/10.1016/j.pcrysgrow.2011.10.002]
[33]
Wang, Y.J.; Lai, C.; Wei, K.; Chen, X.; Ding, Y.; Wang, Z.L. Investigations on the formation mechanism of hydroxyapatite synthesized by the solvothermal method. Nanotechnology, 2006, 17(17), 4405-4412.
[http://dx.doi.org/10.1088/0957-4484/17/17/020]
[34]
Wang, G.; Wang, B.; Park, J.; Yang, J.; Shen, X.; Yao, J. Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon, 2009, 47(1), 68-72.
[http://dx.doi.org/10.1016/j.carbon.2008.09.002]
[35]
Shchipunov, Y.; Ivanova, N.; Silant’ev, V. Bionanocomposites formed by in situ charged chitosan with clay. Green Chem., 2009, 11(11), 1758-1761.
[http://dx.doi.org/10.1039/b914548f]
[36]
Xu, Z.; Zhang, Y.; Fu, H.; Zhong, H.; Hong, K.; Zhu, W. Antifungal quinazolinones from marine-derived Bacillus cereus and their preparation. Bioorg. Med. Chem. Lett., 2011, 21(13), 4005-4007.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.002] [PMID: 21612927]
[37]
Kang, H.B.; Rim, H.K.; Park, J.Y.; Choi, H.W.; Choi, D.L.; Seo, J.H.; Chung, K.S.; Huh, G.; Kim, J.; Choo, D.J.; Lee, K.T.; Lee, J.Y. In vivo evaluation of oral anti-tumoral effect of 3,4-dihydroquinazoline derivative on solid tumor. Bioorg. Med. Chem. Lett., 2012, 22(2), 1198-1201.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.083] [PMID: 22177784]
[38]
Su, W.; Yang, D.; Jin, C.; Zhang, B. Yb(OTf)3 catalyzed condensation reaction of β-naphthol and aldehyde in ionic liquids: A green synthesis of aryl-14H-dibenzo[a,j]xanthenes. Tetrahedron Lett., 2008, 49(21), 3391-3394. [a,j]
[http://dx.doi.org/10.1016/j.tetlet.2008.03.124]
[39]
Tabatabaeian, K.; Khorshidi, A.; Mamaghani, M.; Dadashi, A. Facile and efficient method for the synthesis of 14-substituted-14- H -dibenzo[ a,j]xanthenes catalyzed by ruthenium chloride hydrate as a homogeneous catalyst. Synth. Commun., 2011, 41(10), 1427-1434.
[http://dx.doi.org/10.1080/00397911.2010.486507]
[40]
Rajitha, B.; Sunil, K.B.; Thirupathi, R.Y.; Narsimha, R.P.; Sreenivasulu, N. Sulfamic acid: A novel and efficient catalyst for the synthesis of aryl-14H-dibenzo[a.j]xanthenes under conventional heating and microwave irradiation. Tetrahedron Lett., 2005, 46(50), 8691-8693.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.057]
[41]
Heo, J.H.; Seo, H.N.; Choe, Y.J.; Kim, S.; Oh, C.R.; Kim, Y.D.; Rhim, H.; Choo, D.J.; Kim, J.; Lee, J.Y. T-type Ca2+ channel blockers suppress the growth of human cancer cells. Bioorg. Med. Chem. Lett., 2008, 18(14), 3899-3901.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.034] [PMID: 18585035]
[42]
Zeni, G.; Larock, R.C. Synthesis of heterocycles via palladium π-olefin and π-alkyne chemistry. Chem. Rev., 2004, 104(5), 2285-2310.
[http://dx.doi.org/10.1021/cr020085h] [PMID: 15137792]
[43]
Ubale, M.; Ubale, M. Silica chloride catalyzed efficient synthesis of 2,3-dihydroquinazoline-4(1h)-ones derivatives in water. Biomed. J. Sci. Tech. Res., 2017, 1(6), 1786-1789.
[http://dx.doi.org/10.26717/BJSTR.2017.01.000549]
[44]
Xie, Z.B.; Zhang, S.G.; Jiang, G.F.; Sun, D.Z.; Le, Z.G. The green synthesis of 2,3-dihydroquinazolin-4(1 H)-ones via direct cyclocondensation reaction under catalyst-free conditions. Green Chem. Lett. Rev., 2015, 8(3-4), 95-98.
[http://dx.doi.org/10.1080/17518253.2015.1109145]
[45]
Kim, N.Y.; Cheon, C.H. Synthesis of quinazolinones from anthranilamides and aldehydes via metal-free aerobic oxidation in DMSO. Tetrahedron Lett., 2014, 55(15), 2340-2344.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.065]
[46]
Yang, X.; Cheng, G.; Shen, J.; Kuai, C.; Cui, X. Cleavage of the C–C triple bond of ketoalkynes: Synthesis of 4(3H)-quinazolinones. Org. Chem. Front., 2015, 2(4), 366-368.
[http://dx.doi.org/10.1039/C4QO00260A]
[47]
Yashwantrao, G.; Jejurkar, V.P.; Kshatriya, R.; Saha, S. Solvent-free, mechanochemically scalable synthesis of 2,3-dihydroquinazolin-4(1H)-one using brønsted acid catalyst. ACS Sustain. Chem.& Eng., 2019, 7(15), 13551-13558.
[http://dx.doi.org/10.1021/acssuschemeng.9b03199]
[48]
Khiratkar, A.G.; Muskawar, P.N.; Bhagat, P.R. Polymer-supported benzimidazolium based ionic liquid: An efficient and reusable Brønsted acid catalyst for Biginelli reaction. RSC Advances, 2016, 6(107), 105087-105093.
[http://dx.doi.org/10.1039/C6RA23781A]
[49]
Barbero, M.; Cadamuro, S.; Dughera, S. A Brønsted acid catalysed enantioselective Biginelli reaction. Green Chem., 2017, 19(6), 1529-1535.
[http://dx.doi.org/10.1039/C6GC03274E]
[50]
Quan, Z.J.; Da, Y.X.; Zhang, Z.; Wang, X.C. PS–PEG–SO3H as an efficient catalyst for 3,4-dihydropyrimidones via Biginelli reaction. Catal. Commun., 2009, 10(8), 1146-1148.
[http://dx.doi.org/10.1016/j.catcom.2008.12.017]
[51]
Kappe, C.O. A reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis. Support for an N-acyliminium ion intermediate. J. Org. Chem., 1997, 62(21), 7201-7204.
[http://dx.doi.org/10.1021/jo971010u] [PMID: 11671828]
[52]
Folkers, K.; Johnson, T.B. Researches on pyrimidines. CXXXVI. the mechanism of formation of tetrahydropyrimidines by the biginelli reaction. J. Am. Chem. Soc., 1933, 55(9), 3784-3791.
[http://dx.doi.org/10.1021/ja01336a054]
[53]
Sweet, F.; Fissekis, J.D. Synthesis of 3,4-dihydro-2(1H)-pyrimidinones and the mechanism of the Biginelli reaction. J. Am. Chem. Soc., 1973, 95(26), 8741-8749.
[http://dx.doi.org/10.1021/ja00807a040]
[54]
Puripat, M.; Ramozzi, R.; Hatanaka, M.; Parasuk, W.; Parasuk, V.; Morokuma, K. The Biginelli reaction is a urea-catalyzed organocatalytic multicomponent reaction. J. Org. Chem., 2015, 80(14), 6959-6967.
[http://dx.doi.org/10.1021/acs.joc.5b00407] [PMID: 26066623]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy