Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Research Article

Synthesis and Biological Evaluations of Granulatamide B and its Structural Analogues

Author(s): Dario Matulja, Petra Grbčić, Gabrijela Matijević, Sanja Babić, Krunoslav Bojanić, Sylvain Laclef, Valerije Vrček, Rozelindra Čož-Rakovac, Sandra Kraljević Pavelić* and Dean Marković*

Volume 31, Issue 25, 2024

Published on: 12 February, 2024

Page: [3997 - 4021] Pages: 25

DOI: 10.2174/0109298673272687231226111132

Price: $65

conference banner
Abstract

Background: While granulatamides A and B have been previously isolated, their biological activities have been only partially examined. The aim of this study was to synthesize granulatamide B (4b), a tryptamine-derivative naturally occurring in Eunicella coral species, using the well-known procedure of Sun and Fürstner and its 12 structural analogues by modifying the side chain, which differs in length, degree of saturation as well as number and conjugation of double bonds.

Methods: The prepared library of compounds underwent comprehensive assessment for their biological activities, encompassing antioxidative, antiproliferative, and antibacterial properties, in addition to in vivo toxicity evaluation using a Zebrafish model. Compound 4i, which consists of a retinoic acid moiety, exhibited the strongest scavenging activity against ABTS radicals (IC50 = 36 ± 2 μM). In addition, 4b and some of the analogues (4a, 4c and 4i), mostly containing an unsaturated chain and conjugated double bonds, showed moderate but non-selective activity with certain IC50 values in the range of 20-40 μM.

Results: In contrast, the analogue 4l, a derivative of alpha-linolenic acid, was the least toxic towards normal cell lines. Moreover, 4b was also highly active against Gram-positive Bacillus subtilis with an MIC of 125 μM. Nevertheless, both 4b and 4i, known for the best-observed effects, caused remarkable developmental abnormalities in the zebrafish model Danio rerio.

Conclusion: Since modification of the side chain did not significantly alter the change in biological activities compared to the parent compound, granulatamide B (4b), the substitution of the indole ring needs to be considered. Our group is currently carrying out new syntheses focusing on the functionalization of the indole core.

Keywords: Granulatamide B, N-fatty acyl derivatives, antioxidant, antiproliferative, antibacterial, embryotoxicity.

[1]
Barzkar, N.; Tamadoni Jahromi, S.; Poorsaheli, H.B.; vianello, F. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Mar. Drugs, 2019, 17(8), 464.
[http://dx.doi.org/10.3390/md17080464] [PMID: 31398953]
[2]
Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2019, 36(1), 122-173.
[http://dx.doi.org/10.1039/C8NP00092A] [PMID: 30663727]
[3]
Matulja, D.; Vranješević, F.; Kolympadi Markovic, M.; Pavelić, S.K.; Marković, D. Anticancer activities of marine-derived phenolic compounds and their derivatives. Molecules, 2022, 27(4), 1449.
[http://dx.doi.org/10.3390/molecules27041449] [PMID: 35209235]
[4]
Xu, J.; Yi, M.; Ding, L.; He, S. A review of anti-inflammatory compounds from marine fungi, 2000-2018. Mar. Drugs, 2019, 17(11), 636.
[http://dx.doi.org/10.3390/md17110636] [PMID: 31717541]
[5]
Habbu, P.; Warad, V.; Shastri, R.; Madagundi, S.; Kulkarni, V.H. Antimicrobial metabolites from marine microorganisms. Chin. J. Nat. Med., 2016, 14(2), 101-116.
[http://dx.doi.org/10.1016/S1875-5364(16)60003-1] [PMID: 26968676]
[6]
Tziveleka, L.A.; Tammam, M.A.; Tzakou, O.; Roussis, V.; Ioannou, E. Metabolites with antioxidant activity from marine macroalgae. Antioxidants, 2021, 10(9), 1431.
[http://dx.doi.org/10.3390/antiox10091431] [PMID: 34573063]
[7]
Lindequist, U. Marine-derived pharmaceuticals - challenges and opportunities. Biomol. Ther., 2016, 24(6), 561-571.
[http://dx.doi.org/10.4062/biomolther.2016.181] [PMID: 27795450]
[8]
Ercolano, G.; De Cicco, P.; Ianaro, A. New drugs from the sea: Pro-apoptotic activity of sponges and algae derived compounds. Mar. Drugs, 2019, 17(1), 31.
[http://dx.doi.org/10.3390/md17010031] [PMID: 30621025]
[9]
Nigam, M.; Suleria, H.A.R.; Farzaei, M.H.; Mishra, A.P. Marine anticancer drugs and their relevant targets: A treasure from the ocean. Daru, 2019, 27(1), 491-515.
[http://dx.doi.org/10.1007/s40199-019-00273-4] [PMID: 31165439]
[10]
Matulja, D.; Wittine, K.; Malatesti, N.; Laclef, S.; Turks, M.; Markovic, M.K.; Ambrožić, G.; Marković, D. Marine natural products with high anticancer activities. Curr. Med. Chem., 2020, 27(8), 1243-1307.
[http://dx.doi.org/10.2174/0929867327666200113154115] [PMID: 31931690]
[11]
Hu, Y.; Chen, S.; Yang, F.; Dong, S. Marine indole alkaloids-isolation, structure and bioactivities. Mar. Drugs, 2021, 19(12), 658.
[http://dx.doi.org/10.3390/md19120658] [PMID: 34940657]
[12]
Netz, N.; Opatz, T. Marine indole alkaloids. Mar. Drugs, 2015, 13(8), 4814-4914.
[http://dx.doi.org/10.3390/md13084814] [PMID: 26287214]
[13]
Rocha, J.; Peixe, L.; Gomes, N.C.M.; Calado, R. Cnidarians as a source of new marine bioactive compounds- an overview of the last decade and future steps for bioprospecting. Mar. Drugs, 2011, 9(10), 1860-1886.
[http://dx.doi.org/10.3390/md9101860] [PMID: 22073000]
[14]
Ma, Q.; Zhang, X.; Qu, Y. Biodegradation and biotransformation of indole: Advances and perspectives. Front. Microbiol., 2018, 9, 2625.
[http://dx.doi.org/10.3389/fmicb.2018.02625] [PMID: 30443243]
[15]
Cariello, L.; Prota, G. Occurence of 3-hydroxy-l-kynurenine in gorgonians. Comp. Biochem. Physiol. B, 1972, 41(1), 195-199.
[http://dx.doi.org/10.1016/0305-0491(72)90022-3] [PMID: 4403888]
[16]
Gao, C.; Yi, X.; Huang, R.; Yan, F.; He, B.; Chen, B. Alkaloids from corals. Chem. Biodivers., 2013, 10(8), 1435-1447.
[http://dx.doi.org/10.1002/cbdv.201100276] [PMID: 23939792]
[17]
Reyes, F.; Martín, R.; Fernández, R. Granulatamides A and B, cytotoxic tryptamine derivatives from the soft coral Eunicella granulata. J. Nat. Prod., 2006, 69(4), 668-670.
[http://dx.doi.org/10.1021/np050382s] [PMID: 16643049]
[18]
Chávez, D.; Acevedo, L.A.; Mata, R. Tryptamine derived amides and acetogenins from the seeds of Rollinia mucosa. J. Nat. Prod., 1999, 62(8), 1119-1122.
[http://dx.doi.org/10.1021/np990118x] [PMID: 10479316]
[19]
Maeda, U.; Hara, N.; Fujimoto, Y.; Srivastava, A.; Gupra, Y.K.; Sahai, M. N-fatty acyl tryptamines from Annona reticulata. Phytochemistry, 1993, 34(6), 1633-1635.
[http://dx.doi.org/10.1016/S0031-9422(00)90860-4] [PMID: 7763559]
[20]
Wu, Y.C.; Chang, F.R.; Chen, C.Y. Tryptamine-derived amides and alkaloids from the seeds of Annona atemoya. J. Nat. Prod., 2005, 68(3), 406-408.
[http://dx.doi.org/10.1021/np040177x] [PMID: 15787445]
[21]
Schmidt, F.; Douaron, G.L.; Champy, P.; Amar, M.; Séon-Méniel, B.; Raisman-Vozari, R.; Figadère, B. Tryptamine-derived alkaloids from Annonaceae exerting neurotrophin-like properties on primary dopaminergic neurons. Bioorg. Med. Chem., 2010, 18(14), 5103-5113.
[http://dx.doi.org/10.1016/j.bmc.2010.05.067] [PMID: 20579892]
[22]
Venepally, V.; Prasad, R.; Poornachandra, Y.; Kumar, C.; Jala, R. Synthesis and biological evaluation of some new N-fatty acyl derivatives of 4,5-Dimethoxy tryptamine. IJC-B, 2017, 56B(5), 531-41.
[23]
Marot, C.; Chavatte, P.; Morin-Allory, L.; viaud, M.C.; Guillaumet, G.; Renard, P.; Lesieur, D.; Michel, A. Pharmacophoric search and 3D-QSAR comparative molecular field analysis studies on agonists of melatonin sheep receptors. J. Med. Chem., 1998, 41(23), 4453-4465.
[http://dx.doi.org/10.1021/jm980026p] [PMID: 9804685]
[24]
Chang, F.Y.; Siuti, P.; Laurent, S.; Williams, T.; Glassey, E.; Sailer, A.W.; Gordon, D.B.; Hemmerle, H.; Voigt, C.A. Gut-inhabiting Clostridia build human GPCR ligands by conjugating neurotransmitters with diet- and human-derived fatty acids. Nat. Microbiol., 2021, 6(6), 792-805.
[http://dx.doi.org/10.1038/s41564-021-00887-y] [PMID: 33846627]
[25]
Pakhare, D.; Kusurkar, R. Application of Horner–Wadsworth–Emmons olefination for the synthesis of granulatamide A, its E isomer and other amides of tryptamine. New J. Chem., 2016, 40(6), 5428-5431.
[http://dx.doi.org/10.1039/C5NJ03533C]
[26]
Sun, C.L.; Fürstner, A. Formal ring-opening/cross-coupling reactions of 2-pyrones: iron-catalyzed entry into stereodefined dienyl carboxylates. Angew. Chem. Int. Ed., 2013, 52(49), 13071-13075.
[http://dx.doi.org/10.1002/anie.201307028] [PMID: 24123891]
[27]
Kumar, S.; Ritika. A brief review of the biological potential of indole derivatives. Fut. J. Pharmaceut. Sci., 2020, 6(1), 121.
[http://dx.doi.org/10.1186/s43094-020-00141-y]
[28]
Bentz, E.N.; Lobayan, R.M.; Martínez, H.; Redondo, P.; Largo, A. Intrinsic antioxidant potential of the aminoindole structure: A computational kinetics study of tryptamine. J. Phys. Chem. B, 2018, 122(24), 6386-6395.
[http://dx.doi.org/10.1021/acs.jpcb.8b03807] [PMID: 29775059]
[29]
Dhuguru, J.; Skouta, R. Role of indole scaffolds as pharmacophores in the development of anti-lung cancer agents. Molecules, 2020, 25(7), 1615.
[http://dx.doi.org/10.3390/molecules25071615] [PMID: 32244744]
[30]
Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89, 103021.
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[31]
Pal, C.; Bindu, S.; Dey, S.; Alam, A.; Goyal, M.; Iqbal, M.S.; Sarkar, S.; Kumar, R.; Halder, K.K.; Debnath, M.C.; Adhikari, S.; Bandyopadhyay, U. Tryptamine-gallic acid hybrid prevents non-steroidal anti-inflammatory drug-induced gastropathy: correction of mitochondrial dysfunction and inhibition of apoptosis in gastric mucosal cells. J. Biol. Chem., 2012, 287(5), 3495-3509.
[http://dx.doi.org/10.1074/jbc.M111.307199] [PMID: 22157011]
[32]
Laclef, S.; Kolympadi Marković, M.; Marković, D. Amide synthesis by transamidation of primary carboxamides. Synthesis, 2020, 52(21), 3231-3242.
[http://dx.doi.org/10.1055/s-0040-1707133]
[33]
Jóźwiak, M.; Filipowska, A.; Fiorino, F.; Struga, M. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur. J. Pharmacol., 2020, 871, 172937.
[http://dx.doi.org/10.1016/j.ejphar.2020.172937] [PMID: 31958454]
[34]
Mukerjee, S.; Saeedan, A.S.; Ansari, M.N.; Singh, M. Polyunsaturated fatty acids mediated regulation of membrane biochemistry and tumor cell membrane integrity. Membranes, 2021, 11(7), 479.
[http://dx.doi.org/10.3390/membranes11070479] [PMID: 34203433]
[35]
Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated fatty acids as antioxidants. Pharmacol. Res., 2008, 57(6), 451-455.
[http://dx.doi.org/10.1016/j.phrs.2008.05.002] [PMID: 18583147]
[36]
Oppedisano, F.; Macrì, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Caterina Zito, M.; Guarnieri, L.; Scarano, F.; Nicita, C.; Coppoletta, A.R.; Ruga, S.; Scicchitano, M.; Mollace, R.; Palma, E.; Mollace, V. The anti-inflammatory and antioxidant properties of n-3 pufas: Their role in cardiovascular protection. Biomedicines, 2020, 8(9), 306.
[http://dx.doi.org/10.3390/biomedicines8090306] [PMID: 32854210]
[37]
Matulja, D.; Kolympadi Markovic, M.; Ambrožić, G.; Laclef, S.; Pavelić, S.K.; Marković, D. Secondary metabolites from gorgonian corals of the genus eunicella: Structural characterizations, biological activities, and synthetic approaches. Molecules, 2019, 25(1), 129.
[http://dx.doi.org/10.3390/molecules25010129] [PMID: 31905691]
[38]
Matulja, D.; Grbčić, P.; Bojanić, K.; Topić-Popović, N.; Čož-Rakovac, R.; Laclef, S.; Šmuc, T.; Jović, O.; Marković, D.; Pavelić, S.K. Chemical evaluation, antioxidant, antiproliferative, anti-inflammatory and antibacterial activities of organic extract and semi-purified fractions of the adriatic sea fan, eunicella cavolini. Molecules, 2021, 26(19), 5751.
[http://dx.doi.org/10.3390/molecules26195751] [PMID: 34641295]
[39]
Yoshida, T.; Kawamura, S.; Nakata, K. Chemoselective N-acetylation of primary aliphatic amines promoted by pivalic or acetic acid using ethyl acetate as an acetyl donor. Tetrahedron Lett., 2017, 58(12), 1181-1184.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.015]
[40]
Zheleva-Dimitrova, D.; Nedialkov, P.; Kitanov, G. Radical scavenging and antioxidant activities of methanolic extracts from Hypericum species growing in Bulgaria. Pharmacogn. Mag., 2010, 6(22), 74-78.
[http://dx.doi.org/10.4103/0973-1296.62889] [PMID: 20668569]
[41]
Gazivoda, T.; Raić-Malić, S.; Krištafor, V.; Makuc, D.; Plavec, J.; Bratulić, S.; Kraljević-Pavelić, S.; Pavelić, K.; Naesens, L.; Andrei, G.; Snoeck, R.; Balzarini, J.; Mintas, M. Synthesis, cytostatic and anti-HIV evaluations of the new unsaturated acyclic C-5 pyrimidine nucleoside analogues. Bioorg. Med. Chem., 2008, 16(10), 5624-5634.
[http://dx.doi.org/10.1016/j.bmc.2008.03.074] [PMID: 18424155]
[42]
Rashidi, M.; Seghatoleslam, A.; Namavari, M.; Amiri, A.; Fahmidehkar, M.A.; Ramezani, A.; Eftekhar, E.; Hosseini, A.; Erfani, N.; Fakher, S. Selective cytotoxicity and apoptosis-induction of Cyrtopodion scabrum extract against digestive cancer cell lines. Int. J. Cancer Manag., 2017, 10(5), e8633.
[http://dx.doi.org/10.5812/ijcm.8633]
[43]
Babić, S.; Čižmek, L.; Maršavelski, A.; Malev, O.; Pflieger, M.; Strunjak-Perović, I.; Popović, N.T.; Čož-Rakovac, R.; Trebše, P. Utilization of the zebrafish model to unravel the harmful effects of biomass burning during Amazonian wildfires. Sci. Rep., 2021, 11(1), 2527.
[http://dx.doi.org/10.1038/s41598-021-81789-1] [PMID: 33510260]
[44]
DIRECTIVE. 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes (Text with EEA Relevance). 2010. Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF
[45]
Legros, J.; Figadère, B. Iron-promoted C–C bond formation in the total synthesis of natural products and drugs. Nat. Prod. Rep., 2015, 32(11), 1541-1555.
[http://dx.doi.org/10.1039/C5NP00059A] [PMID: 26395292]
[46]
Riemer, B.; Hofer, O.; Greger, H. Tryptamine derived amides from Clausena indica. Phytochemistry, 1997, 45(2), 337-341.
[http://dx.doi.org/10.1016/S0031-9422(96)00848-5] [PMID: 9004546]
[47]
Folstar, P.; Schols, H.A.; Van der Plas, H.C.; Pilnik, W.; Landheer, C.A.; Van Veldhuizen, A. New tryptamine derivatives isolated from wax of green coffee beans. J. Agric. Food Chem., 1980, 28(4), 872-874.
[http://dx.doi.org/10.1021/jf60230a022] [PMID: 7462501]
[48]
Shirinzadeh, H.; Eren, B.; Gurer-Orhan, H.; Suzen, S.; Özden, S. Novel indole-based analogs of melatonin: synthesis and in vitro antioxidant activity studies. Molecules, 2010, 15(4), 2187-2202.
[http://dx.doi.org/10.3390/molecules15042187] [PMID: 20428037]
[49]
Kruk, I.; Aboul-Enein, H.Y.; Michalska, T.; Lichszteld, K.; Kubasik-Kladna, K.; Ölgen, S. In vitro scavenging activity for reactive oxygen species by N-substituted indole-2-carboxylic acid esters. Luminescence, 2007, 22(4), 379-386.
[http://dx.doi.org/10.1002/bio.974] [PMID: 17471487]
[50]
Yang, R.; Chung, H.Y.; Shin, D.B.; Cho, T.Y.; Yang, S.H. Melatonin-related compounds have high free radical scavenging activity. Ann. N. Y. Acad. Sci., 2001, 928(1), 369-369.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb05688.x]
[51]
Álvarez-Diduk, R.; Galano, A.; Tan, D.X.; Reiter, R.J. N -acetylserotonin and 6-hydroxymelatonin against oxidative stress: implications for the overall protection exerted by melatonin. J. Phys. Chem. B, 2015, 119(27), 8535-8543.
[http://dx.doi.org/10.1021/acs.jpcb.5b04920] [PMID: 26079042]
[52]
Sofic, E.; Rimpapa, Z.; Kundurovic, Z.; Sapcanin, A.; Tahirovic, I.; Rustembegovic, A.; Cao, G. Antioxidant capacity of the neurohormone melatonin. J. Neural Transm., 2005, 112(3), 349-358.
[http://dx.doi.org/10.1007/s00702-004-0270-4] [PMID: 15666035]
[53]
Mor, M.; Spadoni, G.; Diamantini, G.; Bedini, A.; Tarzia, G.; Silva, C.; Vacondio, F.; Rivara, M.; Plazzi, P.V.; Franceschini, D. Antioxidant and cytoprotective activity of indole derivatives related to melatonin. In: Advances in Experimental Medicine and Biology; Allegri, G.; Costa, C.V.L.; Ragazzi, E.; Steinhart, H.; Varesio, L., Eds.; Kluwer Academic/Plenum Publishers: Springer: Boston, MA, 2003; pp. 567-575.
[54]
Jasiewicz, B.; Kozanecka-Okupnik, W.; Przygodzki, M.; Warżajtis, B.; Rychlewska, U.; Pospieszny, T.; Mrówczyńska, L. Synthesis, antioxidant and cytoprotective activity evaluation of C-3 substituted indole derivatives. Sci. Rep., 2021, 11(1), 15425.
[http://dx.doi.org/10.1038/s41598-021-94904-z] [PMID: 34326403]
[55]
Lobayan, R.M.; Pérez Schmit, M.C.; Jubert, A.H.; Vitale, A. Conformational and stereoelectronic investigation of tryptamine. An AIM/NBO study. J. Mol. Model., 2012, 18(6), 2577-2588.
[http://dx.doi.org/10.1007/s00894-011-1271-5] [PMID: 22072379]
[56]
Galano, A.; Reiter, R.J. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J. Pineal Res., 2018, 65(1), e12514.
[http://dx.doi.org/10.1111/jpi.12514] [PMID: 29888508]
[57]
Kousara, S.; Anjuma, S.N.; Jaleela, F.; Khana, J.; Naseema, S. Biomedical significance of tryptamine: A review. J. Pharmacovigil., 2017, 5(5), 1-6.
[http://dx.doi.org/10.4172/2329-6887.1000239]
[58]
Herraiz, T.; Galisteo, J. Endogenous and dietary indoles: A class of antioxidants and radical scavengers in the ABTS assay. Free Radic. Res., 2004, 38(3), 323-331.
[http://dx.doi.org/10.1080/10611860310001648167] [PMID: 15129740]
[59]
Gürkök, G.; Coban, T.; Suzen, S. Melatonin analogue new indole hydrazide/hydrazone derivatives with antioxidant behavior: Synthesis and structure-activity relationships. J. Enzyme Inhib. Med. Chem., 2009, 24(2), 506-515.
[http://dx.doi.org/10.1080/14756360802218516] [PMID: 18972245]
[60]
Gozzo, A.; Lesieur, D.; Duriez, P.; Fruchart, J.C.; Teissier, E. Structure-activity relationships in a series of melatonin analogues with the low-density lipoprotein oxidation model. Free Radic. Biol. Med., 1999, 26(11-12), 1538-1543.
[http://dx.doi.org/10.1016/S0891-5849(99)00020-9] [PMID: 10401620]
[61]
Estevão, M.S.; Carvalho, L.C.; Ribeiro, D.; Couto, D.; Freitas, M.; Gomes, A.; Ferreira, L.M.; Fernandes, E.; Marques, M.M.B. Antioxidant activity of unexplored indole derivatives: Synthesis and screening. Eur. J. Med. Chem., 2010, 45(11), 4869-4878.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.059] [PMID: 20727623]
[62]
Wojtunik-Kulesza, K.A.; Cieśla, Ł.M.; Waksmundzka-Hajnos, M. Approach to determination a structure - Antioxidant activity relationship of selected common terpenoids evaluated by ABTS •+ radical cation assay. Nat. Prod. Commun., 2018, 13(3), 1934578X1801300.
[http://dx.doi.org/10.1177/1934578X1801300308]
[63]
Jin, M.C.; Yoo, J.M.; Sok, D.E.; Kim, M.R. Neuroprotective effect of N-acyl 5-hydroxytryptamines on glutamate-induced cytotoxicity in HT-22 cells. Neurochem. Res., 2014, 39(12), 2440-2451.
[http://dx.doi.org/10.1007/s11064-014-1448-2] [PMID: 25307111]
[64]
Henry, G.E.; Momin, R.A.; Nair, M.G.; Dewitt, D.L. Antioxidant and cyclooxygenase activities of fatty acids found in food. J. Agric. Food Chem., 2002, 50(8), 2231-2234.
[http://dx.doi.org/10.1021/jf0114381] [PMID: 11929276]
[65]
Wang, W.; Yang, H.; Johnson, D.; Gensler, C.; Decker, E.; Zhang, G. Chemistry and biology of ω-3 PUFA peroxidation-derived compounds. Prostaglandins Other Lipid Mediat., 2017, 132, 84-91.
[http://dx.doi.org/10.1016/j.prostaglandins.2016.12.004] [PMID: 28049021]
[66]
Fagali, N.; Catalá, A. Antioxidant activity of conjugated linoleic acid isomers, linoleic acid and its methyl ester determined by photoemission and DPPH techniques. Biophys. Chem., 2008, 137(1), 56-62.
[http://dx.doi.org/10.1016/j.bpc.2008.07.001] [PMID: 18656302]
[67]
Francenia Santos-Sánchez, N.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant compounds and their antioxidant mechanism. In: Antioxidant Compounds and their Antioxidant Mechanism; Shalaby, E., Ed.; IntechOpen: London, United Kingdom, 2019; pp. 1-28.
[http://dx.doi.org/10.5772/intechopen.85270]
[68]
Pu, J.; Chen, D.; Tian, G.; He, J.; Huang, Z.; Zheng, P.; Mao, X.; Yu, J.; Luo, J.; Luo, Y. All-trans retinoic acid attenuates transmissible gastroenteritis virus-induced inflammation in IPEC-J2 cells via suppressing the RLRs/NF-κB signaling pathway. Antioxidants, 2022, 11(2), 345.
[http://dx.doi.org/10.3390/antiox11020345] [PMID: 35204227]
[69]
Khafaga, A.F.; El-Sayed, Y.S. All-trans-retinoic acid ameliorates doxorubicin-induced cardiotoxicity: in vivo potential involvement of oxidative stress, inflammation, and apoptosis via caspase-3 and p53 down-expression. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(1), 59-70.
[http://dx.doi.org/10.1007/s00210-017-1437-5] [PMID: 29085977]
[70]
Rao, J.; Zhang, C.; Wang, P.; Lu, L.; Zhang, F. All-trans retinoic acid alleviates hepatic ischemia/reperfusion injury by enhancing manganese superoxide dismutase in rats. Biol. Pharm. Bull., 2010, 33(5), 869-875.
[http://dx.doi.org/10.1248/bpb.33.869] [PMID: 20460768]
[71]
Siddikuzzaman; Grace, V.M.B. Antioxidant potential of all- trans retinoic acid (ATRA) and enhanced activity of liposome encapsulated ATRA against inflammation and tumor-directed angiogenesis. Immunopharmacol. Immunotoxicol., 2013, 35(1), 164-173.
[http://dx.doi.org/10.3109/08923973.2012.736520] [PMID: 23116338]
[72]
Chambers, C.S.; Biedermann, D.; Valentová, K.; Petrásková, L.; Viktorová, J.; Kuzma, M.; Křen, V. Preparation of retinoyl-flavonolignan hybrids and their antioxidant properties. Antioxidants, 2019, 8(7), 236.
[http://dx.doi.org/10.3390/antiox8070236] [PMID: 31340489]
[73]
Gurkan, A.S.; Karabay, A.; Buyukbingol, Z.; Adejare, A.; Buyukbingol, E. Syntheses of novel indole lipoic acid derivatives and their antioxidant effects on lipid peroxidation. Arch. Pharm., 2005, 338(2-3), 67-73.
[http://dx.doi.org/10.1002/ardp.200400932] [PMID: 15765493]
[74]
Pecnard, S.; Hamze, A.; Bignon, J.; Prost, B.; Deroussent, A.; Gallego-Yerga, L.; Peláez, R.; Paik, J.Y.; Diederich, M.; Alami, M.; Provot, O. Anticancer properties of indole derivatives as Iso Combretastatin A-4 analogues. Eur. J. Med. Chem., 2021, 223, 113656.
[http://dx.doi.org/10.1016/j.ejmech.2021.113656] [PMID: 34171660]
[75]
Sachdeva, H.; Mathur, J.; Guleria, A. Indole derivatives as potential anticancer agents: A review. J. Chil. Chem. Soc., 2020, 65(3), 4900-4907.
[http://dx.doi.org/10.4067/s0717-97072020000204900]
[76]
Orellana, E.; Kasinski, A.; Sulforhodamine, B. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio Protoc., 2016, 6(21), e1984.
[http://dx.doi.org/10.21769/BioProtoc.1984] [PMID: 28573164]
[77]
Wyld, L.; Smith, O.; Lawry, J.; Reed, M.W.R.; Brown, N.J. Cell cycle phase influences tumour cell sensitivity to aminolaevulinic acid-induced photodynamic therapy in vitro. Br. J. Cancer, 1998, 78(1), 50-55.
[http://dx.doi.org/10.1038/bjc.1998.441] [PMID: 9662250]
[78]
Qian, S.Y.; Xu, Y. Anti-cancer activities of ω-6 polyunsaturated fatty acids. Biomed. J., 2014, (0), 0.
[http://dx.doi.org/10.4103/2319-4170.131378] [PMID: 24923568]
[79]
Huang, W.; Guo, X.; Wang, C.; Alzhan, A.; Liu, Z.; Ma, X.; Shu, Q. α-Linolenic acid induces apoptosis, inhibits the invasion and metastasis, and arrests cell cycle in human breast cancer cells by inhibiting fatty acid synthase. J. Funct. Foods, 2022, 92, 105041.
[http://dx.doi.org/10.1016/j.jff.2022.105041]
[80]
González-Fernández, M.J.; Ortea, I.; Guil-Guerrero, J.L. α-Linolenic and γ-linolenic acids exercise differential antitumor effects on HT-29 human colorectal cancer cells. Toxicol. Res. (Camb.), 2020, 9(4), 474-483.
[http://dx.doi.org/10.1093/toxres/tfaa046] [PMID: 32905142]
[81]
Borges, G.S.M.; Lima, F.A.; Carneiro, G.; Goulart, G.A.C.; Ferreira, L.A.M. All-trans retinoic acid in anticancer therapy: how nanotechnology can enhance its efficacy and resolve its drawbacks. Expert Opin. Drug Deliv., 2021, 18(10), 1335-1354.
[http://dx.doi.org/10.1080/17425247.2021.1919619] [PMID: 33896323]
[82]
Schenk, T.; Stengel, S.; Zelent, A. Unlocking the potential of retinoic acid in anticancer therapy. Br. J. Cancer, 2014, 111(11), 2039-2045.
[http://dx.doi.org/10.1038/bjc.2014.412] [PMID: 25412233]
[83]
Chen, M.C.; Hsu, S.L.; Lin, H.; Yang, T.Y. Retinoic acid and cancer treatment. Biomedicine, 2014, 4(4), 22.
[http://dx.doi.org/10.7603/s40681-014-0022-1] [PMID: 25520935]
[84]
di Masi, A.; Leboffe, L.; De Marinis, E.; Pagano, F.; Cicconi, L.; Rochette-Egly, C.; Lo-Coco, F.; Ascenzi, P.; Nervi, C. Retinoic acid receptors: From molecular mechanisms to cancer therapy. Mol. Aspects Med., 2015, 41, 1-115.
[http://dx.doi.org/10.1016/j.mam.2014.12.003] [PMID: 25543955]
[85]
Hunsu, V.O.; Facey, C.O.B.; Fields, J.Z.; Boman, B.M. Retinoids as chemo-preventive and molecular-targeted anti-cancer therapies. Int. J. Mol. Sci., 2021, 22(14), 7731.
[http://dx.doi.org/10.3390/ijms22147731] [PMID: 34299349]
[86]
Mohrbacher, A.M.; Yang, A.S.; Groshen, S.; Kummar, S.; Gutierrez, M.E.; Kang, M.H.; Tsao-Wei, D.; Reynolds, C.P.; Newman, E.M.; Maurer, B.J.; Phase, I. Phase i study of fenretinide delivered intravenously in patients with relapsed or refractory hematologic malignancies: A california cancer consortium trial. Clin. Cancer Res., 2017, 23(16), 4550-4555.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0234] [PMID: 28420721]
[87]
Maurer, B.J.; Kang, M.H.; Villablanca, J.G.; Janeba, J.; Groshen, S.; Matthay, K.K.; Sondel, P.M.; Maris, J.M.; Jackson, H.A.; Goodarzian, F.; Shimada, H.; Czarnecki, S.; Hasenauer, B.; Reynolds, C.P.; Marachelian, A. Phase I trial of fenretinide delivered orally in a novel organized lipid complex in patients with relapsed/refractory neuroblastoma: A report from the new approaches to neuroblastoma therapy (NANT) consortium. Pediatr. Blood Cancer, 2013, 60(11), 1801-1808.
[http://dx.doi.org/10.1002/pbc.24643] [PMID: 23813912]
[88]
Cooper, J.P.; Reynolds, C.P.; Cho, H.; Kang, M.H. Clinical development of fenretinide as an antineoplastic drug: Pharmacology perspectives. Exp. Biol. Med., 2017, 242(11), 1178-1184.
[http://dx.doi.org/10.1177/1535370217706952] [PMID: 28429653]
[89]
Bildziukevich, U.; Kvasnicová, M.; Šaman, D.; Rárová, L.; Wimmer, Z. Novel oleanolic acid-tryptamine and -fluorotryptamine amides: From adaptogens to agents targeting in vitro cell apoptosis. Plants, 2021, 10(10), 2082.
[http://dx.doi.org/10.3390/plants10102082] [PMID: 34685891]
[90]
Rani, P.; Pal, D.; Hegde, R.R.; Hashim, S.R. Acetamides: Chemotherapeutic agents for inflammation-associated cancers. J. Chemother., 2016, 28(4), 255-265.
[http://dx.doi.org/10.1179/1973947815Y.0000000060] [PMID: 26198312]
[91]
Li, Y.; Li, S.; Zhou, Y.; Meng, X.; Zhang, J.J.; Xu, D.P.; Li, H.B.; Li, Y.; Li, S.; Zhou, Y. Melatonin for the prevention and treatment of cancer. Oncotarget, 2017, 8(24), 39896-39921.
[http://dx.doi.org/10.18632/oncotarget.16379] [PMID: 28415828]
[92]
Samec, M.; Liskova, A.; Koklesova, L.; Zhai, K.; Varghese, E.; Samuel, S.M.; Šudomová, M.; Lucansky, V.; Kassayova, M.; Pec, M.; Biringer, K.; Brockmueller, A.; Kajo, K.; Hassan, S.T.S.; Shakibaei, M.; Golubnitschaja, O.; Büsselberg, D.; Kubatka, P. Metabolic anti-cancer effects of melatonin: Clinically relevant prospects. Cancers, 2021, 13(12), 3018.
[http://dx.doi.org/10.3390/cancers13123018] [PMID: 34208645]
[93]
Bojková, B.; Kubatka, P.; Qaradakhi, T.; Zulli, A.; Kajo, K. Melatonin may increase anticancer potential of pleiotropic drugs. Int. J. Mol. Sci., 2018, 19(12), 3910.
[http://dx.doi.org/10.3390/ijms19123910] [PMID: 30563247]
[94]
Himmler, T.; Pirro, F.; Schmeer, N. Synthesis and antibacterial in vitro activity of novel analogues of nematophin. Bioorg. Med. Chem. Lett., 1998, 8(15), 2045-2050.
[http://dx.doi.org/10.1016/S0960-894X(98)00358-8] [PMID: 9873483]
[95]
Campos, P.E.; Pichon, E.; Moriou, C.; Clerc, P.; Trépos, R.; Frederich, M.; De Voogd, N.; Hellio, C.; Gauvin-Bialecki, A.; Al-Mourabit, A. New antimalarial and antimicrobial tryptamine derivatives from the marine sponge Fascaplysinopsis reticulata. Mar. Drugs, 2019, 17(3), 167.
[http://dx.doi.org/10.3390/md17030167] [PMID: 30875899]
[96]
Li, J.; Chen, G.; Webster, J.M. Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobactereaceae). Can. J. Microbiol., 1997, 43(8), 770-773.
[http://dx.doi.org/10.1139/m97-110] [PMID: 9304787]
[97]
Wesche, F.; Adihou, H.; Wichelhaus, T.A.; Bode, H.B. Synthesis and SAR of the antistaphylococcal natural product nematophin from Xenorhabdus nematophila. Beilstein J. Org. Chem., 2019, 15, 535-541.
[http://dx.doi.org/10.3762/bjoc.15.47] [PMID: 30873237]
[98]
He, F.; Wu, X.; Zhang, Q.; Li, Y.; Ye, Y.; Li, P.; Chen, S.; Peng, Y.; Hardeland, R.; Xia, Y. Bacteriostatic potential of melatonin: Therapeutic standing and mechanistic insights. Front. Immunol., 2021, 12, 683879.
[http://dx.doi.org/10.3389/fimmu.2021.683879] [PMID: 34135911]
[99]
Hunt, L.R.; Smith, S.M.; Downum, K.R.; Mydlarz, L.D. Microbial regulation in gorgonian corals. Mar. Drugs, 2012, 10(12), 1225-1243.
[http://dx.doi.org/10.3390/md10061225] [PMID: 22822369]
[100]
Li, J.; Chen, G.; Webster, J.M.; Czyzewska, E. Antimicrobial metabolites from a bacterial symbiont. J. Nat. Prod., 1995, 58(7), 1081-1086.
[http://dx.doi.org/10.1021/np50121a016] [PMID: 7561900]
[101]
Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol., 2010, 85(6), 1629-1642.
[http://dx.doi.org/10.1007/s00253-009-2355-3] [PMID: 19956944]
[102]
Ramlawi, S.; Abusharkh, S.; Carroll, A.; McMullin, D.R.; Avis, T.J. Biological and chemical characterization of antimicrobial activity in Arthrobacter spp. isolated from disease-suppressive compost. J. Basic Microbiol., 2021, 61(8), 745-756.
[http://dx.doi.org/10.1002/jobm.202100213] [PMID: 34228381]
[103]
Zhang, W.; Wei, S.; Zhang, J.; Wu, W. Antibacterial activity composition of the fermentation broth of Streptomyces djakartensis NW35. Molecules, 2013, 18(3), 2763-2768.
[http://dx.doi.org/10.3390/molecules18032763] [PMID: 23455667]
[104]
Casillas-Vargas, G.; Ocasio-Malavé, C.; Medina, S.; Morales-Guzmán, C.; Del Valle, R.G.; Carballeira, N.M.; Sanabria-Ríos, D.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog. Lipid Res., 2021, 82, 101093.
[http://dx.doi.org/10.1016/j.plipres.2021.101093] [PMID: 33577909]
[105]
Badawy, M.E.I. Structure and antimicrobial activity relationship of quaternary N -alkyl chitosan derivatives against some plant pathogens. J. Appl. Polym. Sci., 2010, 117(2), 960-969.
[http://dx.doi.org/10.1002/app.31492]
[106]
Sahariah, P.; Benediktssdóttir, B.E.; Hjálmarsdóttir, M.Á.; Sigurjonsson, O.E.; Sørensen, K.K.; Thygesen, M.B.; Jensen, K.J.; Másson, M. Impact of chain length on antibacterial activity and hemocompatibility of quaternary N-alkyl and n,n-dialkyl chitosan derivatives. Biomacromolecules, 2015, 16(5), 1449-1460.
[http://dx.doi.org/10.1021/acs.biomac.5b00163] [PMID: 25830631]
[107]
Lin, P.A.; Cheng, C.H.; Hsieh, K.T.; Lin, J.C. Effect of alkyl chain length and fluorine content on the surface characteristics and antibacterial activity of surfaces grafted with brushes containing quaternized ammonium and fluoro-containing monomers. Colloids Surf. B Biointerfaces, 2021, 202, 111674.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111674] [PMID: 33690062]
[108]
Goswami, S.; Adhikari, M.D.; Kar, C.; Thiyagarajan, D.; Das, G.; Ramesh, A. Synthetic amphiphiles as therapeutic antibacterials: Lessons on bactericidal efficacy and cytotoxicity and potential application as an adjuvant in antimicrobial chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(20), 2612-2623.
[http://dx.doi.org/10.1039/c3tb20226g] [PMID: 32260949]
[109]
Cassar, S.; Adatto, I.; Freeman, J.L.; Gamse, J.T.; Iturria, I.; Lawrence, C.; Muriana, A.; Peterson, R.T.; Van Cruchten, S.; Zon, L.I. Use of zebrafish in drug discovery toxicology. Chem. Res. Toxicol., 2020, 33(1), 95-118.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00335] [PMID: 31625720]
[110]
Herrmann, K. Teratogenic effects of retinoic acid and related substances on the early development of the zebrafish (Brachydanio rerio) as assessed by a novel scoring system. Toxicol. In vitro, 1995, 9(3), 267-283.
[http://dx.doi.org/10.1016/0887-2333(95)00012-W] [PMID: 20650088]
[111]
Kin Ting Kam, R.; Deng, Y.; Chen, Y.; Zhao, H. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci., 2012, 2(1), 11.
[http://dx.doi.org/10.1186/2045-3701-2-11] [PMID: 22439772]
[112]
Wang, Y.; Chen, J.; Du, C.; Li, C.; Huang, C.; Dong, Q. Characterization of retinoic acid–induced neurobehavioral effects in developing zebrafish. Environ. Toxicol. Chem., 2014, 33(2), 431-437.
[http://dx.doi.org/10.1002/etc.2453] [PMID: 24395056]
[113]
Navarro-Martín, L.; Oliveira, E.; Casado, M.; Barata, C.; Piña, B. Dysregulatory effects of retinoic acid isomers in late zebrafish embryos. Environ. Sci. Pollut. Res. Int., 2018, 25(4), 3849-3859.
[http://dx.doi.org/10.1007/s11356-017-0732-5] [PMID: 29178002]
[114]
Curtis, R.F.; Coxon, D.T.; Levett, G. Toxicity of fatty acids in assays for mycotoxins using the brine shrimp (Artemia salina). Food Cosmet. Toxicol., 1974, 12(2), 233-235.
[http://dx.doi.org/10.1016/0015-6264(74)90369-1] [PMID: 4459239]
[115]
Quinlivan, V.H.; Farber, S.A. Lipid uptake, metabolism, and transport in the larval zebrafish. Front. Endocrinol., 2017, 8, 319.
[http://dx.doi.org/10.3389/fendo.2017.00319] [PMID: 29209275]
[116]
Adam, A.C.; Skjærven, K.H.; Whatmore, P.; Moren, M.; Lie, K.K. Parental high dietary arachidonic acid levels modulated the hepatic transcriptome of adult zebrafish (Danio rerio) progeny. PLoS One, 2018, 13(8), e0201278.
[http://dx.doi.org/10.1371/journal.pone.0201278] [PMID: 30070994]
[117]
de Vrieze, E.; Moren, M.; Metz, J.R.; Flik, G.; Lie, K.K. Arachidonic acid enhances turnover of the dermal skeleton: Studies on zebrafish scales. PLoS One, 2014, 9(2), e89347.
[http://dx.doi.org/10.1371/journal.pone.0089347] [PMID: 24586706]
[118]
Nayak, S.; Khozin-Goldberg, I.; Cohen, G.; Zilberg, D. Dietary supplementation with ω6 LC-PUFA-Rich algae modulates zebrafish immune function and improves resistance to streptococcal infection. Front. Immunol., 2018, 9, 1960.
[http://dx.doi.org/10.3389/fimmu.2018.01960] [PMID: 30237797]
[119]
Zhang, Y.; Guo, S.Y.; Zhu, X.Y.; Zhou, J.; Liao, W.H. Arachidonic acid induced thrombosis in zebrafish larvae for assessing human anti-thrombotic drugs. JSM Cell Dev. Biol., 2017, 5(1), 1023.
[120]
Adam, A.C.; Lie, K.K.; Moren, M.; Skjærven, K.H. High dietary arachidonic acid levels induce changes in complex lipids and immune-related eicosanoids and increase levels of oxidised metabolites in zebrafish ( Danio rerio ). Br. J. Nutr., 2017, 117(8), 1075-1085.
[http://dx.doi.org/10.1017/S0007114517000903] [PMID: 28485254]
[121]
Savoldi, R.; Polari, D.; Pinheiro-da-Silva, J.; Silva, P.F.; Lobao-Soares, B.; Yonamine, M.; Freire, F.A.M.; Luchiari, A.C. Behavioral changes over time following ayahuasca exposure in zebrafish. Front. Behav. Neurosci., 2017, 11, 139.
[http://dx.doi.org/10.3389/fnbeh.2017.00139] [PMID: 28804451]
[122]
Zhong, H.J.; Liu, L.J.; Chong, C.M.; Lu, L.; Wang, M.; Chan, D.S.H.; Chan, P.W.H.; Lee, S.M.Y.; Ma, D.L.; Leung, C.H. Discovery of a natural product-like iNOS inhibitor by molecular docking with potential neuroprotective effects in vivo. PLoS One, 2014, 9(4), e92905.
[http://dx.doi.org/10.1371/journal.pone.0092905] [PMID: 24690920]
[123]
Kumari, S.; Mazumder, A.G.; Bhardwaj, A.; Singh, D. Early α-linolenic acid exposure to embryo reduces pentylenetetrazol-induced seizures in zebrafish larva. Prostaglandins Leukot. Essent. Fatty Acids, 2019, 143, 15-20.
[http://dx.doi.org/10.1016/j.plefa.2019.02.002] [PMID: 30975378]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy