Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

The Role of Local Angiotensin II/Angiotensin Type 1-receptor Mechanisms in Adipose Tissue Dysfunction to Promote Pancreatic Cancer

Author(s): Rozita Khodashahi, Fatemeh Beiraghdar, Gorgon A. Ferns, Kiayash Ashrafzadeh, Mohsen Aliakbarian* and Mohammad-Hassan Arjmand*

Volume 24, Issue 12, 2024

Published on: 12 February, 2024

Page: [1187 - 1194] Pages: 8

DOI: 10.2174/0115680096281059240103154836

Price: $65

Abstract

Obesity and adipose tissue dysfunction are important risk factors for pancreatic cancer. Pancreatic cancer is one of the most lethal cancers globally. The renin-angiotensin system (RAS) is expressed in many tissues, including adipose tissue. Dysregulation of angiotensin II and angiotensin II receptors in adipose tissue through the activation of different signaling pathways leads to adipose tissue dysfunction, including insulin resistance, adipose tissue inflammation, adipocytokines secretion, and metabolic alterations. The pathogenesis of pancreatic cancer remains uncertain. However, there is evidence that dysregulation of local angiotensin II in adipose tissue that occurs in association with obesity is, in part, responsible for the initiation and progression of pancreatic cancer. Due to the role of local angiotensin II in the dysfunction of adipose tissue, angiotensin receptor blockers may be considered a new therapeutic strategy in the amelioration of the complications related to adipose tissue dysfunction and prevention of pancreatic cancer. This review aims to consider the biological roles of local angiotensin II and angiotensin II receptors in adipose tissue dysfunction to promote pancreatic cancer progression with a focus on adipose tissue inflammation and metabolic reprogramming.

Keywords: Adipose tissue, obesity, angiotensin II, angiotensin receptor, pancreatic cancer, angiotensin receptor.

Next »
[1]
Martyniak, A.; Tomasik, P.J. A new perspective on the renin-angiotensin system. Diagnostics, 2022, 13(1), 16.
[http://dx.doi.org/10.3390/diagnostics13010016] [PMID: 36611307]
[2]
Kanugula, A.K.; Kaur, J.; Batra, J.; Ankireddypalli, A.R.; Velagapudi, R. Renin-angiotensin system: Updated understanding and role in physiological and pathophysiological states. Cureus, 2023, 15(6), e40725.
[http://dx.doi.org/10.7759/cureus.40725] [PMID: 37350982]
[3]
El Sebaey, R.S. Assessment of possible role of renin angiotensin aldosterone system in obesity. Egypt. J. Hosp. Med., 2023, 91(1), 4828-4831.
[http://dx.doi.org/10.21608/ejhm.2023.300796]
[4]
Iwai, M.; Horiuchi, M. Role of renin-angiotensin system in adipose tissue dysfunction. Hypertens. Res., 2009, 32(6), 425-427.
[http://dx.doi.org/10.1038/hr.2009.55] [PMID: 19407825]
[5]
Pahlavani, M.; Kalupahana, N.S.; Ramalingam, L.; Moustaid-Moussa, N. Regulation and functions of the renin-angiotensin system in white and brown adipose tissue. Compr. Physiol., 2017, 7(4), 1137-1150.
[http://dx.doi.org/10.1002/cphy.c160031] [PMID: 28915321]
[6]
Shiuchi, T.; Iwai, M.; Li, H.S.; Wu, L.; Min, L.J.; Li, J.M.; Okumura, M.; Cui, T.X.; Horiuchi, M. Angiotensin II type-1 receptor blocker valsartan enhances insulin sensitivity in skeletal muscles of diabetic mice. Hypertension, 2004, 43(5), 1003-1010.
[http://dx.doi.org/10.1161/01.HYP.0000125142.41703.64] [PMID: 15037562]
[7]
Tomono, Y.; Iwai, M.; Inaba, S.; Mogi, M.; Horiuchi, M. Blockade of AT1 receptor improves adipocyte differentiation in atherosclerotic and diabetic models. Am. J. Hypertens., 2008, 21(2), 206-212.
[http://dx.doi.org/10.1038/ajh.2007.50] [PMID: 18188158]
[8]
Matafome, P.; Seiça, R.J.O.; Function, B. The role of brain in energy balance. Adv. Neurobiol., 2017, 33-48.
[http://dx.doi.org/10.1007/978-3-319-63260-5_2]
[9]
Iyengar, N.M.; Gucalp, A.; Dannenberg, A.J.; Hudis, C.A. Obesity and cancer mechanisms: Tumor microenvironment and inflammation. J. Clin. Oncol., 2016, 34(35), 4270-4276.
[http://dx.doi.org/10.1200/JCO.2016.67.4283] [PMID: 27903155]
[10]
Quail, D.F.; Dannenberg, A.J. The obese adipose tissue microenvironment in cancer development and progression. Nat. Rev. Endocrinol., 2019, 15(3), 139-154.
[http://dx.doi.org/10.1038/s41574-018-0126-x] [PMID: 30459447]
[11]
Khandekar, M.J.; Cohen, P.; Spiegelman, B.M. Molecular mechanisms of cancer development in obesity. Nat. Rev. Cancer, 2011, 11(12), 886-895.
[http://dx.doi.org/10.1038/nrc3174] [PMID: 22113164]
[12]
Laurent, V.; Toulet, A.; Attané, C.; Milhas, D.; Dauvillier, S.; Zaidi, F.; Clement, E.; Cinato, M.; Le Gonidec, S.; Guérard, A.; Lehuédé, C.; Garandeau, D.; Nieto, L.; Renaud-Gabardos, E.; Prats, A.C.; Valet, P.; Malavaud, B.; Muller, C. Periprostatic adipose tissue favors prostate cancer cell invasion in an obesity-dependent manner: Role of oxidative stress. Mol. Cancer Res., 2019, 17(3), 821-835.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0748] [PMID: 30606769]
[13]
Okumura, T.; Ohuchida, K.; Sada, M.; Abe, T.; Endo, S.; Koikawa, K.; Iwamoto, C.; Miura, D.; Mizuuchi, Y.; Moriyama, T.; Nakata, K.; Miyasaka, Y.; Manabe, T.; Ohtsuka, T.; Nagai, E.; Mizumoto, K.; Oda, Y.; Hashizume, M.; Nakamura, M. Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells. Oncotarget, 2017, 8(11), 18280-18295.
[http://dx.doi.org/10.18632/oncotarget.15430] [PMID: 28407685]
[14]
Duong, M.N.; Geneste, A.; Fallone, F.; Li, X.; Dumontet, C.; Muller, C. The fat and the bad: Mature adipocytes, key actors in tumor progression and resistance. Oncotarget, 2017, 8(34), 57622-57641.
[http://dx.doi.org/10.18632/oncotarget.18038] [PMID: 28915700]
[15]
Liu, R.; Nikolajczyk, B.S. Tissue immune cells fuel obesity-associated inflammation in adipose tissue and beyond. Front. Immunol., 2019, 10, 1587.
[http://dx.doi.org/10.3389/fimmu.2019.01587] [PMID: 31379820]
[16]
Lu, J.; Zhao, J.; Meng, H.; Zhang, X. Adipose tissue-resident immune cells in obesity and type 2 diabetes. Front. Immunol., 2019, 10, 1173.
[http://dx.doi.org/10.3389/fimmu.2019.01173] [PMID: 31191541]
[17]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[18]
Rawla, P.; Sunkara, T.; Gaduputi, V.J.W. Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J. Oncol., 2019, 10(1), 10.
[19]
Almutlaq, M.; Alamro, A.A.; Alamri, H.S.; Alghamdi, A.A.; Barhoumi, T. The effect of local renin angiotensin system in the common types of cancer. Front. Endocrinol., 2021, 12, 736361.
[http://dx.doi.org/10.3389/fendo.2021.736361] [PMID: 34539580]
[20]
Brocco, D.; Florio, R.; De Lellis, L.; Veschi, S.; Grassadonia, A.; Tinari, N.; Cama, A. The role of dysfunctional adipose tissue in pancreatic cancer: A molecular perspective. Cancers, 2020, 12(7), 1849.
[http://dx.doi.org/10.3390/cancers12071849] [PMID: 32659999]
[21]
Kalupahana, N.S.; Claycombe, K.J.; Moustaid-Moussa, N. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: Mechanistic insights. Adv. Nutr., 2011, 2(4), 304-316.
[http://dx.doi.org/10.3945/an.111.000505] [PMID: 22332072]
[22]
Wellen, K.E.; Hotamisligil, G.S. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Invest., 2003, 112(12), 1785-1788.
[http://dx.doi.org/10.1172/JCI20514] [PMID: 14679172]
[23]
Karlsson, C.; Lindell, K.; Ottosson, M.; Sjöström, L.; Carlsson, B.; Carlsson, L.M. Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. J. Clin. Endocrinol. Metab., 1998, 83(11), 3925-3929.
[http://dx.doi.org/10.1210/jc.83.11.3925] [PMID: 9814470]
[24]
Premaratna, S.D.; Manickam, E.; Begg, D.P.; Rayment, D.J.; Hafandi, A.; Jois, M.; Cameron-Smith, D.; Weisinger, R.S. Angiotensin-converting enzyme inhibition reverses diet-induced obesity, insulin resistance and inflammation in C57BL/6J mice. Int. J. Obes., 2012, 36(2), 233-243.
[http://dx.doi.org/10.1038/ijo.2011.95] [PMID: 21556046]
[25]
Kalupahana, N.S.; Massiera, F.; Quignard-Boulange, A.; Ailhaud, G.; Voy, B.H.; Wasserman, D.H.; Moustaid-Moussa, N. Overproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose intolerance, and insulin resistance. Obesity, 2012, 20(1), 48-56.
[http://dx.doi.org/10.1038/oby.2011.299] [PMID: 21979391]
[26]
Kalupahana, N.S.; Moustaid-Moussa, N. The adipose tissue renin-angiotensin system and metabolic disorders: A review of molecular mechanisms. Crit. Rev. Biochem. Mol. Biol., 2012, 47(4), 379-390.
[http://dx.doi.org/10.3109/10409238.2012.694843] [PMID: 22720713]
[27]
Dalamaga, M. Resistin as a biomarker linking obesity and inflammation to cancer: Potential clinical perspectives. Biomarkers Med., 2014, 8(1), 107-118.
[http://dx.doi.org/10.2217/bmm.13.99] [PMID: 24325232]
[28]
Garrido, A.M.; Griendling, K.K. NADPH oxidases and angiotensin II receptor signaling. Mol. Cell. Endocrinol., 2009, 302(2), 148-158.
[http://dx.doi.org/10.1016/j.mce.2008.11.003] [PMID: 19059306]
[29]
Kurata, A.; Nishizawa, H.; Kihara, S.; Maeda, N.; Sonoda, M.; Okada, T.; Ohashi, K.; Hibuse, T.; Fujita, K.; Yasui, A.; Hiuge, A.; Kumada, M.; Kuriyama, H.; Shimomura, I.; Funahashi, T. Blockade of angiotensin II type-1 receptor reduces oxidative stress in adipose tissue and ameliorates adipocytokine dysregulation. Kidney Int., 2006, 70(10), 1717-1724.
[http://dx.doi.org/10.1038/sj.ki.5001810] [PMID: 16985520]
[30]
Asamizu, S.; Urakaze, M.; Kobashi, C.; Ishiki, M.; Norel Din, A.K.; Fujisaka, S.; Kanatani, Y.; Bukahari, A.; Senda, S.; Suzuki, H.; Yamazaki, Y.; Iwata, M.; Usui, I.; Yamazaki, K.; Ogawa, H.; Kobayashi, M.; Tobe, K. Angiotensin II enhances the increase in monocyte chemoattractant protein-1 production induced by tumor necrosis factor-α from 3T3-L1 preadipocytes. J. Endocrinol., 2009, 202(2), 199-205.
[http://dx.doi.org/10.1677/JOE-08-0363] [PMID: 19429670]
[31]
Skurk, T.; van Harmelen, V.; Blum, W.F.; Hauner, H. Angiotensin II promotes leptin production in cultured human fat cells by an ERK1/2-dependent pathway. Obes. Res., 2005, 13(6), 969-973.
[http://dx.doi.org/10.1038/oby.2005.113] [PMID: 15976138]
[32]
Frühbeck, G.; Catalán, V.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Salvador, J.; Colina, I.; Gómez-Ambrosi, J. Adiponectin-leptin ratio is a functional biomarker of adipose tissue inflammation. Nutrients, 2019, 11(2), 454.
[http://dx.doi.org/10.3390/nu11020454] [PMID: 30813240]
[33]
Hotamisligil, G.S. Inflammation and metabolic disorders. Nature, 2006, 444(7121), 860-867.
[http://dx.doi.org/10.1038/nature05485] [PMID: 17167474]
[34]
Baumeister, P.; Luo, S.; Skarnes, W.C.; Sui, G.; Seto, E.; Shi, Y.; Lee, A.S. Endoplasmic reticulum stress induction of the Grp78/BiP promoter: Activating mechanisms mediated by YY1 and its interactive chromatin modifiers. Mol. Cell. Biol., 2005, 25(11), 4529-4540.
[http://dx.doi.org/10.1128/MCB.25.11.4529-4540.2005] [PMID: 15899857]
[35]
Hong, M.; Lin, M.; Huang, J.; Baumeister, P.; Hakre, S.; Roy, A.L.; Lee, A.S. Transcriptional regulation of the Grp78 promoter by endoplasmic reticulum stress: role of TFII-I and its tyrosine phosphorylation. J. Biol. Chem., 2005, 280(17), 16821-16828.
[http://dx.doi.org/10.1074/jbc.M413753200] [PMID: 15664986]
[36]
Menikdiwela, K.R.; Ramalingam, L.; Allen, L.; Scoggin, S.; Kalupahana, N.S.; Moustaid-Moussa, N. Angiotensin II increases endoplasmic reticulum stress in adipose tissue and adipocytes. Sci. Rep., 2019, 9(1), 8481.
[http://dx.doi.org/10.1038/s41598-019-44834-8] [PMID: 31186446]
[37]
Padoan, A.; Plebani, M.; Basso, D. Inflammation and pancreatic cancer: Focus on metabolism, cytokines, and immunity. Int. J. Mol. Sci., 2019, 20(3), 676.
[http://dx.doi.org/10.3390/ijms20030676] [PMID: 30764482]
[38]
Arlt, A.; Schäfer, H.; Kalthoff, H. The ‘N-factors’ in pancreatic cancer: Functional relevance of NF-κB, NFAT and Nrf2 in pancreatic cancer. Oncogenesis, 2012, 1(11), e35-e35.
[http://dx.doi.org/10.1038/oncsis.2012.35] [PMID: 23552468]
[39]
Maier, H.J.; Schmidt-Straßburger, U.; Huber, M.A.; Wiedemann, E.M.; Beug, H.; Wirth, T. NF-κB promotes epithelial-mesenchymal transition, migration and invasion of pancreatic carcinoma cells. Cancer Lett., 2010, 295(2), 214-228.
[http://dx.doi.org/10.1016/j.canlet.2010.03.003] [PMID: 20350779]
[40]
Jiao, P.; Ma, J.; Feng, B.; Zhang, H.; Alan-Diehl, J.; Eugene-Chin, Y.; Yan, W.; Xu, H. FFA-induced adipocyte inflammation and insulin resistance: Involvement of ER stress and IKKβ pathways. Obesity, 2011, 19(3), 483-491.
[http://dx.doi.org/10.1038/oby.2010.200] [PMID: 20829802]
[41]
Sears, B.; Perry, M. The role of fatty acids in insulin resistance. Lipids Health Dis., 2015, 14(1), 121.
[http://dx.doi.org/10.1186/s12944-015-0123-1] [PMID: 25575766]
[42]
Hopkins, B.D.; Goncalves, M.D.; Cantley, L.C. Insulin–PI3K signalling: An evolutionarily insulated metabolic driver of cancer. Nat. Rev. Endocrinol., 2020, 16(5), 276-283.
[http://dx.doi.org/10.1038/s41574-020-0329-9] [PMID: 32127696]
[43]
Ma, J.; Sawai, H.; Matsuo, Y.; Ochi, N.; Yasuda, A.; Takahashi, H.; Wakasugi, T.; Funahashi, H.; Sato, M.; Takeyama, H. IGF-1 mediates PTEN suppression and enhances cell invasion and proliferation via activation of the IGF-1/PI3K/Akt signaling pathway in pancreatic cancer cells. J. Surg. Res., 2010, 160(1), 90-101.
[http://dx.doi.org/10.1016/j.jss.2008.08.016] [PMID: 19560785]
[44]
Han, Z.B.; Ren, H.; Zhao, H.; Chi, Y.; Chen, K.; Zhou, B.; Liu, Y.; Zhang, L.; Xu, B.; Liu, B.; Yang, R.; Han, Z.C. Hypoxia-inducible factor (HIF)-1 directly enhances the transcriptional activity of stem cell factor (SCF) in response to hypoxia and epidermal growth factor (EGF). Carcinogenesis, 2008, 29(10), 1853-1861.
[http://dx.doi.org/10.1093/carcin/bgn066] [PMID: 18339685]
[45]
Chang, H.H.; Eibl, G. Obesity-induced adipose tissue inflammation as a strong promotional factor for pancreatic ductal adenocarcinoma. Cells, 2019, 8(7), 673.
[http://dx.doi.org/10.3390/cells8070673] [PMID: 31277269]
[46]
Boschmann, M.; Ringel, J.; Klaus, S.; Sharma, A.M. Metabolic and hemodynamic response of adipose tissue to angiotensin II. Obes. Res., 2001, 9(8), 486-491.
[http://dx.doi.org/10.1038/oby.2001.63] [PMID: 11500529]
[47]
Iwai, M. TAK-536, a new AT1 receptor blocker, improves glucose intolerance and adipocyte differentiation. Am. J. Hypertens., 2007, 20(5), 579-586.
[48]
Folli, F.; Kahn, C.R.; Hansen, H.; Bouchie, J.L.; Feener, E.P. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk. J. Clin. Invest., 1997, 100(9), 2158-2169.
[http://dx.doi.org/10.1172/JCI119752] [PMID: 9410892]
[49]
Gutierrez-Rodelo, C.; Arellano-Plancarte, A.; Hernandez-Aranda, J.; Landa-Galvan, H.V.; Parra-Mercado, G.K.; Moreno-Licona, N.J.; Hernandez-Gonzalez, K.D.; Catt, K.J.; Villalobos-Molina, R.; Olivares-Reyes, J.A. Angiotensin II inhibits insulin receptor signaling in adipose cells. Int. J. Mol. Sci., 2022, 23(11), 6048.
[http://dx.doi.org/10.3390/ijms23116048] [PMID: 35682723]
[50]
Zhang, Y.; Feng, L.J.D. Thyroid-stimulating hormone inhibits insulin receptor substrate-1 expression and tyrosyl phosphorylation in 3T3-L1 adipocytes by increasing NF-κB DNA-binding activity. Dis. Markers, 2022, 2022
[51]
Jayaraman, S.; Devarajan, N.; Rajagopal, P.; Babu, S.; Ganesan, S.K.; Veeraraghavan, V.P.; Palanisamy, C.P.; Cui, B.; Periyasamy, V.; Chandrasekar, K. β-Sitosterol circumvents obesity induced inflammation and insulin resistance by down-regulating IKKβ/NF-κB and JNK signaling pathway in adipocytes of type 2 diabetic rats. Molecules, 2021, 26(7), 2101.
[http://dx.doi.org/10.3390/molecules26072101] [PMID: 33917607]
[52]
Chang, H.H.; Tsai, P.H.; Liu, C.W.; Ku, H.C.; Kao, C.C.; Kao, Y.H. Cycloheximide stimulates suppressor of cytokine signaling-3 gene expression in 3T3-L1 adipocytes via the extracellular signal-regulated kinase pathway. Toxicol. Lett., 2013, 217(1), 42-49.
[http://dx.doi.org/10.1016/j.toxlet.2012.12.002] [PMID: 23237828]
[53]
Shi, H.; Cave, B.; Inouye, K.; Bjørbæk, C.; Flier, J.S. Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance. Diabetes, 2006, 55(3), 699-707.
[http://dx.doi.org/10.2337/diabetes.55.03.06.db05-0841] [PMID: 16505233]
[54]
Mitsuishi, M.; Miyashita, K.; Muraki, A.; Itoh, H. Angiotensin II reduces mitochondrial content in skeletal muscle and affects glycemic control. Diabetes, 2009, 58(3), 710-717.
[http://dx.doi.org/10.2337/db08-0949] [PMID: 19074984]
[55]
Janke, J.; Engeli, S.; Gorzelniak, K.; Luft, F.C.; Sharma, A.M. Mature adipocytes inhibit in vitro differentiation of human preadipocytes via angiotensin type 1 receptors. Diabetes, 2002, 51(6), 1699-1707.
[http://dx.doi.org/10.2337/diabetes.51.6.1699] [PMID: 12031955]
[56]
Rahman, M.S. Prostacyclin: A major prostaglandin in the regulation of adipose tissue development. J. Cell. Physiol., 2019, 234(4), 3254-3262.
[http://dx.doi.org/10.1002/jcp.26932] [PMID: 30431153]
[57]
Tyurin-Kuzmin, P.A.; Kalinina, N.I.; Kulebyakin, K.Y.; Balatskiy, A.V.; Sysoeva, V.Y.; Tkachuk, V.A. Angiotensin receptor subtypes regulate adipose tissue renewal and remodelling. FEBS J., 2020, 287(6), 1076-1087.
[http://dx.doi.org/10.1111/febs.15200] [PMID: 31899581]
[58]
Saint-Marc, P.; Kozak, L.P.; Ailhaud, G.; Darimont, C.; Negrel, R. Angiotensin II as a trophic factor of white adipose tissue: Stimulation of adipose cell formation. Endocrinology, 2001, 142(1), 487-492.
[http://dx.doi.org/10.1210/endo.142.1.7883] [PMID: 11145613]
[59]
Muñoz, M.C.; Giani, J.F.; Dominici, F.P.; Turyn, D.; Toblli, J.E. Long-term treatment with an angiotensin II receptor blocker decreases adipocyte size and improves insulin signaling in obese Zucker rats. J. Hypertens., 2009, 27(12), 2409-2420.
[http://dx.doi.org/10.1097/HJH.0b013e3283310e1b] [PMID: 19901849]
[60]
Zorad, S.; Dou, J.; Benicky, J.; Hutanu, D.; Tybitanclova, K.; Zhou, J.; Saavedra, J.M. Long-term angiotensin II AT1 receptor inhibition produces adipose tissue hypotrophy accompanied by increased expression of adiponectin and PPARγ. Eur. J. Pharmacol., 2006, 552(1-3), 112-122.
[http://dx.doi.org/10.1016/j.ejphar.2006.08.062] [PMID: 17064684]
[61]
Anghel, S.I.; Bedu, E.; Vivier, C.D.; Descombes, P.; Desvergne, B.; Wahli, W. Adipose tissue integrity as a prerequisite for systemic energy balance: A critical role for peroxisome proliferator-activated receptor γ. J. Biol. Chem., 2007, 282(41), 29946-29957.
[http://dx.doi.org/10.1074/jbc.M702490200] [PMID: 17699161]
[62]
Hattori, N. Telmisartan is the most effective ARB to increase adiponectin via PPARα in adipocyte. J. Mol. Endocrinol., 2022, 69(1), 259-268.
[http://dx.doi.org/10.1530/JME-21-0239] [PMID: 35354667]
[63]
Zhou, B.; Wu, D.; Liu, H.; Du, L.; Wang, Y.; Xu, J.; Qiu, F.; Hu, S.; Zhan, H. Obesity and pancreatic cancer: An update of epidemiological evidence and molecular mechanisms. Pancreatology, 2019, 19(7), 941-950.
[http://dx.doi.org/10.1016/j.pan.2019.08.008] [PMID: 31447281]
[64]
Hirakawa, T.; Yashiro, M.; Doi, Y.; Kinoshita, H.; Morisaki, T.; Fukuoka, T.; Hasegawa, T.; Kimura, K.; Amano, R.; Hirakawa, K. Pancreatic fibroblasts stimulate the motility of pancreatic cancer cells through IGF1/IGF1R signaling under hypoxia. PLoS One, 2016, 11(8), e0159912.
[http://dx.doi.org/10.1371/journal.pone.0159912] [PMID: 27487118]
[65]
Bronte, V.; Tortora, G. Adipocytes and neutrophils give a helping hand to pancreatic cancers. Cancer Discov., 2016, 6(8), 821-823.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0682] [PMID: 27485002]
[66]
Makinoshima, H.; Dezawa, M. Pancreatic cancer cells activate CCL5 expression in mesenchymal stromal cells through the insulin-like growth factor-I pathway. FEBS Lett., 2009, 583(22), 3697-3703.
[http://dx.doi.org/10.1016/j.febslet.2009.10.061] [PMID: 19874825]
[67]
Lee, J.S.; Kim, S.H.; Jun, D.W.; Han, J.H.; Jang, E.C.; Park, J.Y.; Son, B.K.; Kim, S.H.; Jo, Y.J.; Park, Y.S.; Kim, Y.S. Clinical implications of fatty pancreas: Correlations between fatty pancreas and metabolic syndrome. World J. Gastroenterol., 2009, 15(15), 1869-1875.
[http://dx.doi.org/10.3748/wjg.15.1869] [PMID: 19370785]
[68]
Singh, R.G.; Yoon, H.D.; Wu, L.M.; Lu, J.; Plank, L.D.; Petrov, M.S. Ectopic fat accumulation in the pancreas and its clinical relevance: A systematic review, meta-analysis, and meta-regression. Metabolism, 2017, 69, 1-13.
[http://dx.doi.org/10.1016/j.metabol.2016.12.012] [PMID: 28285638]
[69]
Vázquez-Vela, M.E.F.; Torres, N.; Tovar, A.R. White adipose tissue as endocrine organ and its role in obesity. Arch. Med. Res., 2008, 39(8), 715-728.
[http://dx.doi.org/10.1016/j.arcmed.2008.09.005] [PMID: 18996284]
[70]
Izquierdo, A.G.; Crujeiras, A.B.; Casanueva, F.F.; Carreira, M.C. Leptin, obesity, and leptin resistance: Where are we 25 years later? Nutrients, 2019, 11(11), 2704.
[http://dx.doi.org/10.3390/nu11112704] [PMID: 31717265]
[71]
Cleary, M.P.; Torroella-Kouri, M.J.A. Energy Balance, and Cancer, Leptin in cancer: Epidemiology and mechanisms; Adipocytokines, 2017, pp. 39-65.
[72]
Takahashi, M.; Hori, M.; Ishigamori, R.; Mutoh, M.; Imai, T.; Nakagama, H. Fatty pancreas: A possible risk factor for pancreatic cancer in animals and humans. Cancer Sci., 2018, 109(10), 3013-3023.
[http://dx.doi.org/10.1111/cas.13766] [PMID: 30099827]
[73]
Singhal, S.; Maheshwari, P.; Krishnamurthy, P.T.; Patil, V.M. Drug repurposing strategies for non-cancer to cancer therapeutics. Anticancer. Agents Med. Chem., 2022, 22(15), 2726-2756.
[http://dx.doi.org/10.2174/1871520622666220317140557] [PMID: 35301945]
[74]
Kintscher, U.; Foryst-Ludwig, A.; Unger, T.J.E. Inhibiting angiotensin type 1 receptors as a target for diabetes. Expert. Opin. Ther. Targets., 2008, 12(10), 1257-1263.
[http://dx.doi.org/10.1517/14728222.12.10.1257]
[75]
Fujisaka, S.; Usui, I.; Kanatani, Y.; Ikutani, M.; Takasaki, I.; Tsuneyama, K.; Tabuchi, Y.; Bukhari, A.; Yamazaki, Y.; Suzuki, H.; Senda, S.; Aminuddin, A.; Nagai, Y.; Takatsu, K.; Kobayashi, M.; Tobe, K. Telmisartan improves insulin resistance and modulates adipose tissue macrophage polarization in high-fat-fed mice. Endocrinology, 2011, 152(5), 1789-1799.
[http://dx.doi.org/10.1210/en.2010-1312] [PMID: 21427223]
[76]
Ushijima, K.; Takuma, M.; Ando, H.; Ishikawa-Kobayashi, E.; Nozawa, M.; Maekawa, T.; Shiga, T.; Fujimura, A. Effects of telmisartan and valsartan on insulin sensitivity in obese diabetic mice. Eur. J. Pharmacol., 2013, 698(1-3), 505-510.
[http://dx.doi.org/10.1016/j.ejphar.2012.11.022] [PMID: 23195328]
[77]
Nishimura, H.; Sanaka, T.; Tanihata, Y.; Naito, T.; Higuchi, C.; Otsuka, K. Losartan elevates the serum high-molecular weight-adiponectin isoform and concurrently improves insulin sensitivity in patients with impaired glucose metabolism. Hypertens. Res., 2008, 31(8), 1611-1618.
[http://dx.doi.org/10.1291/hypres.31.1611] [PMID: 18971537]
[78]
Iwai, M.; Kanno, H.; Senba, I.; Nakaoka, H.; Moritani, T.; Horiuchi, M. Irbesartan increased PPARγ activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction. Biochem. Biophys. Res. Commun., 2011, 406(1), 123-126.
[http://dx.doi.org/10.1016/j.bbrc.2011.02.007] [PMID: 21296052]
[79]
Verma, S.; Masand, N.; Cheke, R.S.; Patil, V.M. Protein informatics and vaccine development: Cancer case study. Curr. Top. Med. Chem., 2022, 22(26), 2207-2220.
[http://dx.doi.org/10.2174/1568026623666221107160636] [PMID: 36345238]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy