Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Review Article

Recent Progress on Photonic Cellulose Nanocrystal Films for Sensing Applications

Author(s): Zhijie Deng, Tao Tao, Jianzhong Yuan and Caichao Wan*

Volume 22, Issue 2, 2025

Published on: 06 February, 2024

Page: [198 - 210] Pages: 13

DOI: 10.2174/0115701794279003240124113635

Price: $65

TIMBC 2025
Abstract

Cellulose nanocrystals (CNCs) have triggered considerable research interest in the last few years owing to their unique optical, biodegradation, and mechanical behavior. Herein, recent progress on the sensing application of photonic CNC films is summarized and discussed based on the analyses of the latest studies. We briefly introduce the three approaches for preparing CNCs: mechanical treatment, acid hydrolysis, and enzymatic hydrolysis, recapitulating their differences in preparation and properties. Then, when the aqueous suspension of cellulose nanocrystals (CNCs) reaches a specific concentration, it will self-assemble to form a lefthanded nematic liquid crystal structure, and this structure can be maintained in films after water evaporation, which has strong photonic crystal properties. The periodic layered structure in the film interferes and diffracts with light, showing a rainbow color. Photonic CNC composites that combine CNCs and functional materials have good properties and broad prospects. Finally, we highlight the advanced applications of photonic CNC films, including mechanical sensing, thermal sensing, and humidity sensing. The prospects and ongoing challenges of photonic CNC films were summarized.

Keywords: Nanocellulose, cellulose nanocrystals, cholesteric liquid crystal, structural color, film, sensing.

Graphical Abstract
[1]
Surov, O.V.; Voronova, M.I.; Zakharov, A.G. Functional materials based on nanocrystalline cellulose. Russ. Chem. Rev., 2017, 86(10), 907-933.
[http://dx.doi.org/10.1070/RCR4745]
[2]
Dumanli, A.G.; Kamita, G.; Landman, J.; van der Kooij, H.; Glover, B.J.; Baumberg, J.J.; Steiner, U.; Vignolini, S. Controlled, bio‐inspired self‐assembly of cellulose‐based chiral reflectors. Adv. Opt. Mater., 2014, 2(7), 646-650.
[http://dx.doi.org/10.1002/adom.201400112] [PMID: 26229742]
[3]
Li, Y.Y. Preparation and application of nanocellulose and nanocellulose based functional materials. PhD Thesis, Nanjing Forestry University; Nanjing, 2004.
[4]
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 40(7), 3941-3994.
[http://dx.doi.org/10.1039/c0cs00108b] [PMID: 21566801]
[5]
Medronho, B.; Lindman, B. Competing forces during cellulose dissolution: From solvents to mechanisms. Curr. Opin. Colloid Interface Sci., 2014, 19(1), 32-40.
[http://dx.doi.org/10.1016/j.cocis.2013.12.001]
[6]
Nakagaito, A.N.; Yano, H. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl. Phys., A Mater. Sci. Process., 2004, 78(4), 547-552.
[http://dx.doi.org/10.1007/s00339-003-2453-5]
[7]
Cheng, W.; Zhu, Y.; Jiang, G.; Cao, K.; Zeng, S.; Chen, W.; Zhao, D.; Yu, H. Sustainable cellulose and its derivatives for promising biomedical applications. Prog. Mater. Sci., 2023, 138(101152), 101152.
[http://dx.doi.org/10.1016/j.pmatsci.2023.101152]
[8]
Wei, S.; Wan, C.; Wu, Y. Recent advances in wood-based electrode materials for supercapacitors. Green Chem., 2023, 25(9), 3322-3353.
[http://dx.doi.org/10.1039/D2GC04271A]
[9]
Islam, M.S.; Chen, L.; Sisler, J.; Tam, K.C. Cellulose nanocrystal (CNC)–inorganic hybrid systems: Synthesis, properties and applications. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(6), 864-883.
[http://dx.doi.org/10.1039/C7TB03016A] [PMID: 32254367]
[10]
Wei, H.; Rodriguez, K.; Renneckar, S.; Vikesland, P.J. Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ. Sci. Nano, 2014, 1(4), 302-316.
[http://dx.doi.org/10.1039/C4EN00059E]
[11]
Liu, P. Study on the self-assembly mechanism of cellulose nanocrystal under flow field and construction of its functional materials. PhD Thesis, Qingdao University Of Science And Technology; Tsingtao, 2017.
[12]
Liu, Y. Preparation and research of tempo oxidation nanocellulose and its composite film. Master Thesis, Inner MongoliaAgricultural University; Hohhot, 2020.
[13]
Dai, L. Preparation and investigation of TEMPO-oxidized cellulose nanofibers and their composite films. PhD Thesis, Jiangnan University; Wuxi, 2015.
[14]
Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale, 2011, 3(1), 71-85.
[http://dx.doi.org/10.1039/C0NR00583E] [PMID: 20957280]
[15]
Rohaizu, R.; Wanrosli, W.D. Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose. Ultrason. Sonochem., 2017, 34, 631-639.
[http://dx.doi.org/10.1016/j.ultsonch.2016.06.040] [PMID: 27773290]
[16]
Qing, Y.; Wang, L.; Wu, Y.Q. Formation and application of cellulose nanocrystal cholesteric phase liquid crystal. Linye Kexue, 2019, 55(04), 152-159.
[17]
Rol, F.; Belgacem, M.N.; Gandini, A.; Bras, J. Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci., 2019, 88, 241-264.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.09.002]
[18]
Chu, G. Cellulose nanocrystal-based chiral nematic material: A study on its optical properties. PhD Thesis, Jilin University; Changchun, 2016.
[19]
Shen, P.; Tang, Q.; Chen, X.; Li, Z. Nanocrystalline cellulose extracted from bast fibers: Preparation, characterization, and application. Carbohydr. Polym., 2022, 290(119462), 119462.
[http://dx.doi.org/10.1016/j.carbpol.2022.119462] [PMID: 35550763]
[20]
Li, C.X. Optical-electrical properties and applications of novel cellulose liquid crystal nanomaterials. PhD Thesis, Zhejiang Universit; Hangzhou, 2021.
[21]
Xue, L. Preparation and property study of nanocrystalline cellulose cholesteric liquid crystal, film and oxide. Master Thesis, Nanjing Forestry University; Nanjing, 2012.
[22]
Ermakov, S.; Beletskii, A.; Eismont, O.; Nikolaev, V. Liquid Crystals in Biotribology: Synovial Joint Treatment; Springer International Publishing: Cham, Switzerland, 2016.
[23]
Chester, A.N.; Martellucci, S. Eds.;. Phase Transitions in Liquid Crystals; Springer: New York, 2014.
[24]
da Rosa, R.R.; Fernandes, S.N.; Mitov, M.; Godinho, M.H. Cellulose and chitin twisted structures: From nature to applications. Adv. Funct. Mater., 2023, 2304286, 2304286.
[http://dx.doi.org/10.1002/adfm.202304286]
[25]
da Rosa, R.R.; Silva, P.E.S.; Saraiva, D.V.; Kumar, A.; de Sousa, A.P.M.; Sebastião, P.; Fernandes, S.N.; Godinho, M.H. Cellulose nanocrystal aqueous colloidal suspensions: Evidence of density inversion at the isotropic‐liquid crystal phase transition. Adv. Mater., 2022, 34(28), 2108227.
[http://dx.doi.org/10.1002/adma.202108227] [PMID: 35502142]
[26]
Li, Y.Y.P. Preparation, properties and mechanism of cellulose nanocrystals/ waterborne polyurethane films. PhD Thesis, Beijing Forestry University; Beijing, 2021.
[27]
Duan, M. Study on preparation and optical properties control of cellulose nanocrystals flexible iridescent film. Master Thesis, Shaanxi University of Science & Technology; Xian, 2019.
[28]
Selinger, J.V. Director deformations, geometric frustration, and modulated phases in liquid crystals. Annu. Rev. Condens. Matter Phys., 2022, 13(1), 49-71.
[http://dx.doi.org/10.1146/annurev-conmatphys-031620-105712]
[29]
Gençer, A.; Schütz, C.; Thielemans, W. Influence of the particle concentration and marangoni flow on the formation of cellulose nanocrystal films. Langmuir, 2017, 33(1), 228-234.
[http://dx.doi.org/10.1021/acs.langmuir.6b03724] [PMID: 28034313]
[30]
Huang, W.J. Preparation and anti-counterfeiting patterning of chiral nematic cellulose nanocrystals. Master Thesis, Tianjin University of Science and Technology; Tianjin, 2020.
[31]
Dong, X.M.; Kimura, T.; Revol, J.F.; Gray, D.G. Effects of ionic strength on the isotropic−chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir, 1996, 12(8), 2076-2082.
[http://dx.doi.org/10.1021/la950133b]
[32]
Chen, Q.; Liu, P.; Nan, F.; Zhou, L.; Zhang, J. Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique. Biomacromolecules, 2014, 15(11), 4343-4350.
[http://dx.doi.org/10.1021/bm501355x] [PMID: 25300554]
[33]
Huang, Y.Y. Preparation and properties of flexible water-resistant iridescent films based on cellulose nanocrystals. Master Thesis, South China University of Technology; Canton, 2020.
[34]
Sehaqui, H.; Liu, A.; Zhou, Q.; Berglund, L.A. Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules, 2010, 11(9), 2195-2198.
[http://dx.doi.org/10.1021/bm100490s] [PMID: 20698565]
[35]
Tran, A.; Hamad, W.Y.; MacLachlan, M.J. Fabrication of cellulose nanocrystal films through differential evaporation for patterned coatings. ACS Appl. Nano Mater., 2018, 1(7), 3098-3104.
[http://dx.doi.org/10.1021/acsanm.8b00947]
[36]
Ureña-Benavides, E.E.; Ao, G.; Davis, V.A.; Kitchens, C.L. Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules, 2011, 44(22), 8990-8998.
[http://dx.doi.org/10.1021/ma201649f]
[37]
de Vries, H. Rotatory power and other optical properties of certain liquid crystals. Acta Crystallogr., 1951, 4(3), 219-226.
[http://dx.doi.org/10.1107/S0365110X51000751]
[38]
Lagerwall, S.T. On some important chapters in the history of liquid crystals. Liq. Cryst., 2013, 40(12), 1698-1729.
[http://dx.doi.org/10.1080/02678292.2013.831134]
[39]
Nishio, Y.; Sato, J.; Sugimura, K. Cellulose chemistry and properties: Fibers, nanocelluloses and advanced materials; Springer International Publishing: Cham, Switzerland, 2016.
[40]
Bahr, C.; Kitzerow, H-S. Eds. Chirality in Liquid Crystals; Springer-Verlag: New York, 2001.
[41]
Wang, C.; Tang, C.; Wang, Y.; Shen, Y.; Qi, W.; Zhang, T.; Su, R.; He, Z. Chiral photonic materials self-assembled by cellulose nanocrystals. Curr. Opin. Solid State Mater. Sci., 2022, 26(5), 101017.
[http://dx.doi.org/10.1016/j.cossms.2022.101017]
[42]
Xue, L. Preparation and property study of nanocrystalline cellulose cholesteric liquid crystal; Film and Oxide: Nanjing, 2012.
[43]
Tran, A.; Boott, C.E.; MacLachlan, M.J. Understanding the self‐assembly of cellulose nanocrystals-toward chiral photonic materials. Adv. Mater., 2020, 32(41), 1905876.
[http://dx.doi.org/10.1002/adma.201905876] [PMID: 32009259]
[44]
Chen, J.; Mao, L.; Qi, H.; Xu, D.; Huang, H.; Liu, M.; Wen, Y.; Deng, F.; Zhang, X.; Wei, Y. Preparation of fluorescent cellulose nanocrystal polymer composites with thermo-responsiveness through light-induced ATRP. Cellulose, 2020, 27(2), 743-753.
[http://dx.doi.org/10.1007/s10570-019-02845-8]
[45]
Shi, Z.; Li, S.; Li, M.; Gan, L.; Huang, J. Surface modification of cellulose nanocrystals towards new materials development. J. Appl. Polym. Sci., 2021, 138(48), 51555.
[http://dx.doi.org/10.1002/app.51555]
[46]
Silva, P.E.S.; Chagas, R.; Fernandes, S.N.; Pieranski, P.; Selinger, R.L.B.; Godinho, M.H. Travelling colourful patterns in self-organized cellulose-based liquid crystalline structures. Commun. Mater., 2021, 2(1), 79.
[http://dx.doi.org/10.1038/s43246-021-00182-7]
[47]
Almeida, A.P.C.; Canejo, J.P.; Fernandes, S.N.; Echeverria, C.; Almeida, P.L.; Godinho, M.H. Cellulose-based biomimetics and their applications. Adv. Mater., 2018, 30(19), 1703655.
[http://dx.doi.org/10.1002/adma.201703655] [PMID: 29333680]
[48]
Fernandes, S.N.; Almeida, P.L.; Monge, N.; Aguirre, L.E.; Reis, D.; de Oliveira, C.L.P.; Neto, A.M.F.; Pieranski, P.; Godinho, M.H. Mind the microgap in iridescent cellulose nanocrystal films. Adv. Mater., 2017, 29(2), 1603560.
[http://dx.doi.org/10.1002/adma.201603560] [PMID: 27862372]
[49]
Canejo, J.P.; Borges, J.P.; Godinho, M.H.; Brogueira, P.; Teixeira, P.I.C.; Terentjev, E.M. Helical twisting of electrospun liquid crystalline cellulose micro-and nanofibers. Adv. Mater., 2008, 20(24), 4821-4825.
[http://dx.doi.org/10.1002/adma.200801008]
[50]
Han, F.; Wang, T.; Liu, G.; Liu, H.; Xie, X.; Wei, Z.; Li, J.; Jiang, C.; He, Y.; Xu, F. Materials with tunable optical properties for wearable epidermal sensing in health monitoring. Adv. Mater., 2022, 34(26), 2109055.
[http://dx.doi.org/10.1002/adma.202109055] [PMID: 35258117]
[51]
Yan, Z.; Liao, X.; He, G.; Li, S.; Guo, F.; Zou, F.; Li, G. Green and high-expansion PLLA/PDLA foams with excellent thermal insulation and enhanced compressive properties. Ind. Eng. Chem. Res., 2020, 59(43), 19244-19251.
[http://dx.doi.org/10.1021/acs.iecr.0c02492]
[52]
Wu, P.; Wang, J.; Jiang, L. Bio-inspired photonic crystal patterns. Mater. Horiz., 2020, 7(2), 338-365.
[http://dx.doi.org/10.1039/C9MH01389J]
[53]
Wang, H.; Zhang, K.Q. Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors, 2013, 13(4), 4192-4213.
[http://dx.doi.org/10.3390/s130404192] [PMID: 23539027]
[54]
Giese, M.; Khan, M.K.; Hamad, W.Y.; MacLachlan, M.J. Imprinting of photonic patterns with thermosetting amino-formaldehyde-cellulose composites. ACS Macro Lett., 2013, 2(9), 818-821.
[http://dx.doi.org/10.1021/mz4003722] [PMID: 35606986]
[55]
Bardet, R.; Belgacem, N.; Bras, J. Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. ACS Appl. Mater. Interfaces, 2015, 7(7), 4010-4018.
[http://dx.doi.org/10.1021/am506786t] [PMID: 25552332]
[56]
Zhang, Z.L.; Dong, X.; Fan, Y.N.; Yang, L.M.; He, L.; Song, F.; Wang, X.L.; Wang, Y.Z. Chameleon-inspired variable coloration enabled by a highly flexible photonic cellulose film. ACS Appl. Mater. Interfaces, 2020, 12(41), 46710-46718.
[http://dx.doi.org/10.1021/acsami.0c13551] [PMID: 32965096]
[57]
Xu, M.; Li, W.; Ma, C.; Yu, H.; Wu, Y.; Wang, Y.; Chen, Z.; Li, J.; Liu, S. Multifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatings. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2018, 6(20), 5391-5400.
[http://dx.doi.org/10.1039/C8TC01321G]
[58]
Ito, T.; Katsura, C.; Sugimoto, H.; Nakanishi, E.; Inomata, K. Strain-responsive structural colored elastomers by fixing colloidal crystal assembly. Langmuir, 2013, 29(45), 13951-13957.
[http://dx.doi.org/10.1021/la4030266] [PMID: 24099483]
[59]
Boott, C.E.; Tran, A.; Hamad, W.Y.; MacLachlan, M.J. Cellulose nanocrystal elastomers with reversible visible color. Angew. Chem. Int. Ed., 2020, 59(1), 226-231.
[http://dx.doi.org/10.1002/anie.201911468] [PMID: 31663249]
[60]
Kose, O.; Boott, C.E.; Hamad, W.Y.; MacLachlan, M.J. Stimuli-responsive anisotropic materials based on unidirectional organization of cellulose nanocrystals in an elastomer. Macromolecules, 2019, 52(14), 5317-5324.
[http://dx.doi.org/10.1021/acs.macromol.9b00863]
[61]
Sun, C.; Zhu, D.; Jia, H.; Yang, C.; Zheng, Z.; Wang, X. Bio-based visual optical pressure-responsive sensor. Carbohydr. Polym., 2021, 260(117823), 117823.
[http://dx.doi.org/10.1016/j.carbpol.2021.117823] [PMID: 33712164]
[62]
Wan, H.; Li, X.; Zhang, L.; Li, X.; Liu, P.; Jiang, Z.; Yu, Z.Z. Rapidly responsive and flexible chiral nematic cellulose nanocrystal composites as multifunctional rewritable photonic papers with eco-friendly inks. ACS Appl. Mater. Interfaces, 2018, 10(6), 5918-5925.
[http://dx.doi.org/10.1021/acsami.7b19375] [PMID: 29363303]
[63]
Chen, T.; Zhao, Q.; Meng, X.; Li, Y.; Peng, H.; Whittaker, A.K.; Zhu, S. Ultrasensitive magnetic tuning of optical properties of films of cholesteric cellulose nanocrystals. ACS Nano, 2020, 14(8), 9440-9448.
[http://dx.doi.org/10.1021/acsnano.0c00506] [PMID: 32574040]
[64]
Santos, M.V.; Tercjak, A.; Gutierrez, J.; Barud, H.S.; Napoli, M.; Nalin, M.; Ribeiro, S.J.L. Optical sensor platform based on cellulose nanocrystals (CNC) – 4′-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films. Carbohydr. Polym., 2017, 168, 346-355.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.078] [PMID: 28457459]
[65]
Tang, L.; Wang, L.; Yang, X.; Feng, Y.; Li, Y.; Feng, W. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. Prog. Mater. Sci., 2021, 115(100702), 100702.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100702]
[66]
Sun, C.; Zhu, D.; Jia, H.; Lei, K.; Zheng, Z.; Wang, X. Humidity and heat dual response cellulose nanocrystals/poly(N -Isopropylacrylamide) composite films with cyclic performance. ACS Appl. Mater. Interfaces, 2019, 11(42), 39192-39200.
[http://dx.doi.org/10.1021/acsami.9b14201] [PMID: 31564097]
[67]
Sui, Y.; Li, X.; Chang, W.; Wan, H.; Li, W.; Yang, F.; Yu, Z.Z. Multi-responsive nanocomposite membranes of cellulose nanocrystals and poly(N-isopropyl acrylamide) with tunable chiral nematic structures. Carbohydr. Polym., 2020, 232(115778), 115778.
[http://dx.doi.org/10.1016/j.carbpol.2019.115778] [PMID: 31952587]
[68]
Boott, C.E.; Soto, M.A.; Hamad, W.Y.; MacLachlan, M.J. Shape‐memory photonic thermoplastics from cellulose nanocrystals. Adv. Funct. Mater., 2021, 31(43), 2103268.
[http://dx.doi.org/10.1002/adfm.202103268]
[69]
Shan, D.; Gerhard, E.; Zhang, C.; Tierney, J.W.; Xie, D.; Liu, Z.; Yang, J. Polymeric biomaterials for biophotonic applications. Bioact. Mater., 2018, 3(4), 434-445.
[http://dx.doi.org/10.1016/j.bioactmat.2018.07.001] [PMID: 30151431]
[70]
Li, D.; Wang, L. Cellulose acetate polymer film modified microstructured polymer optical fiber towards a nitrite optical probe. Opt. Commun., 2010, 283(14), 2841-2844.
[http://dx.doi.org/10.1016/j.optcom.2010.04.005]
[71]
Guimarães, C.F.; Ahmed, R.; Marques, A.P.; Reis, R.L.; Demirci, U. Engineering hydrogel-based biomedical photonics: Design, fabrication, and applications. Adv. Mater., 2021, 33(23), 2006582.
[http://dx.doi.org/10.1002/adma.202006582] [PMID: 33929771]
[72]
Wang, X.; Li, Q.; Guan, Y.; Zhang, Y. Glucose oxidase-incorporated hydrogel thin film for fast optical glucose detecting under physiological conditions. Mater. Today Chem., 2016, 1-2, 7-14.
[http://dx.doi.org/10.1016/j.mtchem.2016.10.005]
[73]
Zhu, Z.; Liu, L.; Liu, Z.; Zhang, Y.; Zhang, Y. Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit. Opt. Lett., 2017, 42(15), 2948-2951.
[http://dx.doi.org/10.1364/OL.42.002948] [PMID: 28957216]
[74]
Song, S.; Jung, A.; Hong, S.; Oh, K. Strain-insensitive biocompatible temperature sensor based on DNA solid film on an optical microfiber. IEEE Photonics Technol. Lett., 2019, 31(24), 1925-1928.
[http://dx.doi.org/10.1109/LPT.2019.2950039]
[75]
Wu, W.; Shen, J.; Banerjee, P.; Zhou, S. Core–shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials, 2010, 31(29), 7555-7566.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.030] [PMID: 20643481]
[76]
Rehman, H.M.M.U.; Prasanna, A.P.S.; Rehman, M.M.; Khan, M.; Kim, S.J.; Kim, W.Y. Edible rice paper-based multifunctional humidity sensor powered by triboelectricity. Sustainable Materials and Technologies, 2023, 36, e00596.
[http://dx.doi.org/10.1016/j.susmat.2023.e00596]
[77]
Liu, Z.; Liu, W.; Hu, C.; Zhang, Y.; Yang, X.; Zhang, J.; Yang, J.; Yuan, L. Natural spider silk as a photonics component for humidity sensing. Opt. Express, 2019, 27(15), 21946-21955.
[http://dx.doi.org/10.1364/OE.27.021946] [PMID: 31510261]
[78]
Hartings, M.; Douglass, K.O.; Neice, C.; Ahmed, Z. Humidity responsive photonic sensor based on a carboxymethyl cellulose mechanical actuator. Sens. Actuators B Chem., 2018, 265, 335-338.
[http://dx.doi.org/10.1016/j.snb.2018.03.065] [PMID: 31080316]
[79]
Khan, M.; Rehman, M.M.; Khan, S.A.; Saqib, M.; Kim, W.Y. Characterization and performance evaluation of fully biocompatible gelatin-based humidity sensor for health and environmental monitoring. Front. Mater., 2023, 10, 1233136.
[http://dx.doi.org/10.3389/fmats.2023.1233136]
[80]
Chen, R.; Feng, D.; Chen, G.; Chen, X.; Hong, W. Re‐printable chiral photonic paper with invisible patterns and tunable wettability. Adv. Funct. Mater., 2021, 31(16), 2009916.
[http://dx.doi.org/10.1002/adfm.202009916]
[81]
Chen, H.; Hou, A.; Zheng, C.; Tang, J.; Xie, K.; Gao, A. Light- and humidity-responsive chiral nematic photonic crystal films based on cellulose nanocrystals. ACS Appl. Mater. Interfaces, 2020, 12(21), 24505-24511.
[http://dx.doi.org/10.1021/acsami.0c05139] [PMID: 32362108]
[82]
Zhang, Y.P.; Chodavarapu, V.P.; Kirk, A.G.; Andrews, M.P. Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films. Sens. Actuators B Chem., 2013, 176, 692-697.
[http://dx.doi.org/10.1016/j.snb.2012.09.100]
[83]
Yao, K.; Meng, Q.; Bulone, V.; Zhou, Q. Flexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural color. Adv. Mater., 2017, 29(28), 1701323.
[http://dx.doi.org/10.1002/adma.201701323] [PMID: 28558169]
[84]
Yang, H.; Choi, S.E.; Kim, D.; Park, D.; Lee, D.; Choi, S.; Nam, Y.S.; Kim, J.W. Color-spectrum-broadened ductile cellulose films for vapor-pH-responsive colorimetric sensors. J. Ind. Eng. Chem., 2019, 80, 590-596.
[http://dx.doi.org/10.1016/j.jiec.2019.08.039]
[85]
Hou, A.; Chen, H.; Zheng, C.; Xie, K.; Gao, A. Assembly of a fluorescent chiral photonic crystal membrane and its sensitive responses to multiple signals induced by small molecules. ACS Nano, 2020, 14(6), 7380-7388.
[http://dx.doi.org/10.1021/acsnano.0c02883] [PMID: 32484339]
[86]
Sun, Y.; Fan, W.; Zou, C.; Wei, L.; Liu, J.; Xu, Y. Ternary supramolecular ensembles of cellulose nanocrystals exhibiting multiscale deformation and mechano/chemoresponsive selective reflection of circularly polarized light. ACS Sustain. Chem.& Eng., 2019, 7(7), 6851-6858.
[http://dx.doi.org/10.1021/acssuschemeng.8b06230]
[87]
Yu, Z.; Wang, K.; Lu, X. Flexible cellulose nanocrystal-based bionanocomposite film as a smart photonic material responsive to humidity. Int. J. Biol. Macromol., 2021, 188, 385-390.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.049] [PMID: 34389384]
[88]
Bai, L.; Wang, Z.; He, Y.; Song, F.; Wang, X.; Wang, Y. Flexible photonic cellulose nanocrystal films as a platform with multisensing functions. ACS Sustain. Chem.& Eng., 2020, 8(50), 18484-18491.
[http://dx.doi.org/10.1021/acssuschemeng.0c06174]
[89]
Dai, S.; Prempeh, N.; Liu, D.; Fan, Y.; Gu, M.; Chang, Y. Cholesteric film of Cu(II)-doped cellulose nanocrystals for colorimetric sensing of ammonia gas. Carbohydr. Polym., 2017, 174, 531-539.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.098] [PMID: 28821101]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy