Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Exploring the Molecular Mechanism by which Kaempferol Attenuates Sepsis-related Acute Respiratory Distress Syndrome Based on Network Pharmacology and Experimental Verification

Author(s): Weichao Ding, Changbao Huang, Juan Chen, Wei Zhang, Mengmeng Wang, Xiaohang Ji, Shinan Nie* and Zhaorui Sun*

Volume 21, Issue 2, 2025

Published on: 06 February, 2024

Page: [166 - 178] Pages: 13

DOI: 10.2174/0115734099295805240126043059

Price: $65

Abstract

Background: Sepsis-related acute respiratory distress syndrome (ARDS) is a fatal disease without effective therapy. Kaempferol is a flavonoid compound extracted from natural plant products; it exerts numerous pharmacological effects. Kaempferol attenuates sepsis-related ARDS; however, the underlying protective mechanism has not been elucidated completely.

Objectives: This study aimed to use network pharmacology and experimental verification to investigate the mechanisms by which kaempferol attenuates sepsis-related ARDS.

Methods: We screened the targets of kaempferol by PharMapper, Swiss Target Prediction, and CTD database. We identified the targets of sepsis-related ARDS by GeneCards, DisGeNet, OMIM, and TTD. The Weishengxin platform was used to map the targets of both kaempferol and sepsis-related ARDS. We created a Venn diagram to identify the intersection targets. We constructed the "component-intersection targets-disease" network diagram using Cytoscape 3.9.1 software. The intersection targets were imported into the STRING database for developing the protein-protein interaction network. Metascape was used for the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. We selected the leading 20 KEGG pathways to establish the KEGG relationship network. Finally, we performed experimental verification to confirm our prediction results.

Results: Through database screening, we obtained 502, 360, and 78 kaempferol targets, disease targets of sepsis-related ARDS, and intersection targets, respectively. The core targets consisted of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, albumin (ALB), IL-1β, and AKT serine/ threonine kinase (AKT)1. GO enrichment analysis identified 426 items, which were principally involved in response to lipopolysaccharide, regulation of inflammatory response, inflammatory response, positive regulation of cell migration, positive regulation of cell adhesion, positive regulation of protein phosphorylation, response to hormone, regulation of reactive oxygen species (ROS) metabolic process, negative regulation of apoptotic signaling pathway, and response to decreased oxygen levels. KEGG enrichment analysis identified 151 pathways. After eliminating the disease and generalized pathways, we obtained the hypoxia-inducible factor 1 (HIF-1), nuclear factor κB (NF-κB), and phosphoinositide 3-kinase (PI3K)-Akt signaling pathways. Our experimental verification confirmed that kaempferol blocked the HIF-1, NFκκB, and PI3K-Akt signaling pathways, diminished TNF-α, IL-1β, and IL-6 expressions, suppressed ROS production, and inhibited apoptosis in lipopolysaccharide (LPS)-induced murine alveolar macrophage (MH-S) cells.

Conclusion: Kaempferol can reduce inflammatory response, ROS production, and cell apoptosis by acting on the HIF-1, NF-κB, and PI3K-Akt signaling pathways, thereby alleviating sepsis- related ARDS.

Keywords: Kaempferol, sepsis, sepsis-related acute respiratory distress syndrome, network pharmacology, experimental verification, GO, KEGG enrichment.

Graphical Abstract
[1]
Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; Schorr, C.; Simpson, S.; Wiersinga, W.J.; Alshamsi, F.; Angus, D.C.; Arabi, Y.; Azevedo, L.; Beale, R.; Beilman, G.; Belley-Cote, E.; Burry, L.; Cecconi, M.; Centofanti, J.; Coz Yataco, A.; De Waele, J.; Dellinger, R.P.; Doi, K.; Du, B.; Estenssoro, E.; Ferrer, R.; Gomersall, C.; Hodgson, C.; Møller, M.H.; Iwashyna, T.; Jacob, S.; Kleinpell, R.; Klompas, M.; Koh, Y.; Kumar, A.; Kwizera, A.; Lobo, S.; Masur, H.; McGloughlin, S.; Mehta, S.; Mehta, Y.; Mer, M.; Nunnally, M.; Oczkowski, S.; Osborn, T.; Papathanassoglou, E.; Perner, A.; Puskarich, M.; Roberts, J.; Schweickert, W.; Seckel, M.; Sevransky, J.; Sprung, C.L.; Welte, T.; Zimmerman, J.; Levy, M. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intens. Care Med., 2021, 47(11), 1181-1247.
[http://dx.doi.org/10.1007/s00134-021-06506-y] [PMID: 34599691]
[2]
Prescott, H.C.; Angus, D.C. Enhancing recovery from sepsis. JAMA, 2018, 319(1), 62-75.
[http://dx.doi.org/10.1001/jama.2017.17687] [PMID: 29297082]
[3]
Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; Fleischmann-Struzek, C.; Machado, F.R.; Reinhart, K.K.; Rowan, K.; Seymour, C.W.; Watson, R.S.; West, T.E.; Marinho, F.; Hay, S.I.; Lozano, R.; Lopez, A.D.; Angus, D.C.; Murray, C.J.L.; Naghavi, M. Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the Global Burden of Disease Study. Lancet, 2020, 395(10219), 200-211.
[http://dx.doi.org/10.1016/S0140-6736(19)32989-7] [PMID: 31954465]
[4]
Sheu, C.C.; Gong, M.N.; Zhai, R.; Chen, F.; Bajwa, E.K.; Clardy, P.F.; Gallagher, D.C.; Thompson, B.T.; Christiani, D.C. Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. Chest, 2010, 138(3), 559-567.
[http://dx.doi.org/10.1378/chest.09-2933] [PMID: 20507948]
[5]
Ding, W.C.; Chen, J.; Liao, H.Y.; Feng, J.; Wang, J.; Zhang, Y.H.; Ji, X.H.; Chen, Q.; Wu, X.Y.; Sun, Z.R.; Nie, S.N. [Mechanism of Xuebijing Injection in treatment of sepsis-associated ARDS based on network pharmacology and in vitro experiment]. Zhongguo Zhongyao Zazhi, 2023, 48(12), 3345-3359.
[PMID: 37382018]
[6]
He, Y.Q.; Zhou, C.C.; Yu, L.Y.; Wang, L.; Deng, J.; Tao, Y.L.; Zhang, F.; Chen, W.S. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol. Res., 2021, 163, 105224.
[http://dx.doi.org/10.1016/j.phrs.2020.105224] [PMID: 33007416]
[7]
Bangar, S.P.; Chaudhary, V.; Sharma, N.; Bansal, V.; Ozogul, F.; Lorenzo, J.M. Kaempferol: A flavonoid with wider biological activities and its applications. Crit. Rev. Food Sci. Nutr., 2023, 63(28), 9580-9604.
[http://dx.doi.org/10.1080/10408398.2022.2067121] [PMID: 35468008]
[8]
Mishra, S.; Gandhi, D.; Tiwari, R.R.; Rajasekaran, S. Beneficial role of kaempferol and its derivatives from different plant sources on respiratory diseases in experimental models. Inflammopharmacology, 2023, 31(5), 2311-2336.
[http://dx.doi.org/10.1007/s10787-023-01282-1] [PMID: 37410224]
[9]
Alkandahri, M.Y.; Pamungkas, B.T.; Oktoba, Z.; Shafirany, M.Z.; Sulastri, L.; Arfania, M.; Anggraeny, E.N.; Pratiwi, A.; Astuti, F.D.; Indriyani; Dewi, S.Y.; Hamidah, S.Z. Hepatoprotective effect of kaempferol: A review of the dietary sources, bioavailability, mechanisms of action, and safety. Adv. Pharmacol. Pharm. Sci., 2023, 2023, 1-16.
[http://dx.doi.org/10.1155/2023/1387665] [PMID: 36891541]
[10]
Kamisah, Y.; Jalil, J.; Yunos, N.M.; Zainalabidin, S. Cardioprotective properties of kaempferol: A review. Plants, 2023, 12(11), 2096.
[http://dx.doi.org/10.3390/plants12112096] [PMID: 37299076]
[11]
Silva dos Santos, J.; Gonçalves Cirino, J.P.; de Oliveira Carvalho, P.; Ortega, M.M. The pharmacological action of kaempferol in central nervous system diseases: A review. Front. Pharmacol., 2021, 11, 565700.
[http://dx.doi.org/10.3389/fphar.2020.565700] [PMID: 33519431]
[12]
Amjad, E.; Sokouti, B.; Asnaashari, S. A systematic review of anti-cancer roles and mechanisms of kaempferol as a natural compound. Cancer Cell Int., 2022, 22(1), 260.
[http://dx.doi.org/10.1186/s12935-022-02673-0] [PMID: 35986346]
[13]
Yang, Y.; Chen, Z.; Zhao, X.; Xie, H.; Du, L.; Gao, H.; Xie, C. Mechanisms of Kaempferol in the treatment of diabetes: A comprehensive and latest review. Front. Endocrinol., 2022, 13, 990299.
[http://dx.doi.org/10.3389/fendo.2022.990299] [PMID: 36157449]
[14]
Ren, J.; Lu, Y.; Qian, Y.; Chen, B.; Wu, T.; Ji, G. Recent progress regarding kaempferol for the treatment of various diseases (Review). Exp. Ther. Med., 2019, 18(4), 2759-2776.
[http://dx.doi.org/10.3892/etm.2019.7886] [PMID: 31572524]
[15]
Qian, J.; Chen, X.; Chen, X.; Sun, C.; Jiang, Y.; Qian, Y.; Zhang, Y.; Khan, Z.; Zhou, J.; Liang, G.; Zheng, C. Kaempferol reduces K63-linked polyubiquitination to inhibit nuclear factor-κB and inflammatory responses in acute lung injury in mice. Toxicol. Lett., 2019, 306, 53-60.
[http://dx.doi.org/10.1016/j.toxlet.2019.02.005] [PMID: 30769083]
[16]
Rabha, D.J.; Singh, T.U.; Rungsung, S.; Kumar, T.; Parida, S.; Lingaraju, M.C.; Paul, A.; Sahoo, M.; Kumar, D. Kaempferol attenuates acute lung injury in caecal ligation and puncture model of sepsis in mice. Exp. Lung Res., 2018, 44(2), 63-78.
[http://dx.doi.org/10.1080/01902148.2017.1420271] [PMID: 29393707]
[17]
Jiashuo, W.U.; Fangqing, Z.; Zhuangzhuang, L.I.; Weiyi, J.; Yue, S. Integration strategy of network pharmacology in Traditional Chinese Medicine: A narrative review. J. Tradit. Chin. Med., 2022, 42(3), 479-486.
[PMID: 35610020]
[18]
Yang, B.; Wang, R.; Ji, L.L.; Li, X.P.; Li, X.H.; Zhou, H.G.; He, Z.K.; Xu, H.L.; Meng, F.J.; Wang, G.S. Exploration of the function of ginsenoside RD attenuates lipopolysaccharide-induced lung injury: A Study of network pharmacology and experimental validation. Shock, 2022, 57(2), 212-220.
[http://dx.doi.org/10.1097/SHK.0000000000001824] [PMID: 34172615]
[19]
Wang, Y.; Yuan, Y.; Wang, W.; He, Y.; Zhong, H.; Zhou, X.; Chen, Y.; Cai, X.J.; Liu, L. Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking. Comput. Biol. Med., 2022, 145, 105454.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105454] [PMID: 35367781]
[20]
Zhu, H.; Wang, S.; Shan, C.; Li, X.; Tan, B.; Chen, Q.; Yang, Y.; Yu, H.; Yang, A. Mechanism of protective effect of xuan-bai-cheng-qi decoction on LPS-induced acute lung injury based on an integrated network pharmacology and RNA-sequencing approach. Respir. Res., 2021, 22(1), 188.
[http://dx.doi.org/10.1186/s12931-021-01781-1] [PMID: 34183011]
[21]
Zhao, L.; Zhang, H.; Li, N.; Chen, J.; Xu, H.; Wang, Y.; Liang, Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol., 2023, 309, 116306.
[http://dx.doi.org/10.1016/j.jep.2023.116306] [PMID: 36858276]
[22]
Zhang, S.; Hu, D.; Zhuo, Y.; Cui, L.; Li, D.; Zhang, L. Protective effect of liriodendrin on IgG immune complex-induced acute lung injury via inhibiting SRC/STAT3/MAPK signaling pathway: A network pharmacology research. Naunyn. Schmiedebergs. Arch. Pharmacol., 2023, 396(11), 3269-3283.
[http://dx.doi.org/10.1007/s00210-023-02534-1]
[23]
Ming, Y.; Jiachen, L.; Tao, G.; Zhihui, W. Exploration of the mechanism of tripterygium wilfordii in the treatment of myocardial fibrosis based on network pharmacology and molecular docking. Curr. Computeraided Drug Des., 2023, 19(1), 68-79.
[http://dx.doi.org/10.2174/1573409919666221028120329] [PMID: 36306461]
[24]
Shen, C.; Shen, P.; Wang, X.; Wang, X.; Shao, W.; Geng, K.; Xie, H. Integrating bioinformatics and network pharmacology to explore the therapeutic target and molecular mechanisms of schisandrin on hypertrophic cardiomyopathy. Curr. Computeraided Drug Des., 2023, 19(3), 192-201.
[http://dx.doi.org/10.2174/1573409919666221124144713] [PMID: 36424782]
[25]
Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 45(W1), W356-W360.
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[26]
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[27]
Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. Comparative Toxicogenomics Database (CTD): Update 2021. Nucleic Acids Res., 2021, 49(D1), D1138-D1143.
[http://dx.doi.org/10.1093/nar/gkaa891] [PMID: 33068428]
[28]
UniProt Consortium. UniProt: A hub for protein information. Nucleic Acids Res., 2015, 43(Database issue), D204-D212.
[PMID: 25348405]
[29]
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The genecards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics, 2016, 54(1), 30.1-, 33.
[http://dx.doi.org/10.1002/cpbi.5] [PMID: 27322403]
[30]
Piñero, J.; Queralt-Rosinach, N.; Bravo, A.; Deu-Pons, J.; Bauer-Mehren, A.; Baron, M.; Sanz, F.; Furlong, L.I. DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes. Database, 2015, 2015(0), bav028.
[http://dx.doi.org/10.1093/database/bav028] [PMID: 25877637]
[31]
Amberger, J.S.; Hamosh, A. Searching Online Mendelian Inheritance in Man (OMIM): A knowledgebase of human genes and genetic phenotypes. Curr. Protoc. Bioinformatics, 2017, 58(1), 2.1-, 12.
[http://dx.doi.org/10.1002/cpbi.27] [PMID: 28654725]
[32]
Li, Y.H.; Yu, C.Y.; Li, X.X.; Zhang, P.; Tang, J.; Yang, Q.; Fu, T.; Zhang, X.; Cui, X.; Tu, G.; Zhang, Y.; Li, S.; Yang, F.; Sun, Q.; Qin, C.; Zeng, X.; Chen, Z.; Chen, Y.Z.; Zhu, F. Therapeutic target database update 2018: Enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res., 2018, 46(D1), D1121-D1127.
[http://dx.doi.org/10.1093/nar/gkx1076] [PMID: 29140520]
[33]
Lotia, S.; Montojo, J.; Dong, Y.; Bader, G.D.; Pico, A.R. Cytoscape app store. Bioinformatics, 2013, 29(10), 1350-1351.
[http://dx.doi.org/10.1093/bioinformatics/btt138] [PMID: 23595664]
[34]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(D1), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[35]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[36]
Liu, P.; Feng, Y.; Li, H.; Chen, X.; Wang, G.; Xu, S.; Li, Y.; Zhao, L. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell. Mol. Biol. Lett., 2020, 25(1), 10.
[http://dx.doi.org/10.1186/s11658-020-00205-0] [PMID: 32161620]
[37]
Xu, Y.; Liu, X.; Zhang, Z. STV‐Na attenuates lipopolysaccharide‐induced lung injury in mice via the TLR4/NF‐kB pathway. Immun. Inflamm. Dis., 2023, 11(1), e770.
[http://dx.doi.org/10.1002/iid3.770] [PMID: 36705406]
[38]
Gao, Y.; Wang, N.; Jia, D. H3K27 tri-demethylase JMJD3 inhibits macrophage apoptosis by promoting ADORA2A in lipopolysaccharide-induced acute lung injury. Cell Death Discov., 2022, 8(1), 475.
[http://dx.doi.org/10.1038/s41420-022-01268-y] [PMID: 36456564]
[39]
Hu, Q.; Hao, C.; Tang, S. From sepsis to acute respiratory distress syndrome (ARDS): Emerging preventive strategies based on molecular and genetic researches. Biosci. Rep., 2020, 40.
[40]
Plata-Menchaca, E.P.; Ferrer, R.; Ruiz Rodríguez, J.C.; Morais, R.; Póvoa, P. Antibiotic treatment in patients with sepsis: A narrative review. Hosp. Pract., 2022, 50(3), 203-213.
[http://dx.doi.org/10.1080/21548331.2020.1791541] [PMID: 32627615]
[41]
Peltan, I.D.; Brown, S.M.; Bledsoe, J.R.; Sorensen, J.; Samore, M.H.; Allen, T.L.; Hough, C.L. ED Door-to-Antibiotic Time and Long-term Mortality in Sepsis. Chest, 2019, 155(5), 938-946.
[http://dx.doi.org/10.1016/j.chest.2019.02.008] [PMID: 30779916]
[42]
Zhou, X.; Su, L.X.; Zhang, J.H.; Liu, D.W.; Long, Y. Rules of anti-infection therapy for sepsis and septic shock. Chin. Med. J., 2019, 132(5), 589-596.
[http://dx.doi.org/10.1097/CM9.0000000000000101] [PMID: 30807357]
[43]
Seok, H.; Jeon, J.H.; Park, D.W. Antimicrobial therapy and antimicrobial stewardship in sepsis. Infect. Chemother., 2020, 52(1), 19-30.
[http://dx.doi.org/10.3947/ic.2020.52.1.19] [PMID: 32239809]
[44]
Kuttab, H.I.; Lykins, J.D.; Hughes, M.D.; Wroblewski, K.; Keast, E.P.; Kukoyi, O.; Kopec, J.A.; Hall, S.; Ward, M.A. Evaluation and predictors of fluid resuscitation in patients with severe sepsis and septic shock. Crit. Care Med., 2019, 47(11), 1582-1590.
[http://dx.doi.org/10.1097/CCM.0000000000003960] [PMID: 31393324]
[45]
Chen, Z.; Huang, X.; Lu, H.; Deng, W.; Huang, L.; Wu, D.; Wang, D.; Zhan, Q.; Wang, C. The association between early fluid strategy and prognosis of acute respiratory distress syndrome: A post hoc study of CHARDS. Pulm. Circ., 2023, 13(3), e12261.
[http://dx.doi.org/10.1002/pul2.12261] [PMID: 37404902]
[46]
Keddissi, J.; Youness, H.; Jones, K.; Kinasewitz, G. Fluid management in acute respiratory distress syndrome: A narrative review. Can. J. Respir. Ther., 2019, 55, 1-8.
[http://dx.doi.org/10.29390/cjrt-2018-016] [PMID: 31297439]
[47]
Mendes, R.S.; Pelosi, P.; Schultz, M.J.; Rocco, P.R.M.; Silva, P.L. Fluids in ARDS: More pros than cons. Intensive Care Med. Exp., 2020, 8(S1), 32.
[http://dx.doi.org/10.1186/s40635-020-00319-x] [PMID: 33336259]
[48]
Grasselli, G.; Calfee, C.S.; Camporota, L.; Poole, D.; Amato, M.B.P.; Antonelli, M.; Arabi, Y.M.; Baroncelli, F.; Beitler, J.R.; Bellani, G.; Bellingan, G.; Blackwood, B.; Bos, L.D.J.; Brochard, L.; Brodie, D.; Burns, K.E.A.; Combes, A.; D’Arrigo, S.; De Backer, D.; Demoule, A.; Einav, S.; Fan, E.; Ferguson, N.D.; Frat, J.P.; Gattinoni, L.; Guérin, C.; Herridge, M.S.; Hodgson, C.; Hough, C.L.; Jaber, S.; Juffermans, N.P.; Karagiannidis, C.; Kesecioglu, J.; Kwizera, A.; Laffey, J.G.; Mancebo, J.; Matthay, M.A.; McAuley, D.F.; Mercat, A.; Meyer, N.J.; Moss, M.; Munshi, L.; Myatra, S.N.; Ng Gong, M.; Papazian, L.; Patel, B.K.; Pellegrini, M.; Perner, A.; Pesenti, A.; Piquilloud, L.; Qiu, H.; Ranieri, M.V.; Riviello, E.; Slutsky, A.S.; Stapleton, R.D.; Summers, C.; Thompson, T.B.; Valente Barbas, C.S.; Villar, J.; Ware, L.B.; Weiss, B.; Zampieri, F.G.; Azoulay, E.; Cecconi, M. ESICM guidelines on acute respiratory distress syndrome: Definition, phenotyping and respiratory support strategies. Intensive Care Med., 2023, 49(7), 727-759.
[http://dx.doi.org/10.1007/s00134-023-07050-7] [PMID: 37326646]
[49]
Liaqat, A.; Mason, M.; Foster, B.J.; Kulkarni, S.; Barlas, A.; Farooq, A.M.; Patak, P.; Liaqat, H.; Basso, R.G.; Zaman, M.S.; Pau, D. Evidence-based mechanical ventilatory strategies in ARDS. J. Clin. Med., 2022, 11(2), 319.
[http://dx.doi.org/10.3390/jcm11020319] [PMID: 35054013]
[50]
Nedeva, C.; Menassa, J.; Puthalakath, H. Sepsis: Inflammation is a necessary evil. Front. Cell Dev. Biol., 2019, 7, 108.
[http://dx.doi.org/10.3389/fcell.2019.00108] [PMID: 31281814]
[51]
Meyer, N.J.; Gattinoni, L.; Calfee, C.S. Acute respiratory distress syndrome. Lancet, 2021, 398(10300), 622-637.
[http://dx.doi.org/10.1016/S0140-6736(21)00439-6] [PMID: 34217425]
[52]
Bos, L.D.J.; Laffey, J.G.; Ware, L.B.; Heijnen, N.F.L.; Sinha, P.; Patel, B.; Jabaudon, M.; Bastarache, J.A.; McAuley, D.F.; Summers, C.; Calfee, C.S.; Shankar-Hari, M. Towards a biological definition of ARDS: are treatable traits the solution? Intensive Care Med. Exp., 2022, 10(1), 8.
[http://dx.doi.org/10.1186/s40635-022-00435-w] [PMID: 35274164]
[53]
Huang, M.; Cai, S.; Su, J. The pathogenesis of sepsis and potential therapeutic targets. Int. J. Mol. Sci., 2019, 20(21), 5376.
[http://dx.doi.org/10.3390/ijms20215376] [PMID: 31671729]
[54]
Gill, S.E.; Taneja, R.; Rohan, M.; Wang, L.; Mehta, S. Pulmonary microvascular albumin leak is associated with endothelial cell death in murine sepsis-induced lung injury in vivo. PLoS One, 2014, 9(2), e88501.
[http://dx.doi.org/10.1371/journal.pone.0088501] [PMID: 24516666]
[55]
Zhang, E.; Wang, J.; Chen, Q.; Wang, Z.; Li, D.; Jiang, N.; Ju, X. Artesunate ameliorates sepsis-induced acute lung injury by activating the mTOR/AKT/PI3K axis. Gene, 2020, 759, 144969.
[http://dx.doi.org/10.1016/j.gene.2020.144969] [PMID: 32712064]
[56]
Li, J.; Ma, J.; Li, M.; Tao, J.; Chen, J.; Yao, C.; Yao, S. GYY4137 alleviates sepsis-induced acute lung injury in mice by inhibiting the PDGFRβ/Akt/NF-κB/NLRP3 pathway. Life Sci., 2021, 271, 119192.
[http://dx.doi.org/10.1016/j.lfs.2021.119192] [PMID: 33577850]
[57]
Lin, M.; Xie, W.; Xiong, D.; Tang, S.; Huang, X.; Deng, L.; Huang, L.; Zhang, X.; Zhou, T.; Qian, R.; Zeng, Q.; Sang, X.; Luo, Y.; Hua, Q.; Ren, L.; Liu, W. Cyasterone ameliorates sepsis-related acute lung injury via AKT (Ser473)/GSK3β (Ser9)/Nrf2 pathway. Chin. Med., 2023, 18(1), 136.
[http://dx.doi.org/10.1186/s13020-023-00837-2] [PMID: 37853474]
[58]
Gong, H.; Chen, Y.; Chen, M.; Li, J.; Zhang, H.; Yan, S.; Lv, C. Advanced development and mechanism of sepsis-related acute respiratory distress syndrome. Front. Med., 2022, 9, 1043859.
[http://dx.doi.org/10.3389/fmed.2022.1043859] [PMID: 36452899]
[59]
Joffre, J.; Hellman, J. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation. Antioxid. Redox Signal., 2021, 35(15), 1291-1307.
[http://dx.doi.org/10.1089/ars.2021.0027] [PMID: 33637016]
[60]
Zhou, H.; Wang, X.; Zhang, B. Depression of lncRNA NEAT1 antagonizes lps-evoked acute injury and inflammatory response in alveolar epithelial cells via hmgb1-rage signaling. Mediators Inflamm., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/8019467] [PMID: 32089649]
[61]
Girardot, T.; Rimmelé, T.; Venet, F.; Monneret, G. Apoptosis-induced lymphopenia in sepsis and other severe injuries. Apoptosis, 2017, 22(2), 295-305.
[http://dx.doi.org/10.1007/s10495-016-1325-3] [PMID: 27812767]
[62]
Li, X.; Jamal, M.; Guo, P.; Jin, Z.; Zheng, F.; Song, X.; Zhan, J.; Wu, H. Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomed. Pharmacother., 2019, 118, 109363.
[http://dx.doi.org/10.1016/j.biopha.2019.109363] [PMID: 31545277]
[63]
Yang, L.; Zhang, Z.; Zhuo, Y.; Cui, L.; Li, C.; Li, D.; Zhang, S.; Cui, N.; Wang, X.; Gao, H. Resveratrol alleviates sepsis-induced acute lung injury by suppressing inflammation and apoptosis of alveolar macrophage cells. Am. J. Transl. Res., 2018, 10(7), 1961-1975.
[PMID: 30093935]
[64]
Lu, J.; Yan, J.; Yan, J.; Zhang, L.; Chen, M.; Chen, Q.; Cheng, L.; Li, P. Network pharmacology based research into the effect and mechanism of Xijiao Dihuang decoction against sepsis. Biomed. Pharmacother., 2020, 122, 109777.
[http://dx.doi.org/10.1016/j.biopha.2019.109777] [PMID: 31918261]
[65]
Shi, J.; Yu, T.; Song, K.; Du, S.; He, S.; Hu, X.; Li, X.; Li, H.; Dong, S.; Zhang, Y.; Xie, Z.; Li, C.; Yu, J. Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway. Redox Biol., 2021, 41, 101954.
[http://dx.doi.org/10.1016/j.redox.2021.101954] [PMID: 33774474]
[66]
Li, X.; Shan, C.; Wu, Z.; Yu, H.; Yang, A.; Tan, B. Emodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/VEGF signaling pathway. Inflamm. Res., 2020, 69(4), 365-373.
[http://dx.doi.org/10.1007/s00011-020-01331-3] [PMID: 32130427]
[67]
He, S.; Fan, C.; Ji, Y.; Su, Q.; Zhao, F.; Xie, C.; Chen, X.; Zhang, Y.; Chen, Y. SENP3 facilitates M1 macrophage polarization via the HIF-1α/PKM2 axis in lipopolysaccharide-induced acute lung injury. Innate Immun., 2023, 29(1-2), 25-34.
[http://dx.doi.org/10.1177/17534259231166212] [PMID: 37016838]
[68]
Meng, Y.; Kong, K.; Chang, Y.; Deng, X.; Yang, T. Histone methyltransferase SETD2 inhibits M1 macrophage polarization and glycolysis by suppressing HIF-1α in sepsis-induced acute lung injury. Med. Microbiol. Immunol., 2023, 212(5), 369-379.
[http://dx.doi.org/10.1007/s00430-023-00778-5] [PMID: 37658121]
[69]
Miao, R.F.; Tu, J. LNCRNA CDKN2B‐AS1 interacts with LIN28B to exacerbate sepsis‐induced acute lung injury by inducing HIF ‐1α/ NLRP3 ‐mediated pyroptosis. Kaohsiung J. Med. Sci., 2023, 39(9), 883-895.
[http://dx.doi.org/10.1002/kjm2.12697] [PMID: 37265187]
[70]
Li, X.; Yu, J.; Gong, L.; Zhang, Y.; Dong, S.; Shi, J.; Li, C.; Li, Y.; Zhang, Y.; Li, H. Heme oxygenase-1(HO-1) regulates Golgi stress and attenuates endotoxin-induced acute lung injury through hypoxia inducible factor-1α (HIF-1α)/HO-1 signaling pathway. Free Radic. Biol. Med., 2021, 165, 243-253.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.01.028] [PMID: 33493554]
[71]
Chen, Q.; Shao, X.; He, Y.; Lu, E.; Zhu, L.; Tang, W. Norisoboldine attenuates sepsis-induced acute lung injury by modulating macrophage polarization via PKM2/HIF-1α/PGC-1α Pathway. Biol. Pharm. Bull., 2021, 44(10), 1536-1547.
[http://dx.doi.org/10.1248/bpb.b21-00457] [PMID: 34602563]
[72]
Du, N.; Lin, H.; Zhang, A.; Cao, C.; Hu, X.; Zhang, J.; Wang, L.; Pan, X.; Zhu, Y.; Qian, F.; Wang, Y.; Zhao, D.; Liu, M.; Huang, Y. N-phenethyl-5-phenylpicolinamide alleviates inflammation in acute lung injury by inhibiting HIF-1α/glycolysis/ASIC1a pathway. Life Sci., 2022, 309, 120987.
[http://dx.doi.org/10.1016/j.lfs.2022.120987] [PMID: 36155179]
[73]
Chen, X.; Yang, X.; Liu, T.; Guan, M.; Feng, X.; Dong, W.; Chu, X.; Liu, J.; Tian, X.; Ci, X.; Li, H.; Wei, J.; Deng, Y.; Deng, X.; Chi, G.; Sun, Z. Kaempferol regulates MAPKs and NF-κB signaling pathways to attenuate LPS-induced acute lung injury in mice. Int. Immunopharmacol., 2012, 14(2), 209-216.
[http://dx.doi.org/10.1016/j.intimp.2012.07.007] [PMID: 22835426]
[74]
Huang, R.; He, W.J.; Zhang, P.P.; Wang, D.Q. [Exploring the treatment of sepsis-associated acute lung injury with Liangge Powder via ERK1/2 and PI3K/AKT pathways: Based on network pharmacology and whole animal experimentation]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2023, 41(2), 94-103.
[PMID: 36882272]
[75]
Guo, W.; Hu, Z. SRPK1 promotes sepsis-induced acute lung injury via regulating PI3K/AKT/FOXO3 signaling. Immunopharmacol. Immunotoxicol., 2023, 45(2), 203-212.
[http://dx.doi.org/10.1080/08923973.2022.2134789] [PMID: 36226860]
[76]
Tian, J.; Li, Y.; Mao, X.; Xie, K.; Zheng, Y.; Yu, Y.; Yu, Y. Effects of the PI3K/Akt/HO-1 pathway on autophagy in a sepsis-induced acute lung injury mouse model. Int. Immunopharmacol., 2023, 124(Pt B), 111063.
[http://dx.doi.org/10.1016/j.intimp.2023.111063] [PMID: 37857120]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy