Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Current Advances and Applications of Diagnostic Microfluidic Chip: A Review

Author(s): Garima Katyal, Anuj Pathak*, Parul Grover and Vaibhav Sharma

Volume 19, Issue 6, 2024

Published on: 06 February, 2024

Page: [694 - 710] Pages: 17

DOI: 10.2174/0115748855269330240122100529

Price: $65

conference banner
Abstract

Background: As a developed technology, microfluidics now offers a great toolkit for handling and manipulating suspended samples, fluid samples, and particles. A regular chip is different from a microfluidic chip. A microfluidic chip is made of a series of grooves or microchannels carved on various materials. This arrangement of microchannels contained within the microfluidic chip is connected to the outside by inputs and outputs passing through the chip.

Objectives: This review includes the current progress in the field of microfluidic chips, their advantages and their biomedical applications in diagnosis.

Methods: The various manuscripts were collected in the field of microfluidic chip that have biomedical applications from the different sources like Pubmed,Science direct and Google Scholar, out of which some were relevant and considered for the present manuscript.

Results: Microfluidic channels inside the chip allow for the processing of the fluid, such as blending and physicochemical reactions. Aside from its practical, technological, and physical benefits, microscale fluidic circuits also improve researchers' capacity to do more accurate quantitative measurements while researching biological systems. Microfluidic chips, a developing type of biochip, were primarily focused on miniaturising analytical procedures, especially to enhance analyte separation. Since then, the procedures for device construction and operation have gotten much simpler.

Conclusion: For bioanalytical operations, microfluidic technology has many advantages. As originally intended, a micro total analysis system might be built using microfluidic devices to integrate various functional modules (or operational units) onto a single platform. More researchers were able to design, produce, and use microfluidic devices because of increased accessibility, which quickly demonstrated the probability of wide-ranging applicability in all branches of biology.

Keywords: Microfluidic chip, biochip, quantitative measurement, bioanalytical procedures, biomedical applications, microchannels.

Graphical Abstract
[1]
Culbertson CT, Mickleburgh TG, Stewart-James SA, Sellens KA, Pressnall M. Micro total analysis systems: Fundamental advances and biological applications. Anal Chem 2014; 86(1): 95-118.
[http://dx.doi.org/10.1021/ac403688g] [PMID: 24274655]
[2]
Patabadige DEW, Jia S, Sibbitts J, Sadeghi J, Sellens K, Culbertson CT. Micro total analysis systems: Fundamental advances and applications. Anal Chem 2016; 88(1): 320-38.
[http://dx.doi.org/10.1021/acs.analchem.5b04310] [PMID: 26599485]
[3]
Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM. Fabrication and applications of microfluidic devices: A review. Int J Mol Sci 2021; 22(4): 2011.
[http://dx.doi.org/10.3390/ijms22042011] [PMID: 33670545]
[4]
Whitesides GM. The origins and the future of microfluidics. Nature 2006; 442(7101): 368-73.
[http://dx.doi.org/10.1038/nature05058] [PMID: 16871203]
[5]
Ren K, Zhou J, Wu H. Materials for microfluidic chip fabrication. Acc Chem Res 2013; 46(11): 2396-406.
[http://dx.doi.org/10.1021/ar300314s] [PMID: 24245999]
[6]
Shrimal P, Jadeja G, Patel S. A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach. Chem Eng Res Des 2020; 153: 728-56.
[http://dx.doi.org/10.1016/j.cherd.2019.11.031]
[7]
Hamdallah SI, Zoqlam R, Erfle P, et al. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. Int J Pharm 2020; 584: 119408.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119408] [PMID: 32407942]
[8]
Hwang J, Cho YH, Park MS, Kim BH. Microchannel fabrication on glass materials for microfluidic devices. Int J Precis Eng Manuf 2019; 20(3): 479-95.
[http://dx.doi.org/10.1007/s12541-019-00103-2]
[9]
Song Y, Hormes J, Kumar CSSR. Microfluidic synthesis of nanomaterials. Small 2008; 4(6): 698-711.
[http://dx.doi.org/10.1002/smll.200701029] [PMID: 18535993]
[10]
Pan LJ, Tu JW, Ma HT, et al. Controllable synthesis of nanocrystals in droplet reactors. Lab Chip 2018; 18(1): 41-56.
[http://dx.doi.org/10.1039/C7LC00800G] [PMID: 29098217]
[11]
Wongkaew N, Simsek M, Griesche C, Baeumner AJ. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: Recent progress, applications, and future perspective. Chem Rev 2019; 119(1): 120-94.
[http://dx.doi.org/10.1021/acs.chemrev.8b00172] [PMID: 30247026]
[12]
Sengupta P, Khanra K. Roychowdhury,A:Datta,P.Lab –on-a—chip Sensing devices for biomedical applications. In: Bioelectronics and Medical devices. Cambridge, UK: Woodhead Publishing 2019.
[http://dx.doi.org/10.1016/B978-0-08-102420-1.00004-2]
[13]
Shi H, Nie K, Dong B, Long M, Xu H, Liu Z. Recent progress of microfluidic reactors for biomedical applications. Chem Eng J 2019; 361: 635-50.
[http://dx.doi.org/10.1016/j.cej.2018.12.104]
[14]
Sun W, Luo Z, Lee J, et al. Organ‐on‐a‐chip for cancer and immune organs modeling. Adv Healthc Mater 2019; 8(4): 1801363.
[http://dx.doi.org/10.1002/adhm.201801363]
[15]
Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M. Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomater 2020; 116: 67-83.
[http://dx.doi.org/10.1016/j.actbio.2020.08.041] [PMID: 32890749]
[16]
Nielsen JB, Hanson RL, Almughamsi HM, Pang C, Fish TR, Woolley AT. Microfluidics: Innovations in materials and their fabrication and functionalization. Anal Chem 2020; 92(1): 150-68.
[http://dx.doi.org/10.1021/acs.analchem.9b04986] [PMID: 31721565]
[17]
Guckenberger DJ, de Groot TE, Wan AMD, Beebe DJ, Young EWK. Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 2015; 15(11): 2364-78.
[http://dx.doi.org/10.1039/C5LC00234F] [PMID: 25906246]
[18]
Waldbaur A, Rapp H, Länge K, Rapp BE. Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal Methods 2011; 3(12): 2681-716.
[http://dx.doi.org/10.1039/c1ay05253e]
[19]
Fiorini GS, Chiu DT. Disposable microfluidic devices: Fabrication, function, and application. Biotechniques 2005; 38(3): 429-46.
[http://dx.doi.org/10.2144/05383RV02] [PMID: 15786809]
[20]
Yu F, Choudhury D. Microfluidic bioprinting for organ-on-a-chip models. Drug Discov Today 2019; 24(6): 1248-57.
[http://dx.doi.org/10.1016/j.drudis.2019.03.025] [PMID: 30940562]
[21]
Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer 2019; 19(2): 65-81.
[http://dx.doi.org/10.1038/s41568-018-0104-6] [PMID: 30647431]
[22]
[23]
Huh D, Hamilton GA, Ingber DE. From three-dimensional cell culture to organs-on-chips. Trends Cell Biol 2011; 21: 745-54.
[http://dx.doi.org/10.1016/j.tcb.2011.09.005] [PMID: 22033488]
[24]
Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014; 32(8): 760-72.
[http://dx.doi.org/10.1038/nbt.2989] [PMID: 25093883]
[25]
Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 2015; 14(4): 248-60.
[http://dx.doi.org/10.1038/nrd4539] [PMID: 25792263]
[26]
Hughes AJ, Herr AE. Microfluidic Western blotting. Proc Natl Acad Sci USA 2012; 109(52): 21450-5.
[http://dx.doi.org/10.1073/pnas.1207754110] [PMID: 23223527]
[27]
Ozkumur E, Shah AM, Ciciliano JC, et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med 2013; 5(179): 179ra47.
[http://dx.doi.org/10.1126/scitranslmed.3005616] [PMID: 23552373]
[28]
Karabacak NM, Spuhler PS, Fachin F, et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 2014; 9(3): 694-710.
[http://dx.doi.org/10.1038/nprot.2014.044] [PMID: 24577360]
[29]
Warren AD, Kwong GA, Wood DK, Lin KY, Bhatia SN. Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc Natl Acad Sci USA 2014; 111(10): 3671-6.
[http://dx.doi.org/10.1073/pnas.1314651111] [PMID: 24567404]
[30]
Cui P, Wang S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J Pharm Anal 2019; 9(4): 238-47.
[http://dx.doi.org/10.1016/j.jpha.2018.12.001] [PMID: 31452961]
[31]
Tabeling P. Introduction to microfluidics. Oxford: Oxford University Press 2005.
[http://dx.doi.org/10.1093/oso/9780198568643.001.0001]
[32]
Kraly JR, Holcomb RE, Guan Q, Henry CS. Review: Microfluidic applications in metabolomics and metabolic profiling. Anal Chim Acta 2009; 653(1): 23-35.
[http://dx.doi.org/10.1016/j.aca.2009.08.037] [PMID: 19800473]
[33]
Faure K. Liquid chromatography on chip. Electrophoresis 2010; 31(15): 2499-511.
[http://dx.doi.org/10.1002/elps.201000051] [PMID: 20603823]
[34]
Schneider G. Automating drug discovery. Nat Rev Drug Discov 2018; 17(2): 97-113.
[http://dx.doi.org/10.1038/nrd.2017.232] [PMID: 29242609]
[35]
Olanrewaju A, Beaugrand M, Yafia M, Juncker D. Capillary microfluidics in microchannels: From microfluidic networks to capillaric circuits. Lab Chip 2018; 18(16): 2323-47.
[http://dx.doi.org/10.1039/C8LC00458G] [PMID: 30010168]
[36]
Sticker D, Geczy R, Häfeli UO, Kutter JP. Thiol–Ene based polymers as versatile materials for microfluidic devices for life sciences applications. ACS Appl Mater Interfaces 2020; 12(9): 10080-95.
[http://dx.doi.org/10.1021/acsami.9b22050] [PMID: 32048822]
[37]
Shakeri A, Jarad NA, Leung A, Soleymani L, Didar TF. Biofunctionalization of glass‐ and paper‐based microfluidic devices: A review. Adv Mater Interfaces 2019; 6(19): 1900940.
[http://dx.doi.org/10.1002/admi.201900940]
[38]
Singh A, Malek CK, Kulkarni SK. Development in microreactor technology for nanoparticle synthesis. Int J Nanosci 2010; 9(01n02): 93-113.
[http://dx.doi.org/10.1142/S0219581X10006557]
[39]
Auner AW, Tasneem KM, Markov DA, McCawley LJ, Hutson MS. Lab Chip 2019; 19(5): 864-74.
[http://dx.doi.org/10.1039/C8LC00796A] [PMID: 30720811]
[40]
Lenz M, Sebastian B, Dittrich PS. Formation of single micro‐ and nanowires with extreme aspect ratios in microfluidic channels. Small 2019; 15(33): 1901547.
[http://dx.doi.org/10.1002/smll.201901547] [PMID: 31237758]
[41]
Martins JP, Torrieri G, Santos HA. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Expert Opin Drug Deliv 2018; 15(5): 469-79.
[http://dx.doi.org/10.1080/17425247.2018.1446936] [PMID: 29508630]
[42]
(a) Campbell SB, Wu Q, Yazbeck J, Liu C, Okhovatian S, Radisic M. Beyond polydimethylsiloxane: Alternative materials for fabrication of organ-on-a-chip devices and microphysiological systems. ACS Biomater Sci Eng 2020.
[PMID: 34275293];
(b) Wlodarczyk K, Hand DP, Maratovaler M. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser. Sci Rep 2019.
[http://dx.doi.org/10.1038/s41598-019-56711-5]
[43]
Qi Z, Xu L, Xu Y, et al. Disposable silicon-glass microfluidic devices: Precise, robust and cheap. Lab Chip 2018; 18(24): 3872-80.
[http://dx.doi.org/10.1039/C8LC01109E] [PMID: 30457137]
[44]
Kotz F, Risch P, Arnold K, et al. Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass. Nat Commun 2019; 10(1): 1439.
[http://dx.doi.org/10.1038/s41467-019-09497-z] [PMID: 30602773]
[45]
Cabeza VS. High and efficient production of nanomaterials by microfluidic reactor approaches. Advances in Microfluidics–New Applications in Biology, Energy, and Materials Sciences. Croatia: InTech: Rijeka 2016.
[http://dx.doi.org/10.5772/64347]
[46]
James M, Revia RA, Stephen Z, Zhang M. Microfluidic synthesis of iron oxide nanoparticles. Nanomaterials 2020; 10(11): 2113.
[http://dx.doi.org/10.3390/nano10112113] [PMID: 33114204]
[47]
Ofner A, Moore DG, Rühs PA, et al. High‐throughput step emulsification for the production of functional materials using a glass microfluidic device. Macromol Chem Phys 2017; 218(2): 1600472.
[http://dx.doi.org/10.1002/macp.201600472]
[48]
Yalikun Y, Tanaka Y. Large scale integration of all glass valveson a microfluidic device. Micromachines 2016; 7.
[49]
Shen C, Li Y, Wang Y, Meng Q. Non-swelling hydrogel-based microfluidic chips. Lab Chip 2019; 19(23): 3962-73.
[http://dx.doi.org/10.1039/C9LC00564A] [PMID: 31656966]
[50]
Zhang B, Lai BFL, Xie R, Davenport Huyer L, Montgomery M, Radisic M. Microfabrication of AngioChip, a biodegradable polymer scaffold with microfluidic vasculature. Nat Protoc 2018; 13(8): 1793-813.
[http://dx.doi.org/10.1038/s41596-018-0015-8] [PMID: 30072724]
[51]
Andar A, Hasan MS, Srinivasan V, et al. Wood microfluidics. Anal Chem 2019; 91(17): 11004-12.
[http://dx.doi.org/10.1021/acs.analchem.9b01232] [PMID: 31361950]
[52]
Rivet C, Lee H, Hirsch A, Hamilton S, Lu H. Microfluidics for medical diagnostics and biosensors. Chem Eng Sci 2011; 66(7): 1490-507.
[http://dx.doi.org/10.1016/j.ces.2010.08.015]
[53]
Liao S, He Y, Chu Y, Liao H, Wang Y. Solvent-resistant and fully recyclable perfluoropolyether-based elastomer for microfluidic chip fabrication. J Mater Chem A Mater Energy Sustain 2019; 7(27): 16249-56.
[http://dx.doi.org/10.1039/C9TA03661J]
[54]
Kotz F, Mader M, Dellen N, et al. Fused deposition modeling of microfluidic chips in polymethylmethacrylate. Micromachines 2020; 11(9): 873.
[http://dx.doi.org/10.3390/mi11090873] [PMID: 32961823]
[55]
Strong EB, Schultz SA, Martinez AW, Martinez NW. Fabrication of miniaturized paper-based microfluidic devices (MicroPADs). Sci Rep 2019; 9(1): 7.
[http://dx.doi.org/10.1038/s41598-018-37029-0] [PMID: 30626903]
[56]
Liu Q, Lin Y, Xiong J, et al. Disposable paper-based analytical device for visual speciation analysis of Ag(I) and silver nanoparticles (AgNPs). Anal Chem 2019; 91(5): 3359-66.
[http://dx.doi.org/10.1021/acs.analchem.8b04609] [PMID: 30688069]
[57]
Zhang Y, Liu J, Wang H, Fan Y. Laser-induced selective wax reflow for paper-based microfluidics. RSC Advances 2019; 9(20): 11460-4.
[http://dx.doi.org/10.1039/C9RA00610A] [PMID: 35520212]
[58]
Shakeri A, Jarad NA, Leung A, Soleymani L, Didar TF. Biofunctionalization of glass and paper based microfluidics devices; A review. Adv Mater Interfaces 2019; 6(19): 1900940.
[http://dx.doi.org/10.1002/admi.201900940]
[59]
Boodaghi M, Shamloo A. A comparison of different geometrical elements to model fluid wicking in paper‐based microfluidic devices. AIChE J 2020; 66(1): e16756.
[http://dx.doi.org/10.1002/aic.16756]
[60]
Soum V, Park S, Brilian AI, Kwon OS, Shin K. Programmable paper-based microfluidic devices for biomarker detections. Micromachines 2019; 10(8): 516.
[http://dx.doi.org/10.3390/mi10080516] [PMID: 31382502]
[61]
Schaumburg F, Berli CLA. Assessing the rapid flow in multilayer paper-based microfluidic devices. Microfluid Nanofluidics 2019; 23(8): 98.
[http://dx.doi.org/10.1007/s10404-019-2265-3]
[62]
(a) Eberhardt W, Kueck H, Koltay P, et al. Low-cost fabrication technology for microfluidic devices based on micro injection moulding. XP002499487 Available from: https://www.researchgate.net/profile/Peter_Koltay/publication/225028680_Low_cost_fabrication_technology_for_microfluidic_devices_based_on_micro_injection_moulding/links/09e4150f515100fb6f0000 0.pdf (accessed on 21 May 2014).;
(b) Lu YT, Pendharkar G, Lu CH, Chang CM. A microfluidic approach towards hybridoma generation for cancer immunotherapy. Oncotarget 2015; 6(36)
[http://dx.doi.org/10.18632/oncotarget.5550]
[63]
(a) Dixon C, Lamanna J, Wheeler AR. Printed microfluidics. Adv Funct Mater 2017; 27(11): 1604824.
[http://dx.doi.org/10.1002/adfm.201604824];
(b) Bhattacharjee N, Parra-cabrera C, Kim YT, Kuo A, Folch A. Desktop-steriolithography 3d printing of a poly(dimethylsiloxane)-based material with sylgard-184 properties. Adv Mater 2018; 30(22)
[64]
Gale B, Jafek A, Lambert C, et al. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 2018; 3(3): 60.
[http://dx.doi.org/10.3390/inventions3030060]
[65]
Chanmanwar RM, Balasubramaniam R. Wankhade ln. Application and manufacturing of microfluidic devices. Int J Mod Eng Res 2013; 3: 849-56.
[66]
Lei KF. Materials and fabrication techniques for nano-and microfluidic devices. Lab Chip 2014; 1-28.
[67]
Iliescu C, Taylor H, Avram M, Miao J, Franssila S. A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 2012; 6(1): 016505.
[http://dx.doi.org/10.1063/1.3689939] [PMID: 22662101]
[68]
Wlodarczyk K, Carter R, Jahanbakhsh A, et al. Rapid laser manufacturing of microfluidic devices from glass substrates. Micromachines 2018; 9(8): 409.
[http://dx.doi.org/10.3390/mi9080409] [PMID: 30424342]
[69]
Baker CA, Bulloch R, Roper MG. Comparison of separation performance of laser-ablated and wet-etched microfluidic devices. Anal Bioanal Chem 2011; 399(4): 1473-9.
[http://dx.doi.org/10.1007/s00216-010-4144-3] [PMID: 20827468]
[70]
Waddell EA. Laser ablation as a fabrication technique for microfluidic devices. In: Microfluidic Techniques. Berlin/Heidelberg, Germany: Springer 2006; pp. 27-38.
[71]
Faustino V, Catarino SO, Lima R, Minas G. Biomedical microfluidic devices by using low-cost fabrication techniques: A review. J Biomech 2016; 49(11): 2280-92.
[http://dx.doi.org/10.1016/j.jbiomech.2015.11.031] [PMID: 26671220]
[72]
Jáuregui AL, Siller HR, Rodríguez CA, Elías-Zúñiga A. Evaluation of micromechanical manufacturing processes for microfluidic devices. Int J Adv Manuf Technol 2010; 48(9-12): 963-72.
[http://dx.doi.org/10.1007/s00170-009-2326-y]
[73]
Islam M, Natu R, Martinez-Duarte R. A study on the limits and advantages of using a desktop cutter plotter to fabricate microfluidic networks. Microfluid Nanofluidics 2015; 19(4): 973-85.
[http://dx.doi.org/10.1007/s10404-015-1626-9]
[74]
Kojić S, Birgermajer S, Radonić V, et al. Optimization of hybrid microfluidic chip fabrication methods for biomedical application. Microfluid Nanofluidics 2020; 24(9): 66.
[http://dx.doi.org/10.1007/s10404-020-02372-0]
[75]
Attia UM, Marson S, Alcock JR. Micro-injection moulding of polymer microfluidic devices. Microfluid Nanofluidics 2009; 7(1): 1-28.
[http://dx.doi.org/10.1007/s10404-009-0421-x]
[76]
Becker H, Locascio LE. Polymer microfluidic devices. Talanta 2002; 56(2): 267-87.
[http://dx.doi.org/10.1016/S0039-9140(01)00594-X] [PMID: 18968500]
[77]
Skurtys O, Aguilera JM. Applications of microfluidic devices in food engineering. Food Biophys 2008; 3(1): 1-15.
[http://dx.doi.org/10.1007/s11483-007-9043-6]
[78]
Kim P, Kwon KW, Park MC, Lee SH, Kim SM, Suh KY. Soft lithography for microfluidics: A review. Biochip J. 2008, 2, 1–11.devices. Lab Chip 2015; 15: 2364-78.
[79]
(a) Su W, Cook BS, Fang Y, Tentzeris MM. Fully inkjet-printed microfluidics: A solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications. Sci Rep 2016; 6(1): 35111.
[http://dx.doi.org/10.1038/srep35111] [PMID: 27713545];
(b) Reyes DR, Heeren HV, Guha S, et al. Accelerating innovation and commercialisation through standardization of microfluidicbased medical devices. lab on a chip 2021; (1):
[http://dx.doi.org/10.1039/dolc00963f.]
[80]
Au AK, Lee W, Folch A. Mail-order microfluidics: Evaluation of stereolithography for the production of microfluidic devices. Lab Chip 2014; 14(7): 1294-301.
[http://dx.doi.org/10.1039/C3LC51360B] [PMID: 24510161]
[81]
Lai X, Lu B, Zhang P, et al. Sticker microfluidics: A method for fabrication of customized monolithic microfluidics. ACS Biomater Sci Eng 2019; 5(12): 6801-10.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00953] [PMID: 33423473]
[82]
Alapan Y, Hasan MN, Shen R, Gurkan UA. Three-dimensional printing based hybrid manufacturing of microfluidic devices. J Nanotechnol Eng Med 2015; 6(2): 021007.
[http://dx.doi.org/10.1115/1.4031231] [PMID: 27512530]
[83]
Pranzo D, Larizza P, Filippini D, Percoco G. Extrusion-based 3D printing of microfluidic devices for chemical and biomedical applications: A topical review. Micromachines 2018; 9(8): 374.
[http://dx.doi.org/10.3390/mi9080374] [PMID: 30424307]
[84]
Chen J, Zhou Y, Wang D, et al. UV-nanoimprint lithography as a tool to develop flexible microfluidic devices for electrochemical detection. Lab Chip 2015; 15(14): 3086-94.
[http://dx.doi.org/10.1039/C5LC00515A] [PMID: 26095586]
[85]
Sengupta P, Khanra K, Roychowdhury A, Datta P. Lab-on-a-chip sensing devices for biomedical applications. In: Bioelectronics and Medical Devices. Cambridge, UK: Woodhead Publishing 2019.
[http://dx.doi.org/10.1016/B978-0-08-102420-1.00004-2]
[86]
Wong V-L, Ng C-AI, Teo L-RI, Lee C-W. Microfluidic synthesis of functional materials as potential sorbents forwater remediation and resource recovery. Advances in Microfluidic Technologies for Energy and Environmental Applications. Cambridge, UK: IntechOpen London 2020.
[http://dx.doi.org/10.5772/intechopen.89302]
[87]
Mancera-Andrade EI, Parsaeimehr A, Arevalo-Gallegos A, Ascencio-Favela G, Parra Saldivar R. Microfluidics technology for drug delivery: A review. Front Biosci 2018; 10(1): 74-91. [PubMed
[PMID: 28930605]
[88]
(a) Zhao CX, He L, Qiao SZ, Middelberg APJ. Nanoparticle synthesis in microreactors. Chem Eng Sci 2011; 66(7): 1463-79.
[http://dx.doi.org/10.1016/j.ces.2010.08.039];
(b) Pattanayak P, Singh SK, Gulati M, Vishwas S. Microfluidics and nanofluidics. 2021; 25(12)
[http://dx.doi.org/10.1007/s10404-021-02502-2]
[89]
Jing W, Sui G. Bioanalysis within microfluidics: A review. In: Recent Progress in Colloid and Surface Chemistry with Biological Applications. Washington, DC, USA: American Chemical Society 2015; Vol. 1215: pp. 245-68.
[http://dx.doi.org/10.1021/bk-2015-1215.ch013]
[90]
Zhang D, Bi H, Liu B, Qiao L. Detection of pathogenic microorganisms by microfluidics based analytical methods. Anal Chem 2018; 90(9): 5512-20.
[http://dx.doi.org/10.1021/acs.analchem.8b00399] [PMID: 29595252]
[91]
Narimani R, Azizi M, Esmaeili M, Rasta SH, Khosroshahi HT. An optimal method for measuring biomarkers: Colorimetric optical image processing for determination of creatinine concentration using silver nanoparticles. 3 Biotech 2020; 10: 416.
[92]
Walgama C, Nguyen MP, Boatner LM, Richards I, Crooks RM. Hybrid paper and 3D-printed microfluidic device for electrochemical detection of Ag nanoparticle labels. Lab Chip 2020; 20(9): 1648-57.
[http://dx.doi.org/10.1039/D0LC00276C] [PMID: 32255136]
[93]
Butler SA, Khanlian SA, Cole LA. Detection of early pregnancy forms of human chorionic gonadotropin by home pregnancy test devices. Clin Chem 2001; 47(12): 2131-6.
[http://dx.doi.org/10.1093/clinchem/47.12.2131] [PMID: 11719477]
[94]
Johnson S. The home pregnancy test In 100 Years of Human Chorionic Gonadotropin. Amsterdam, The Netherlands: Elsevier 2020; pp. 107-21. [CrossRef
[http://dx.doi.org/10.1016/B978-0-12-820050-6.00010-2]
[95]
Gnoth C, Johnson S. Strips of hope: Accuracy of home pregnancy tests and new developments. Geburtshilfe Frauenheilkd 2014; 74(7): 661-9.
[http://dx.doi.org/10.1055/s-0034-1368589] [PMID: 25100881]
[96]
Williams MJ, Lee NK, Mylott JA, Mazzola N, Ahmed A, Abhyankar VV. A low-cost, rapidly integrated debubbler (RID) module for microfluidic cell culture applications. Micromachines 2019; 10(6): 360.
[http://dx.doi.org/10.3390/mi10060360] [PMID: 31151206]
[97]
Oh KW. Microfluidic devices for biomedical applications: Biomedical microfluidic devices 2019. Micromachines 2020; 11(4): 370.
[http://dx.doi.org/10.3390/mi11040370] [PMID: 32244684]
[98]
Merrin J. Frontiers in microfluidics, a teaching resource review. Bioengineering 2019; 6(4): 109.
[http://dx.doi.org/10.3390/bioengineering6040109] [PMID: 31816954]
[99]
Damiati S, Kompella UB, Damiati SA, Kodzius R. Microfluidic devices for drug delivery systems and drug screening. Genes 2018; 9: 103-9.
[http://dx.doi.org/10.3390/genes9020103]
[100]
Hassan S, Sebastian S, Maharjan S, et al. Liver‐on‐a‐chip models of fatty liver disease. Hepatology 2020; 71(2): 733-40.
[http://dx.doi.org/10.1002/hep.31106] [PMID: 31909504]
[101]
Yin L, Du G, Zhang B, et al. Efficient drug screening and nephrotoxicity assessment on co-culture microfluidic kidney chip. Sci Rep 2020; 10(1): 6568.
[http://dx.doi.org/10.1038/s41598-020-63096-3] [PMID: 32300186]
[102]
Sanjay ST, Zhou W, Dou M, et al. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 2018; 128: 3-28.
[http://dx.doi.org/10.1016/j.addr.2017.09.013] [PMID: 28919029]
[103]
MA Junping , Lee SM-Y , Yi C , Li C-W . Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications a review. lab a chip 2017; 17209: 26.
[104]
V Arima , G Pascali , O Lade , et al. Radiochemistry on chip: Towards dose-on-demand synthesis of pet radiopharmaceuticals. lab chip 2013; 13: 2328-36.
[105]
Salvador B . Pineda dae, Fernandez-maza I, Corral A, Camacho-leon A, Luque A. Monitoring of microfluidics systems for pet radiopharmaceutical synthesis using integrated silicon photomultipliers. Ieee Sens J 2019; 19: 7702-7.
[106]
Fallahi H, Zhang J, Phan H-p, Nguyen N-t. Flexible microfluidics: Fundamentals, recent developments, and applications. Micromachines 2019; 10: 830.
[107]
solanki S, pandey cm, gupta rk, malhotra bd. Emerging trends in microfluidics-based devices. Biotechnol J 2020; 15: 1900279.
[108]
burklund A, tadimety A, nie Y, hao N, zhang jxj. Chapter one advances in diagnostic microfluidics. Advances in clinical chemistry 2020.
[109]
pulsipher KW, hammer DA, lee D, sehgal CM. Engineering theranostic microbubbles using microfluidics for ultrasound imaging and therapy: A review. Ultrasound Med Biol 2018; 44: 2441-60.
[110]
Matsusaki M, Case CP, Akashi M. Three-dimensional cell culture technique and pathophysiology. Adv Drug Deliv Rev 2014; 74: 95-103.
[http://dx.doi.org/10.1016/j.addr.2014.01.003] [PMID: 24462454]
[111]
(a) van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T. Microfluidic 3D cell culture: From tools to tissue models. In: Curr Opin Biotechnol 2015; 35: 118-26.
[http://dx.doi.org/10.1016/j.copbio.2015.05.002] [PMID: 26094109];
Wang T, Yu C, Xie X. Microfluidics for Environmental Applications. Microfluidics in Biotechnology. ABE 2020; Volume 179: pp. 267-90.
[112]
(a) Jeong SY, Lee JH, Shin Y, Chung S, Kuh HJ. Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS One 2016; 11(7): e0159013.
[http://dx.doi.org/10.1371/journal.pone.0159013] [PMID: 27391808];
(b) Xu Z, Gao Y, Hao Y, et al. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 2013; 34(16): 4109-17.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy