Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Research Article

Uremic Toxins Elimination from Simulated Intestinal Serum with Mesoporous Silica Nanoparticles Coupled with Molecularly Imprinted Polymers and Amino Linker

Author(s): Leila Nazmi Miardan, Ebrahim Rezaii, Mehrdad Mahkam* and Hamid Tayebi Khosroshahi

Volume 22, Issue 2, 2025

Published on: 02 February, 2024

Page: [243 - 252] Pages: 10

DOI: 10.2174/0115701794282603240115112013

Price: $65

TIMBC 2025
Abstract

Background: One of the most researched issues is the elimination of uremic toxins from the human body. These toxins can build up and lead to catastrophic issues including renal failure. To get rid of them, absorbents like activated carbon, zeolites, and other minerals are frequently utilized.

Methods: Mesoporous silica nanoparticles functionalized with (3-Aminopropyl) triethoxysilane (APTES) linker (MSN-NH2) and mesoporous silica nanoparticles grafted with molecularly imprinted polymers (MSN-MIP) from the previous study were examined in this study to determine how well they absorbed urea, creatinine, and uric acid in a simulated intestinal serum.

Results: MSN-MIP's large surface area (879.12 (m2/g)) and volume of pores (0.8475 (cm3/g)) made removal results that were satisfactory in the simulated serum. Additionally, MSN-MIP demonstrated a high urea adsorption capacity (qm = 1836.45 mg/g). Creatinine (qm = 1529.5 mg/g) and uric acid (qm = 1210.6 mg/g) were absorbed via NH-MSN2, which demonstrated a noticeable potential for absorption. The results of cell viability test for the first 72 hours, showed that the use of these absorbents in hemodialysis systems is acceptable.

Conclusion: Synthesized adsorbents can be utilized in the hemodialysis system since the results of the cell viability test also showed that the percentage of cell viability was extremely high up to 72 hours.

Keywords: Renal failure, mesoporous silica nanoparticles, molecularly imprinted polymers, simulated serum, uremic toxins, chronic kidney disease.

Graphical Abstract
[1]
Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic kidney disease. Lancet, 2017, 389(10075), 1238-1252.
[http://dx.doi.org/10.1016/S0140-6736(16)32064-5] [PMID: 27887750]
[2]
Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; Ahmadian, E.; Al-Aly, Z.; Alipour, V.; Almasi-Hashiani, A.; Al-Raddadi, R.M.; Alvis-Guzman, N.; Amini, S.; Andrei, T.; Andrei, C.L.; Andualem, Z.; Anjomshoa, M.; Arabloo, J.; Ashagre, A.F.; Asmelash, D.; Ataro, Z.; Atout, M.M.W.; Ayanore, M.A.; Badawi, A.; Bakhtiari, A.; Ballew, S.H.; Balouchi, A.; Banach, M.; Barquera, S.; Basu, S.; Bayih, M.T.; Bedi, N.; Bello, A.K.; Bensenor, I.M.; Bijani, A.; Boloor, A. Borzì, A.M.; Cámera, L.A.; Carrero, J.J.; Carvalho, F.; Castro, F.; Catalá-López, F.; Chang, A.R.; Chin, K.L.; Chung, S-C.; Cirillo, M.; Cousin, E.; Dandona, L.; Dandona, R.; Daryani, A.; Das Gupta, R.; Demeke, F.M.; Demoz, G.T.; Desta, D.M.; Do, H.P.; Duncan, B.B.; Eftekhari, A.; Esteghamati, A.; Fatima, S.S.; Fernandes, J.C.; Fernandes, E.; Fischer, F.; Freitas, M.; Gad, M.M.; Gebremeskel, G.G.; Gebresillassie, B.M.; Geta, B.; Ghafourifard, M.; Ghajar, A.; Ghith, N.; Gill, P.S.; Ginawi, I.A.; Gupta, R.; Hafezi-Nejad, N.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hariyani, N.; Hasan, M.; Hasankhani, M.; Hasanzadeh, A.; Hassen, H.Y.; Hay, S.I.; Heidari, B.; Herteliu, C.; Hoang, C.L.; Hosseini, M.; Hostiuc, M.; Irvani, S.S.N.; Islam, S.M.S.; Jafari Balalami, N.; James, S.L.; Jassal, S.K.; Jha, V.; Jonas, J.B.; Joukar, F.; Jozwiak, J.J.; Kabir, A.; Kahsay, A.; Kasaeian, A.; Kassa, T.D.; Kassaye, H.G.; Khader, Y.S.; Khalilov, R.; Khan, E.A.; Khan, M.S.; Khang, Y-H.; Kisa, A.; Kovesdy, C.P.; Kuate Defo, B.; Kumar, G.A.; Larsson, A.O.; Lim, L-L.; Lopez, A.D.; Lotufo, P.A.; Majeed, A.; Malekzadeh, R.; März, W.; Masaka, A.; Meheretu, H.A.A.; Miazgowski, T.; Mirica, A.; Mirrakhimov, E.M.; Mithra, P.; Moazen, B.; Mohammad, D.K.; Mohammadpourhodki, R.; Mohammed, S.; Mokdad, A.H.; Morales, L.; Moreno Velasquez, I.; Mousavi, S.M.; Mukhopadhyay, S.; Nachega, J.B.; Nadkarni, G.N.; Nansseu, J.R.; Natarajan, G.; Nazari, J.; Neal, B.; Negoi, R.I.; Nguyen, C.T.; Nikbakhsh, R.; Noubiap, J.J.; Nowak, C.; Olagunju, A.T.; Ortiz, A.; Owolabi, M.O.; Palladino, R.; Pathak, M.; Poustchi, H.; Prakash, S.; Prasad, N.; Rafiei, A.; Raju, S.B.; Ramezanzadeh, K.; Rawaf, S.; Rawaf, D.L.; Rawal, L.; Reiner, R.C., Jr; Rezapour, A.; Ribeiro, D.C.; Roever, L.; Rothenbacher, D.; Rwegerera, G.M.; Saadatagah, S.; Safari, S.; Sahle, B.W.; Salem, H.; Sanabria, J.; Santos, I.S.; Sarveazad, A.; Sawhney, M.; Schaeffner, E.; Schmidt, M.I.; Schutte, A.E.; Sepanlou, S.G.; Shaikh, M.A.; Sharafi, Z.; Sharif, M.; Sharifi, A.; Silva, D.A.S.; Singh, J.A.; Singh, N.P.; Sisay, M.M.M.; Soheili, A.; Sutradhar, I.; Teklehaimanot, B.F.; Tesfay, B.; Teshome, G.F.; Thakur, J.S.; Tonelli, M.; Tran, K.B.; Tran, B.X.; Tran Ngoc, C.; Ullah, I.; Valdez, P.R.; Varughese, S.; Vos, T.; Vu, L.G.; Waheed, Y.; Werdecker, A.; Wolde, H.F.; Wondmieneh, A.B.; Wulf Hanson, S.; Yamada, T.; Yeshaw, Y.; Yonemoto, N.; Yusefzadeh, H.; Zaidi, Z.; Zaki, L.; Zaman, S.B.; Zamora, N.; Zarghi, A.; Zewdie, K.A.; Ärnlöv, J.; Coresh, J.; Perico, N.; Remuzzi, G.; Murray, C.J.L.; Vos, T. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2020, 395(10225), 709-733.
[http://dx.doi.org/10.1016/S0140-6736(20)30045-3] [PMID: 32061315]
[3]
Xie, Y.; Bowe, B.; Mokdad, A.H.; Xian, H.; Yan, Y.; Li, T.; Maddukuri, G.; Tsai, C.Y.; Floyd, T.; Al-Aly, Z. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int., 2018, 94(3), 567-581.
[http://dx.doi.org/10.1016/j.kint.2018.04.011] [PMID: 30078514]
[4]
Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; Brown, J.C.; Friedman, J.; He, J.; Heuton, K.R.; Holmberg, M.; Patel, D.J.; Reidy, P.; Carter, A.; Cercy, K.; Chapin, A.; Douwes-Schultz, D.; Frank, T.; Goettsch, F.; Liu, P.Y.; Nandakumar, V.; Reitsma, M.B.; Reuter, V.; Sadat, N.; Sorensen, R.J.D.; Srinivasan, V.; Updike, R.L.; York, H.; Lopez, A.D.; Lozano, R.; Lim, S.S.; Mokdad, A.H.; Vollset, S.E.; Murray, C.J.L. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet, 2018, 392(10159), 2052-2090.
[http://dx.doi.org/10.1016/S0140-6736(18)31694-5] [PMID: 30340847]
[5]
Kalantar-Zadeh, K.; Wightman, A.; Liao, S. Ensuring choice for people with kidney failure-dialysis, supportive care, and hope. N. Engl. J. Med., 2020, 383(2), 99-101.
[http://dx.doi.org/10.1056/NEJMp2001794] [PMID: 32640129]
[6]
Teehan, B. Urea kinetic analysis and clinical outcome on CAPD. A five year longitudinal study. Adv. Perit. Dial., 1990, 6, 181-5.
[7]
Rosner, M.H.; Reis, T.; Husain-Syed, F.; Vanholder, R.; Hutchison, C.; Stenvinkel, P.; Blankestijn, P.J.; Cozzolino, M.; Juillard, L.; Kashani, K.; Kaushik, M.; Kawanishi, H.; Massy, Z.; Sirich, T.L.; Zuo, L.; Ronco, C. Classification of uremic toxins and their role in kidney failure. Clin. J. Am. Soc. Nephrol., 2021, 16(12), 1918-1928.
[http://dx.doi.org/10.2215/CJN.02660221] [PMID: 34233920]
[8]
Gansevoort, R.T.; Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; de Jong, P.E.; Coresh, J. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int., 2011, 80(1), 93-104.
[http://dx.doi.org/10.1038/ki.2010.531] [PMID: 21289597]
[9]
Pérez-Sáez, M.J.; Prieto-Alhambra, D.; Barrios, C.; Crespo, M.; Redondo, D.; Nogués, X.; Díez-Pérez, A.; Pascual, J. Increased hip fracture and mortality in chronic kidney disease individuals: The importance of competing risks. Bone, 2015, 73, 154-159.
[http://dx.doi.org/10.1016/j.bone.2014.12.020] [PMID: 25549867]
[10]
Narimani, R.; Esmaeili, M.; Rasta, S.H.; Khosroshahi, H.T.; Mobed, A. Trend in creatinine determining methods: Conventional methods to molecular‐based methods. Anal. Sci. Adv., 2021, 2(5-6), 308-325.
[http://dx.doi.org/10.1002/ansa.202000074]
[11]
Zhybak, M.; Beni, V.; Vagin, M.Y.; Dempsey, E.; Turner, A.P.F.; Korpan, Y. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite. Biosens. Bioelectron., 2016, 77, 505-511.
[http://dx.doi.org/10.1016/j.bios.2015.10.009] [PMID: 26457736]
[12]
Tseng, C.C.; Yang, R-J.; Ju, W-J.; Fu, L-M. Microfluidic paper-based platform for whole blood creatinine detection. Chem. Eng. J., 2018, 348, 117-124.
[http://dx.doi.org/10.1016/j.cej.2018.04.191]
[13]
Musso, C.G.; Alvarez Gregori, J.; Jauregui, J.R. Macías Núñez, J.F. Creatinine, urea, uric acid, water and electrolytes renal handling in the healthy oldest old. World J. Nephrol., 2012, 1(5), 123-126.
[http://dx.doi.org/10.5527/wjn.v1.i5.123] [PMID: 24175249]
[14]
Ooi, C.H.; Cheah, W.K.; Yeoh, F.Y. Comparative study on the urea removal by different nanoporous materials. Adsorption, 2019, 25(6), 1169-1175.
[http://dx.doi.org/10.1007/s10450-019-00130-5]
[15]
Cheng, Y.C.; Fu, C-C.; Hsiao, Y-S.; Chien, C-C.; Juang, R-S. Clearance of low molecular-weight uremic toxins p-cresol, creatinine, and urea from simulated serum by adsorption. J. Mol. Liq., 2018, 252, 203-210.
[http://dx.doi.org/10.1016/j.molliq.2017.12.084]
[16]
Cheah, W.K.; Ishikawa, K.; Othman, R.; Yeoh, F.Y. Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: A review. J. Biomed. Mater. Res. B Appl. Biomater., 2017, 105(5), 1232-1240.
[http://dx.doi.org/10.1002/jbm.b.33475] [PMID: 26913694]
[17]
Kameda, T.; Horikoshi, K.; Kumagai, S.; Saito, Y.; Yoshioka, T. Adsorption of urea, creatinine, and uric acid from three solution types using spherical activated carbon and its recyclability. Chin. J. Chem. Eng., 2020, 28(12), 2993-3001.
[http://dx.doi.org/10.1016/j.cjche.2020.03.018]
[18]
Ma, Y.; Li, S.; Tonelli, M.; Unsworth, L.D. Adsorption-based strategies for removing uremic toxins from blood. Microporous Mesoporous Mater., 2021, 319, 111035.
[http://dx.doi.org/10.1016/j.micromeso.2021.111035]
[19]
Kong, X.P.; Zhang, B.H.; Wang, J. Multiple roles of mesoporous silica in safe pesticide application by nanotechnology: A review. J. Agric. Food Chem., 2021, 69(24), 6735-6754.
[http://dx.doi.org/10.1021/acs.jafc.1c01091] [PMID: 34110151]
[20]
Zaidi, S.A. Recent developments in molecularly imprinted polymer nanofibers and their applications. Anal. Methods, 2015, 7(18), 7406-7415.
[http://dx.doi.org/10.1039/C5AY01609F]
[21]
Zhou, Z.; Hartmann, M. Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chem. Soc. Rev., 2013, 42(9), 3894-3912.
[http://dx.doi.org/10.1039/c3cs60059a] [PMID: 23570038]
[22]
Pandey, S.; Mewada, A.; Thakur, M.; Pillai, S.; Dharmatti, R.; Phadke, C.; Sharon, M. Synthesis of mesoporous silica oxide/C-dot complex (meso-SiO 2/C-dots) using pyrolysed rice husk and its application in bioimaging. RSC Advances, 2014, 4(3), 1174-1179.
[http://dx.doi.org/10.1039/C3RA45227A]
[23]
Nguyen, C.H.; Fu, C-C.; Chen, Z-H.; Tran, T.T.V.; Liu, S-H.; Juang, R-S. Enhanced and selective adsorption of urea and creatinine on amine-functionalized mesoporous silica SBA-15 via hydrogen bonding. Microporous Mesoporous Mater., 2021, 311, 110733.
[http://dx.doi.org/10.1016/j.micromeso.2020.110733]
[24]
Rumiyanti, L.; Destiana, C.; Oktaviani, R. Syafriadi; Marjunus, R.; Chotimah; Suharyadi, E. Facile pore size control and low-cost synthesis of mesoporous silica nanoparticles based on rice husk. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2023, 14(1), 015007.
[http://dx.doi.org/10.1088/2043-6262/acc456]
[25]
Duan, F.; Chen, C.; Zhao, X.; Yang, Y.; Liu, X.; Qin, Y. Water-compatible surface molecularly imprinted polymers with synergy of bifunctional monomers for enhanced selective adsorption of bisphenol A from aqueous solution. Environ. Sci. Nano, 2016, 3(1), 213-222.
[http://dx.doi.org/10.1039/C5EN00198F]
[26]
Samah, N.A. Sánchez-Martín, M.J.; Sebastián, R.M.; Valiente, M.; López-Mesas, M. Molecularly imprinted polymer for the removal of diclofenac from water: Synthesis and characterization. Sci. Total Environ., 2018, 631-632, 1534-1543.
[http://dx.doi.org/10.1016/j.scitotenv.2018.03.087] [PMID: 29727977]
[27]
Chianella, I.; Piletsky, S.A.; Tothill, I.E.; Chen, B.; Turner, A.P.F. MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR. Biosens. Bioelectron., 2003, 18(2-3), 119-127.
[http://dx.doi.org/10.1016/S0956-5663(02)00165-3] [PMID: 12485758]
[28]
Lee, M.H.; Thomas, J.L.; Ho, M.H.; Yuan, C.; Lin, H.Y. Synthesis of magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles and their uses in the extraction and sensing of target molecules in urine. ACS Appl. Mater. Interfaces, 2010, 2(6), 1729-1736.
[http://dx.doi.org/10.1021/am100227r] [PMID: 20521774]
[29]
BelBruno, J.J. Molecularly imprinted polymers. Chem. Rev., 2019, 119(1), 94-119.
[http://dx.doi.org/10.1021/acs.chemrev.8b00171] [PMID: 30246529]
[30]
Miardan, L.N.; Rezaii, E.; Mahkam, M.; Khosroshahi, H.T. Synthesis of mesoporous silica nanoparticles linked by molecularly imprinted polymers and examination of their ability to remove uremic toxins. J. Porous Mater., 2023, 30(6), 1995-2010.
[http://dx.doi.org/10.1007/s10934-023-01480-w]
[31]
Huang, C.; Wang, D.; Zhang, D.; Shao, Z.; Zhang, Q.; Wang, J.; Zhang, Y.; Qin, N.; Mi, L. Integration of CdS with a fiber-based cadmium coordination polymer for turning on photocatalytic oxidative coupling reactions. Cryst. Growth Des., 2022, 22(3), 1792-1800.
[http://dx.doi.org/10.1021/acs.cgd.1c01380]
[32]
Sing, K.S.W.; Williams, R.T. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol., 2004, 22(10), 773-782.
[http://dx.doi.org/10.1260/0263617053499032]
[33]
Feng, L.; Meng, H.; Lu, Y.; Li, C. Efficient and reversible absorption of HCl gas by ChCl-based deep eutectic solvents-Insights into the absorption behavior and mechanism. Separ. Purif. Tech., 2022, 281, 119994.
[http://dx.doi.org/10.1016/j.seppur.2021.119994]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy