Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

A Comprehensive Review of the Advancement in Omic Technologies in the Field of Drug Discovery and Development

Author(s): Mridula Chauhan, Shivansh Kumar, Arpon Biswas, Mukesh Kumar, Sarvesh Kumar Verma, Anjali Mishra, Vaishali Singh, Amol Chhatrapati Bisen, Sristi Agrawal, Abhijit Deb Choudhury, Ramakrishna Rayiti and Rabi Sankar Bhatta*

Volume 21, Issue 16, 2024

Published on: 02 February, 2024

Page: [3319 - 3331] Pages: 13

DOI: 10.2174/0115701808287654240126112003

Price: $65

Abstract

Discovering new drugs is time-consuming and expensive and involves many different tools from various domains. Numerous omic technologies, such as genomics, transcriptomics, proteomics, and metabolomics, have been created to speed up the process. Leveraging genetic and genomic insights, these methodologies play a pivotal role. Genetic insights aid in target identification, prioritization, and the prediction of drug outcomes. Gene expression data informs drug discovery, while proteomics uncovers targets and facilitates high-throughput profiling. Enhancing drug efficacy necessitates mechanistic insights into downstream effects, enabling side effects and resistance prediction. Early-stage drug discovery now extensively employs diverse metabolomics platforms. This review underscores the recent strides of omic technologies in drug discovery, affirming their role in enhancing drug viability and regulatory approval. The emphasis lies on the latest advancements in genomics, transcriptomics, proteomics, and metabolomics, collectively fortifying drug development.

Keywords: Omic technology, genomics, transcriptomics, proteomics, metabolomics, drug discovery.

Next »
Graphical Abstract
[1]
Nguyen, N.; Jennen, D.; Kleinjans, J. Omics technologies to understand drug toxicity mechanisms. Drug Discov. Today, 2022, 27(11), 103348.
[http://dx.doi.org/10.1016/j.drudis.2022.103348] [PMID: 36089240]
[2]
Paananen, J.; Fortino, V. An omics perspective on drug target discovery platforms. Brief. Bioinform., 2020, 21(6), 1937-1953.
[http://dx.doi.org/10.1093/bib/bbz122] [PMID: 31774113]
[3]
Gao, Y.; Liu, Y.; Liu, Y.; Peng, Y.; Yuan, B.; Fu, Y.; Qi, X.; Zhu, Q.; Cao, T.; Zhang, S.; Yin, L.; Li, X. UHRF1 promotes androgen receptor-regulated CDC6 transcription and anti-androgen receptor drug resistance in prostate cancer through KDM4C-Mediated chromatin modifications. Cancer Lett., 2021, 520, 172-183.
[http://dx.doi.org/10.1016/j.canlet.2021.07.012] [PMID: 34265399]
[4]
Huang, H.; Wu, N.; Liang, Y.; Peng, X.; Shu, J. SLNL: A novel method for gene selection and phenotype classification. Int. J. Intell. Syst., 2022, 37(9), 6283-6304.
[http://dx.doi.org/10.1002/int.22844]
[5]
He, B.; Lang, J.; Wang, B.; Liu, X.; Lu, Q.; He, J.; Gao, W.; Bing, P.; Tian, G.; Yang, J. TOOme: A novel computational framework to infer cancer tissue-of-origin by integrating both gene mutation and expression. Front. Bioeng. Biotechnol., 2020, 8, 394.
[http://dx.doi.org/10.3389/fbioe.2020.00394] [PMID: 32509741]
[6]
Zhou, X.; Lu, J.; Wu, B.; Guo, Z. HOXA11-AS facilitates the proliferation, cell cycle process and migration of keloid fibroblasts through sponging miR-188–5p to regulate VEGFA. J. Dermatol. Sci., 2022, 106(2), 111-118.
[http://dx.doi.org/10.1016/j.jdermsci.2022.04.004] [PMID: 35491288]
[7]
Abdelkader, Y.; Perez-Davalos, L.; LeDuc, R.; Zahedi, R.P.; Labouta, H.I. Omics approaches for the assessment of biological responses to nanoparticles. Adv. Drug Deliv. Rev., 2023, 200, 114992.
[http://dx.doi.org/10.1016/j.addr.2023.114992] [PMID: 37414362]
[8]
Bessarabova, M.; Ishkin, A. JeBailey, L.; Nikolskaya, T.; Nikolsky, Y. Knowledge-based analysis of proteomics data. BMC Bioinformatics, 2012, 13(S16), S13.
[http://dx.doi.org/10.1186/1471-2105-13-S16-S13] [PMID: 23176192]
[9]
Wang, Y.; Li, J.; Xiang, Q.; Tang, L. INSR and ISR 1 gene polymorphisms and the susceptibility of essential hypertension: A meta analysis. Exp. Ther. Med., 2023, 25(6), 251.
[http://dx.doi.org/10.3892/etm.2023.11950] [PMID: 37153892]
[10]
Tang, L.; Xiang, Q.; Xiang, J.; Li, J. The haplotypes GCA and ACA in ESR1 gene are associated with the susceptibility of recurrent spontaneous abortion (RSA) in Chinese Han. Medicine, 2022, 101(21), e29168.
[http://dx.doi.org/10.1097/MD.0000000000029168] [PMID: 35623066]
[11]
Spreafico, R.; Soriaga, L.B.; Grosse, J.; Virgin, H.W.; Telenti, A. Advances in genomics for drug development. Genes, 2020, 11(8), 942.
[http://dx.doi.org/10.3390/genes11080942] [PMID: 32824125]
[12]
Kabadi, A.M.; Mcdonnell, E.; Frank, C.L.; Drowley, L. Applications of functional genomics for drug discovery. SLAS Discov., 2020, 25(8), 823-842.
[http://dx.doi.org/10.1177/2472555220902092]
[13]
Dai, X.; Shen, L. Advances and trends in omics technology development. Front. Med., 2022, 9, 911861.
[http://dx.doi.org/10.3389/fmed.2022.911861] [PMID: 35860739]
[14]
Sowjanya, K.; Girish, C. Structural genomics in drug discovery: An overview. J. Pharmacol. Pharmacother., 2019, 10, 1-6.
[15]
Collins, F.S.; Green, E.D.; Guttmacher, A.E.; Mark, S. A vision for the future of genomics research. Nature, 2003, 422(6934), 835-847.
[http://dx.doi.org/10.1038/nature01626]
[16]
Yugi, K.; Ohno, S.; Krycer, J.R.; James, D.E.; Kuroda, S. Rate-oriented trans-omics: integration of multiple omic data on the basis of reaction kinetics. Curr. Opin. Syst. Biol., 2019, 15, 109-120.
[http://dx.doi.org/10.1016/j.coisb.2019.04.005]
[17]
Legarra, A.; Christensen, O.F. Genomic evaluation methods to include intermediate correlated features such as high-throughput or omics phenotypes. JDS Communications, 2023, 4(1), 55-60.
[http://dx.doi.org/10.3168/jdsc.2022-0276] [PMID: 36713125]
[18]
Sonehara, K.; Okada, Y. Genomics-driven drug discovery based on disease-susceptibility genes. Inflamm. Regen., 2021, 41(1), 8.
[http://dx.doi.org/10.1186/s41232-021-00158-7]
[19]
Reidhaar-olson, J.F.; Rhees, B.K.; Hammer, J. Genomics approaches to drug discovery. J. Cell. Biochem. Suppl., 2001, 37, 110-119.
[http://dx.doi.org/10.1002/jcb.10072]
[20]
Petrosius, V.; Schoof, E.M. Recent advances in the field of single-cell proteomics. Transl. Oncol., 2023, 27, 101556.
[http://dx.doi.org/10.1016/j.tranon.2022.101556] [PMID: 36270102]
[21]
Jhanker, Y.M.; Kadir, M.F.; Khan, R.I.; Hasan, R. Proteomics in drug discovery. J. Appl. Pharm. Sci., 2012, 2, 1-12.
[http://dx.doi.org/10.7324/JAPS.2012.2801]
[22]
Colzani, M.; Carini, M.; Colzani, M.; Carini, M. Proteomics-based drug discovery and chemoproteomics; Fut. Med, 2013.
[http://dx.doi.org/10.4155/ebo.13.350]
[23]
Yoshida, M.; Loo, J.A.; Lepley, R.A. Proteomics as a tool in the pharmaceutical drug design process. Curr. Pharm. Des., 2001, 7(4), 291-310.
[http://dx.doi.org/10.2174/1381612013398121]
[24]
Pruteanu, L.; Bender, A. Using transcriptomics and cell morphology data in drug discovery: The long road to practice. ACS Med. Chem. Lett., 2023, 14(4), 386-395.
[http://dx.doi.org/10.1021/acsmedchemlett.3c00015]
[25]
Ramon, C.; Gollub, M.G.; Stelling, J. Integrating –omics data into genome-scale metabolic network models: Principles and challenges. Essays Biochem., 2018, 62(4), 563-574.
[http://dx.doi.org/10.1042/EBC20180011] [PMID: 30315095]
[26]
Kumar, M.; Chauhan, M.; Verma, S.K.; Biswas, A.; Ansari, A.; Mishra, A.; Sanap, S.N.; Bisen, A.C.; Sashidhara, K.V.; Bhatta, R.S. Preclinical pharmacokinetic exploration of a novel osteoporotic quinazolinone-benzopyran-indole hybrid (S019-0385) using LC-MS/MS. Xenobiotica, 2023, 53(6-7), 484-497.
[http://dx.doi.org/10.1080/00498254.2023.2265475] [PMID: 37787761]
[27]
Alarcon-Barrera, J.C.; Kostidis, S.; Ondo-Mendez, A.; Giera, M. Recent advances in metabolomics analysis for early drug development. Drug Discov. Today, 2022, 27(6), 1763-1773.
[http://dx.doi.org/10.1016/j.drudis.2022.02.018] [PMID: 35218927]
[28]
Cuperlovic-calf, M.; Culf, A.S.; Morin, P.J.; Touaibia, M. Application of metabolomics in drug discovery, development, and ther- agnostics metabolomics in drug discovery and development process target discovery drug testing theranostics clinical trials. Production, 2013, 41-57.
[http://dx.doi.org/10.1080/17460441.2016.1195365]
[29]
Robertson, D.G.; Reily, M.D. The current status of metabolomics in drug discovery and development. Drug Dev. Res., 2012, 73(8), 535-546.
[http://dx.doi.org/10.1002/ddr.21047]
[30]
Yan, S.K.; Liu, R.H.; Jin, H.Z.; Liu, X.R.; Ye, J.; Shan, L.; Zhang, W.D. “Omics” in pharmaceutical research: Overview, applications, challenges, and future perspectives. Chin. J. Nat. Med., 2015, 13(1), 3-21.
[http://dx.doi.org/10.1016/S1875-5364(15)60002-4] [PMID: 25660284]
[31]
Horgan, R.P.; Kenny, L.C. ‘Omic’ technologies: Genomics, transcriptomics, proteomics and metabolomics. Obstet. Gynaecol., 2011, 13(3), 189-195.
[http://dx.doi.org/10.1576/toag.13.3.189.27672]
[32]
Nassar, S.F.; Raddassi, K.; Wu, T. Single-cell multiomics analysis for drug discovery. Metabolites, 2021, 11(11), 729.
[http://dx.doi.org/10.3390/metabo11110729] [PMID: 34822387]
[33]
Zhao, J.; Liu, Y.; Zhu, L.; Li, J.; Liu, Y.; Luo, J.; Xie, T.; Chen, D. Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screening. J. Pharm. Anal., 2023, 13(6), 673-682.
[http://dx.doi.org/10.1016/j.jpha.2023.04.015] [PMID: 37440905]
[34]
Li, J.; Luo, J.; Liu, L.; Fu, H.; Tang, L. The genetic association between apolipoprotein E gene polymorphism and Parkinson disease. Medicine, 2018, 97(43), e12884.
[http://dx.doi.org/10.1097/MD.0000000000012884] [PMID: 30412083]
[35]
Griffiths, L.; Chacon-Cortes, D. Methods for extracting genomic DNA from whole blood samples: current perspectives. J. Bioreposit. Sci. Appl. Med., 2014, 1, 1.
[http://dx.doi.org/10.2147/BSAM.S46573]
[36]
Wang, D.; Wang, X.W.; Peng, X.C.; Xiang, Y.; Song, S.B.; Wang, Y.Y.; Chen, L.; Xin, V.W.; Lyu, Y.N.; Ji, J.; Ma, Z.W.; Li, C.B.; Xin, H.W. CRISPR/Cas9 genome editing technology significantly accelerated herpes simplex virus research. Cancer Gene Ther., 2018, 25(5-6), 93-105.
[http://dx.doi.org/10.1038/s41417-018-0016-3] [PMID: 29691470]
[37]
Pinu, F.R.; Beale, D.J.; Paten, A.M.; Kouremenos, K.; Swarup, S.; Schirra, H.J.; Wishart, D. Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites, 2019, 9(4), 76.
[http://dx.doi.org/10.3390/metabo9040076] [PMID: 31003499]
[38]
Verma, S.K.; Biswas, A.; Saxena, S.; Kumar, M.; Mishra, A.; Choudhury, A.D.; Mishra, T.; Rais, N.; Narender, T.; Bhatta, R.S. Development of a sensitive and selective bioanalytical method of chebulinic acid by liquid chromatography‐electrospray tandem mass spectrometry and its pharmacokinetic application. Separ. Sci. Plus, 2023, 6(2), 2200125.
[http://dx.doi.org/10.1002/sscp.202200125]
[39]
Verma, S.K.; Biswas, A.; Kumar, M.; Mishra, A.; Choudhury, A.D.; Agrawal, S.; Sanap, S.N.; Bisen, A.C.; Sharma, A.K.; Panda, G.; Bhatta, R.S. Preclinical pharmacokinetics, CYP phenotyping, and tissue distribution study of novel anti-breast cancer candidate S-011-1559. Xenobiotica, 2022, 52(5), 476-487.
[http://dx.doi.org/10.1080/00498254.2022.2101033] [PMID: 35819259]
[40]
Garcia-Martinez, I.; Alen, R.; Pereira, L.; Povo-Retana, A.; Astudillo, A.M.; Hitos, A.B.; Gomez-Hurtado, I.; Lopez-Collazo, E.; Boscá, L.; Francés, R.; Lizasoain, I.; Moro, M.Á.; Balsinde, J.; Izquierdo, M.; Valverde, Á.M. Saturated fatty acid-enriched small extracellular vesicles mediate a crosstalk inducing liver inflammation and hepatocyte insulin resistance. JHEP Reports, 2023, 5(8), 100756.
[http://dx.doi.org/10.1016/j.jhepr.2023.100756] [PMID: 37360906]
[41]
Sanap, S.N.; Mishra, A.; Bisen, A.C.; Agrawal, S.; Biswas, A.; Verma, S.K.; Kumar, M.; Bhatta, R.S. Simultaneous determination of fluconazole and ofloxacin in rabbit tear fluid by LC-MS/MS: Application to ocular pharmacokinetic studies. J. Pharm. Biomed. Anal., 2022, 208, 114463.
[http://dx.doi.org/10.1016/j.jpba.2021.114463] [PMID: 34798393]
[42]
Iqbal, N.; Iqbal, N. Imatinib: A breakthrough of targeted therapy in cancer. Chemother. Res. Pract., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/357027] [PMID: 24963404]
[43]
Issa, A.M. Personalized medicine and the practice of medicine in the 21st century. McGill J. Med., 2020, 10(1), 53-57.
[http://dx.doi.org/10.26443/mjm.v10i1.625] [PMID: 18523593]
[44]
Parsons, J.; Francavilla, C. ‘Omics approaches to explore the breast cancer landscape. Front. Cell Dev. Biol., 2020, 7, 395.
[http://dx.doi.org/10.3389/fcell.2019.00395] [PMID: 32039208]
[45]
Sen, P.; Orešič, M. Integrating omics data in genome-scale metabolic modeling: A methodological perspective for precision medicine. Metabolites, 2023, 13(7), 855.
[http://dx.doi.org/10.3390/metabo13070855] [PMID: 37512562]
[46]
Lin, J. J. Cancer treatment. In: Caring for Patients Across the Cancer Care Continuum; Springer, 2019; 6, pp. 93-123.
[http://dx.doi.org/10.1007/978-3-030-01896-2_5]
[47]
Neha, S.; Harikumar, S.L. Use of genomics and proteomics in pharmaceutical drug discovery and development: A review. Int. J. Pharm. Pharm. Sci., 2013, 5, 24-28.
[48]
Yazdanpanah, S.; Motamedian, E.; Shojaosadati, S.A. Integrating gene expression data into a genome-scale metabolic model to identify reprogramming during adaptive evolution. PLoS One, 2023, 18(10), e0292433.
[http://dx.doi.org/10.1371/journal.pone.0292433] [PMID: 37788289]
[49]
Krebs, K.; Milani, L. Harnessing the power of electronic health records and genomics for drug discovery. Annu. Rev. Pharmacol. Toxicol., 2023, 63(1), 65-76.
[http://dx.doi.org/10.1146/annurev-pharmtox-051421-111324] [PMID: 36662581]
[50]
Biswas, A.; Choudhury, A.D.; Bisen, A.C.; Agrawal, S.; Sanap, S.N.; Verma, S.K.; Mishra, A.; Kumar, S.; Bhatta, R.S. Trends in formulation approaches for sustained drug delivery to the posterior segment of the eye. AAPS PharmSciTech, 2023, 24(8), 217.
[http://dx.doi.org/10.1208/s12249-023-02673-x] [PMID: 37891392]
[51]
Bisen, A.C.; Sanap, S.N.; Biswas, A.; Agrawal, S.; Mishra, A.; Kumar, M.; Choudhury, A.D. R, H.G.; Bhatta, R.S. A QbD‐led simple and sensitive RP‐UHPLC method for simultaneous determination of moxifloxacin, voriconazole, and pirfenidone: An application to pharmaceutical analysis. Biomed. Chromatogr., 2023, 37(9), e5681.
[http://dx.doi.org/10.1002/bmc.5681] [PMID: 37153940]
[52]
Liu, Z.; Xu, J.; Wen, Z. Advancing genomics for drug development and safety evaluation. Int. J. Genomics, 2018, 2018, 1-2.
[http://dx.doi.org/10.1155/2018/3126820] [PMID: 29951521]
[53]
Mishra, A.; Choudhury, A.D.; Biswas, A.; Singh, V.; Verma, S.; Bisen, A.C.; Kumar, M.; Bhatta, R.S. Concurrent determination of anti-microbial and anti-inflammatory drugs in lachrymal fluid and tissue by LC-MS/MS: A potential treatment for microbial keratitis and its PK-PD evaluation. J. Pharm. Biomed. Anal., 2024, 239, 115920.
[http://dx.doi.org/10.1016/j.jpba.2023.115920] [PMID: 38113826]
[54]
Biswas, A.; Choudhury, A.D.; Agrawal, S.; Bisen, A.C.; Sanap, S.N.; Verma, S.K.; Kumar, M.; Mishra, A.; Kumar, S.; Chauhan, M.; Bhatta, R.S. Recent insights into the etiopathogenesis of diabetic retinopathy and its management. J. Ocul. Pharmacol. Ther., 2023, 00, jop.2023.0068.
[http://dx.doi.org/10.1089/jop.2023.0068] [PMID: 37733327]
[55]
Boti, M.A.; Athanasopoulou, K.; Scorilas, A.; Adamopoulos, P.G.; Sideris, D.C. Recent advances in genome-engineering strategies. Genes, 2023, 141, 129.
[http://dx.doi.org/10.3390/genes14010129]
[56]
Ward, S.J. Impact of genomics in drug discovery. Biotechniques, 2001, 31(3), 626-634. 628, 630 passim
[http://dx.doi.org/10.2144/01313dd01] [PMID: 11570506 ]
[57]
Bumol, T.F.; Watanabe, A.M. Genetic information, genomic technologies, and the future of drug discovery. JAMA, 2001, 2855, 551-555.
[http://dx.doi.org/10.1001/jama.285.5.551]
[58]
Gupta, P.; Lee, K.H. Genomics and proteomics in process development: Opportunities and challenges. Trends Biotechnol., 2007, 25(7), 324-330.
[http://dx.doi.org/10.1016/j.tibtech.2007.04.005] [PMID: 17475353]
[59]
Zheng, X.F.; Chan, T.F. Chemical genomics: A systematic approach in biological research and drug discovery. Curr. Issues Mol. Biol., 2002, 4(2), 33-43.
[http://dx.doi.org/10.21775/cimb.004.033] [PMID: 11931568]
[60]
Zhao, Q.; Wang, Y.; Zhu, Z.; Zhao, Q.; Zhu, L.; Jiang, L. Efficient reduction of β-lactoglobulin allergenicity in milk using Clostridium tyrobutyricum Z816. Food Sci. Hum. Wellness, 2023, 12(3), 809-816.
[http://dx.doi.org/10.1016/j.fshw.2022.09.017]
[61]
Pan, L.; Feng, F.; Wu, J.; Fan, S.; Han, J.; Wang, S.; Yang, L.; Liu, W.; Wang, C.; Xu, K. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells. Pharmacol. Res., 2022, 181, 106270.
[http://dx.doi.org/10.1016/j.phrs.2022.106270] [PMID: 35605812]
[62]
Zhu, Y.; Huang, R.; Wu, Z.; Song, S.; Cheng, L.; Zhu, R. Deep learning-based predictive identification of neural stem cell differentiation. Nat. Commun., 2021, 12(1), 2614.
[http://dx.doi.org/10.1038/s41467-021-22758-0] [PMID: 33972525]
[63]
Yin, Z.; Ji, Q.; Wu, D.; Li, Z.; Fan, M.; Zhang, H.; Zhao, X.; Wu, A.; Cheng, L.; Zeng, L.H. 2 O 2 -responsive gold nanoclusters @ mesoporous silica @ manganese dioxide nanozyme for “Off/On” modulation and enhancement of magnetic resonance imaging and photodynamic therapy. ACS Appl. Mater. Interfaces, 2021, 13(13), 14928-14937.
[http://dx.doi.org/10.1021/acsami.1c00430] [PMID: 33759491]
[64]
Namba, S.; Konuma, T.; Wu, K.H.; Zhou, W.; Okada, Y. A practical guideline of genomics-driven drug discovery in the era of global biobank meta-analysis. Cell Genomics, 2022, 2(10), 100190.
[http://dx.doi.org/10.1016/j.xgen.2022.100190] [PMID: 36778001]
[65]
Berry, S. Drug discovery in the wake of genomics. Trends Biotechnol., 2001, 19(7), 239-240.
[http://dx.doi.org/10.1016/S0167-7799(01)01667-5] [PMID: 11434347]
[66]
Seligmann, B. Transcriptomics - Realising the promise with a new era of drug discovery and diagnostics. Drug Discov. World, 2003.
[67]
Lee, J.; Hyeon, D.Y.; Hwang, D. Single-cell multiomics: Technologies and data analysis methods. Exp. Mol. Med., 2020, 52(9), 1428-1442.
[http://dx.doi.org/10.1038/s12276-020-0420-2] [PMID: 32929225]
[68]
Tian, Z.; Zhang, Y.; Zheng, Z.; Zhang, M.; Zhang, T.; Jin, J.; Zhang, X.; Yao, G.; Kong, D.; Zhang, C.; Wang, Z.; Zhang, Q. Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation. Cell Host Microbe, 2022, 30(10), 1450-1463.e8.
[http://dx.doi.org/10.1016/j.chom.2022.09.004] [PMID: 36228585]
[69]
Chen, Y.; Chen, L.; Zhou, Q. Genetic association between eNOS gene polymorphisms and risk of carotid atherosclerosis. Herz, 2021, 46(S2), 253-264.
[http://dx.doi.org/10.1007/s00059-020-04995-z] [PMID: 33095272]
[70]
Jiang, M.; Chen, S.; Lu, X.; Guo, H.; Chen, S.; Yin, X.; Li, H.; Dai, G.; Liu, L. Integrating genomics and metabolomics for the targeted discovery of new cyclopeptides with antifungal activity from a marine-derived fungus beauveria felina. J. Agric. Food Chem., 2023, 71(25), 9782-9795.
[http://dx.doi.org/10.1021/acs.jafc.3c02415] [PMID: 37310400]
[71]
Zhao, H.; Tang, S.; Tao, Q.; Ming, T.; Lei, J.; Liang, Y.; Peng, Y.; Wang, M.; Liu, M.; Yang, H.; Ren, S.; Xu, H. Ursolic acid suppresses colorectal cancer by down-regulation of Wnt/β-catenin signaling pathway activity. J. Agric. Food Chem., 2023, 71(9), 3981-3993.
[http://dx.doi.org/10.1021/acs.jafc.2c06775] [PMID: 36826439]
[72]
Heath, J.R.; Ribas, A.; Mischel, P.S. Single-cell analysis tools for drug discovery and development. Nat. Rev. Drug Discov., 2016, 15(3), 204-216.
[http://dx.doi.org/10.1038/nrd.2015.16] [PMID: 26669673]
[73]
Olivier, M.; Asmis, R.; Hawkins, G.A.; Howard, T.D.; Cox, L.A. The need for multi-omics biomarker signatures in precision medicine. Int. J. Mol. Sci., 2019, 20(19), 4781.
[http://dx.doi.org/10.3390/ijms20194781] [PMID: 31561483]
[74]
Park, J.; Kim, J.; Lewy, T.; Rice, C.M.; Elemento, O.; Rendeiro, A.F.; Mason, C.E. Spatial omics technologies at multimodal and single cell/subcellular level. Genome Biol., 2022, 23(1), 256.
[http://dx.doi.org/10.1186/s13059-022-02824-6] [PMID: 36514162]
[75]
Vandereyken, K.; Sifrim, A.; Thienpont, B.; Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet., 2023, 24(8), 494-515.
[http://dx.doi.org/10.1038/s41576-023-00580-2] [PMID: 36864178]
[76]
Mohammadi-Shemirani, P.; Sood, T.; Paré, G. From ‘omics to multi-omics technologies: The discovery of novel causal mediators. Curr. Atheroscler. Rep., 2023, 25(2), 55-65.
[http://dx.doi.org/10.1007/s11883-022-01078-8] [PMID: 36595202]
[77]
Dar, M.A.; Arafah, A.; Bhat, K.A.; Khan, A.; Khan, M.S.; Ali, A.; Ahmad, S.M.; Rashid, S.M.; Rehman, M.U. Multiomics technologies: role in disease biomarker discoveries and therapeutics. Brief. Funct. Genomics, 2023, 22(2), 76-96.
[http://dx.doi.org/10.1093/bfgp/elac017] [PMID: 35809340]
[78]
Chakraborty, D.; Sharma, N.; Kour, S.; Sodhi, S.S.; Gupta, M.K.; Lee, S.J.; Son, Y.O. Applications of omics technology for livestock selection and improvement. Front. Genet., 2022, 13, 774113.
[http://dx.doi.org/10.3389/fgene.2022.774113] [PMID: 35719396]
[79]
Guo, J.; Huang, Z.; Sun, J.; Cui, X.; Liu, Y. Research progress and future development trends in medicinal plant transcriptomics. Front. Plant Sci., 2021, 12, 691838.
[http://dx.doi.org/10.3389/fpls.2021.691838] [PMID: 34394145]
[80]
Hu, Y.F.; Kaplow, J.; He, Y. From traditional biomarkers to transcriptome analysis in drug development. Curr. Mol. Med., 2005, 5(1), 29-38.
[http://dx.doi.org/10.2174/1566524053152915] [PMID: 15720268]
[81]
Pratik, C. Application and development of proteomics in biopharmaceutical industry. Int. J. Innov. Res. Multidiscipl. Field, 2021, 7(7), 45-51.
[82]
Drissi, R.; Dubois, M.L.; Boisvert, F.M. Proteomics methods for subcellular proteome analysis. FEBS J., 2013, 280(22), 5626-5634.
[http://dx.doi.org/10.1111/febs.12502] [PMID: 24034475]
[83]
Sharma, V.K.; Kumar, R. Current applications of proteomics: A key and novel approach. Int. J. Adv. Med., 2019, 6(6), 1953.
[http://dx.doi.org/10.18203/2349-3933.ijam20195259]
[84]
Zhang, H.M.; Nan, Z.R.; Hui, G.Q.; Liu, X.H.; Sun, Y. Application of genomics and proteomics in drug target discovery. Genet. Mol. Res., 2014, 13(1), 198-204.
[http://dx.doi.org/10.4238/2014.January.10.11] [PMID: 24446303]
[85]
Moghaddamnia, S.H. Application of proteomics technologies in the drug development process. Iran. J. Pharm. Res., 2009, 8, 143.
[86]
Dixit, A.; Barhoosh, H.; Paegel, B.M. Translating the genome into drugs. Acc. Chem. Res., 2023, 56(4), 489-499.
[http://dx.doi.org/10.1021/acs.accounts.2c00791] [PMID: 36757774]
[87]
Bowser, B.L.; Robinson, R.A.S. Enhanced multiplexing technology for proteomics. Annu. Rev. Anal. Chem., 2023, 16(1), 379-400.
[http://dx.doi.org/10.1146/annurev-anchem-091622-092353] [PMID: 36854207]
[88]
Agrawal, S.; Bisen, A.C.; Biswas, A.; Sanap, S.N.; Verma, S.K.; Kumar, M.; Jaiswal, S.; Kumar, A.; Narender, T.; Bhatta, R.S. Simultaneous pharmacokinetic assessment of phytopharmaceuticals in fenugreek extract using LC-MS/MS in Sprague-Dawley rats. Biomed. Chromatogr., 2023, 37(5), e5600.
[http://dx.doi.org/10.1002/bmc.5600] [PMID: 36760100]
[89]
KhalKhal, E.; Rezaei-Tavirani, M.; Rostamii-Nejad, M. Pharmaceutical advances and proteomics researches. Iran. J. Pharm. Res., 2019, 18, 51-67.
[http://dx.doi.org/10.22037/ijpr.2020.112440.13758] [PMID: 32802089]
[90]
Tyers, M.; Mann, M. From genomics to proteomics. Nature, 2006, 422(6928), 193-197.
[http://dx.doi.org/10.1038/nature01510]
[91]
Frantzi, M.; Latosinska, A.; Mischak, H. Proteomics in drug development: The dawn of a new era? Proteomics Clin. Appl., 2019, 13(2), 1800087.
[http://dx.doi.org/10.1002/prca.201800087] [PMID: 30724014]
[92]
Gupta, S.P. Advances in drug discovery based on genomics, proteomics and bioinformatics. Curr. Top. Med. Chem., 2022, 22(20), 1635-1635.
[http://dx.doi.org/10.2174/156802662220220908152340] [PMID: 36134877]
[93]
Lu, Y.; Chen, C. Metabolomics: Bridging chemistry and biology in drug discovery and development. Curr. Pharmacol. Rep., 2017, 3(1), 16-25.
[http://dx.doi.org/10.1007/s40495-017-0083-4]
[94]
Matthews, H.; Hanison, J.; Nirmalan, N. “Omics”-informed drug and biomarker discovery: Opportunities, challenges and future perspectives. Proteomes, 2016, 4(3), 28.
[http://dx.doi.org/10.3390/proteomes4030028] [PMID: 28248238]
[95]
Taylor, M.J.; Lukowski, J.K.; Anderton, C.R. Spatially resolved mass spectrometry at the single cell: Recent innovations in proteomics and metabolomics. J. Am. Soc. Mass Spectrom., 2021, 32(4), 872-894.
[http://dx.doi.org/10.1021/jasms.0c00439] [PMID: 33656885]
[96]
Biswas, A.; Kumar Verma, S.; Kumar, S.; Mishra, T.; Kumar, M.; Deb Choudhury, A.; Agrawal, S.; Sanap, S.N.; Bisen, A.C.; Mishra, A.; Narender, T.; Bhatta, R.S. Preclinical pharmacokinetics and CYP modulation activity of chebulinic acid: A potent molecule against metabolic disease. Curr. Drug Metab., 2023, 24(8), 587-598.
[http://dx.doi.org/10.2174/1389200224666230817101950] [PMID: 37592800]
[97]
Liu, X.; Locasale, J.W. Metabolomics: A Primer. Trends Biochem. Sci., 2017, 42(4), 274-284.
[http://dx.doi.org/10.1016/j.tibs.2017.01.004] [PMID: 28196646]
[98]
Farooq, S.U.; Kishor, K.; Sharma, A. Metabolomics: A radical approach to molecular study. J. Livest. Sci., 2023, 14(1), 35-40.
[http://dx.doi.org/10.33259/JLivestSci.2023.35-40]
[99]
Gonzalez-Covarrubias, V.; Martínez-Martínez, E.; Del Bosque-Plata, L. The potential of metabolomics in biomedical applications. Metabolites, 2022, 12(2), 194.
[http://dx.doi.org/10.3390/metabo12020194]
[100]
Pang, H.; Hu, Z. Metabolomics in drug research and development: The recent advances in technologies and applications. Acta Pharm. Sin. B, 2023, 13(8), 3238-3251.
[http://dx.doi.org/10.1016/j.apsb.2023.05.021] [PMID: 37655318]
[101]
Russell, C.; Rahman, A.; Mohammed, A.R. Application of genomics, proteomics and metabolomics in drug discovery, development and clinic. Ther. Deliv., 2013, 4(3), 395-413.
[http://dx.doi.org/10.4155/tde.13.4] [PMID: 23442083]
[102]
Beyoğlu, D.; Idle, J.R. Metabolomics and its potential in drug development. Biochem. Pharmacol., 2013, 85(1), 12-20.
[http://dx.doi.org/10.1016/j.bcp.2012.08.013] [PMID: 22935449]
[103]
Ye, S.; Li, J.; Zhang, Z. Multi-omics-data-assisted genomic feature markers preselection improves the accuracy of genomic prediction. J. Anim. Sci. Biotechnol., 2020, 11(1), 109.
[http://dx.doi.org/10.1186/s40104-020-00515-5] [PMID: 33292577]
[104]
Liu, Y.; Song, F.; Li, Z.; Chen, L.; Xu, Y.; Sun, H.; Chang, Y. A comprehensive tool for tumor precision medicine with pharmaco-omics data analysis. Front. Pharmacol., 2023, 14, 1085765.
[http://dx.doi.org/10.3389/fphar.2023.1085765] [PMID: 36713829]
[105]
Liu, Q.; Martínez-Jarquín, S.; Zenobi, R. Recent advances in single-cell metabolomics based on mass spectrometry. CCS Chem., 2023, 5(2), 310-324.
[http://dx.doi.org/10.31635/ccschem.022.202202333]
[106]
Cuperlovic-Culf, M.; Culf, A.S. Applied metabolomics in drug discovery. Expert Opin. Drug Discov., 2016, 11(8), 759-770.
[http://dx.doi.org/10.1080/17460441.2016.1195365] [PMID: 27366968]
[107]
Veenstra, T.D. Metabolomics: The final frontier? Genome Med., 2012, 4(4), 40.
[http://dx.doi.org/10.1186/gm339]
[108]
Wishart, D.S. Applications of metabolomics in drug discovery and development. Drugs R D., 2008, 9(5), 307-322.
[http://dx.doi.org/10.2165/00126839-200809050-00002] [PMID: 18721000]
[109]
Yeung, P. Metabolomics and biomarkers for drug discovery. Metabolites, 2018, 8(1), 11.
[http://dx.doi.org/10.3390/metabo8010011] [PMID: 29385049]

© 2024 Bentham Science Publishers | Privacy Policy