Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Current Drug Delivery Strategies to Design Orally Dissolving Formulations to Target Tuberculosis: A Futuristic Review

Author(s): Pinky Chowrasia, Mohini Singh, Bani Kumar Jana, Pankaj Lochan Bora, Ranjit Kumar Mahato, Rikynjai Kharbithai, Niva Rani Gogoi, Tumpa Sarkar, Paulami Pal and Bhaskar Mazumder*

Volume 14, Issue 2, 2024

Published on: 01 February, 2024

Page: [109 - 134] Pages: 26

DOI: 10.2174/0122103031267044231031044456

Price: $65

conference banner
Abstract

All the standard anti-tubercular drugs, well established as standard therapy, are preferentially available in formulations compliant with the young adult population. However, their use in the paediatric and geriatric populations is confronted with issues, such as a high likelihood of incorrect dose administration due to practices like dosage form fracture and splitting. This may lead to drug resistance due to misuse and in-accurate dosage administration, the most dreaded and difficult-to-treat stage of tuberculosis.

Poor patient compliance and adherence are major issues with the conventional line of therapy. This burden may be more significant in resource-constrained settings, necessitating the creation of simple formulations that are both geriatric and child-friendly. An extensive literature survey has been conducted in this study using databases of Google Scholar, PubMed, and Research Gate, with a focus on specific research works on oro-dispersible films, tablets, and wafer technology loaded with anti-tuberculosis drugs from 2022 to 2010.

Mouth dissolving formulation technology is a very novel approach in the arena of tuberculosis therapy. This may pave the way for future researchers to develop different mouth dissolving formulations to treat both pulmonary and extra-tuberculosis. This review paper has summarized all the formulation approaches alongside the present state of the art in tuberculosis therapy using mouth dissolving formulations.

Keywords: Tuberculosis, extrapulmonary tuberculosis, mouth dissolving wafer technology, 3D printing, flash dose technology, mass extrusion, current state-of-the-art.

Next »
Graphical Abstract
[1]
Verma, N.; Arora, V.; Awasthi, R.; Chan, Y.; Jha, N.K.; Thapa, K.; Jawaid, T.; Kamal, M.; Gupta, G.; Liu, G.; Paudel, K.R.; Hansbro, P.M.; George Oliver, B.G.; Singh, S.K.; Chellappan, D.K.; Dureja, H.; Dua, K. Recent developments, challenges and future prospects in advanced drug delivery systems in the management of tuberculosis. J. Drug Deliv. Sci. Technol., 2022, 75, 103690.
[http://dx.doi.org/10.1016/j.jddst.2022.103690]
[2]
Pham, D.D.; Fattal, E.; Tsapis, N. Pulmonary drug delivery systems for tuberculosis treatment. Int. J. Pharm., 2015, 478(2), 517-529.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.009] [PMID: 25499020]
[3]
Volmink, J.; Murphy, C. Pulmonary tuberculosis. In: Evidencebased Respiratory Medicine; John Wiley Sons, Ltd, 2005; 4.3, p. 321-333.
[http://dx.doi.org/10.1002/9780470987377.ch26]
[4]
Turner, R.D.; Bothamley, G.H. Cough and the transmission of tuberculosis. J. Infect. Dis., 2015, 211(9), 1367-1372.
[http://dx.doi.org/10.1093/infdis/jiu625] [PMID: 25387581]
[5]
Leung, A.N. Pulmonary tuberculosis: The essentials. Radiology, 1999, 210(2), 307-322.
[http://dx.doi.org/10.1148/radiology.210.2.r99ja34307] [PMID: 10207408]
[6]
Nice, C.M., Jr The pathogenesis of tuberculosis. Dis. Chest, 1950, 17(5), 550-560.
[http://dx.doi.org/10.1378/chest.17.5.550] [PMID: 15411862]
[7]
Thiessen, R.; Seely, J.M.; Matzinger, F.R.K.; Agarwal, P.; Burns, K.L.; Dennie, C.J.; Peterson, R. Necrotizing granuloma of the lung: Imaging characteristics and imaging-guided diagnosis. AJR Am. J. Roentgenol., 2007, 189(6), 1397-1401.
[http://dx.doi.org/10.2214/AJR.07.2389] [PMID: 18029876]
[8]
Kaufmann, S.H.E. Protection against tuberculosis: Cytokines, T cells, and macrophages. Ann. Rheum. Dis., 2002, 61(S2), 54ii-58.
[http://dx.doi.org/10.1136/ard.61.suppl_2.ii54] [PMID: 12379623]
[9]
Houben, E.N.G.; Nguyen, L.; Pieters, J. Interaction of pathogenic mycobacteria with the host immune system. Curr. Opin. Microbiol., 2006, 9(1), 76-85.
[http://dx.doi.org/10.1016/j.mib.2005.12.014] [PMID: 16406837]
[10]
Rook, G.A.W.; Hernandez-Pando, R. The pathogenesis of tuberculosis. Annu. Rev. Microbiol., 1996, 50(1), 259-284.
[http://dx.doi.org/10.1146/annurev.micro.50.1.259] [PMID: 8905081]
[11]
Sharma, S.K.; Mohan, A.; Kohli, M. Extrapulmonary tuberculosis. Expert Rev. Respir. Med., 2021, 15(7), 931-948.
[http://dx.doi.org/10.1080/17476348.2021.1927718] [PMID: 33966561]
[12]
Lee, J.Y. Diagnosis and treatment of extrapulmonary tuberculosis. Tuberc. Respir. Dis., 2015, 78(2), 47-55.
[http://dx.doi.org/10.4046/trd.2015.78.2.47] [PMID: 25861336]
[13]
Cockcroft, D.W.; Nair, P. Methacholine test and the diagnosis of asthma. J. Allergy Clin. Immunol., 2012, 130(2), 556.
[http://dx.doi.org/10.1016/j.jaci.2012.05.050] [PMID: 22743302]
[14]
Morris, J.T.; Seaworth, B.J.; McAllister, C.K. Pulmonary tuberculosis in diabetics. Chest, 1992, 102(2), 539-541.
[http://dx.doi.org/10.1378/chest.102.2.539] [PMID: 1643944]
[15]
Plummer, E.C. Pulmonary tuberculosis: Diagnosis and treatment. BMJ, 1928, 1(3507), 523-524.
[http://dx.doi.org/10.1136/bmj.1.3507.523-b] [PMID: 20775295]
[16]
Kim, S.J.; Hong, Y.P.; Lew, W.J.; Yang, S.C.; Lee, E.G. Incidence of pulmonary tuberculosis among diabetics. Tuber. Lung Dis., 1995, 76(6), 529-533.
[http://dx.doi.org/10.1016/0962-8479(95)90529-4] [PMID: 8593374]
[17]
Sharma, S.K.; Mohan, A.; Sharma, A.; Mitra, D.K. Miliary tuberculosis: New insights into an old disease. Lancet Infect. Dis., 2005, 5(7), 415-430.
[http://dx.doi.org/10.1016/S1473-3099(05)70163-8] [PMID: 15978528]
[18]
Weddell, J.M. Miliary tuberculosis. BMJ, 1969, 2(5658), 694.
[http://dx.doi.org/10.1136/bmj.2.5658.694-a] [PMID: 5783132]
[19]
Jones, P.G.; Campbell, P.E. Tuberculous lymphadenitis in childhood: The significance of anonymous mycobacteria. Br. J. Surg., 2005, 50(221), 302-314.
[http://dx.doi.org/10.1002/bjs.18005022112] [PMID: 13964780]
[20]
Ganchua, S.K.C.; White, A.G.; Klein, E.C.; Flynn, J.L. Lymph nodes—The neglected battlefield in tuberculosis. PLoS Pathog., 2020, 16(8), e1008632.
[http://dx.doi.org/10.1371/journal.ppat.1008632] [PMID: 32790739]
[21]
Ganchua, S.K.C.; Cadena, A.M.; Maiello, P.; Gideon, H.P.; Myers, A.J.; Junecko, B.F.; Klein, E.C.; Lin, P.L.; Mattila, J.T.; Flynn, J.L. Lymph nodes are sites of prolonged bacterial persistence during Mycobacterium tuberculosis infection in macaques. PLoS Pathog., 2018, 14(11), e1007337.
[http://dx.doi.org/10.1371/journal.ppat.1007337] [PMID: 30383808]
[22]
Moule, M.G.; Cirillo, J.D. Mycobacterium tuberculosis dissemination plays a critical role in pathogenesis. Front. Cell. Infect. Microbiol., 2020, 10, 65.
[http://dx.doi.org/10.3389/fcimb.2020.00065] [PMID: 32161724]
[23]
Rathi, P.; Gambhire, P. Abdominal Tuberculosis. J. Assoc. Physicians India, 2016, 64(2), 38-47.
[PMID: 27730779]
[24]
Tandon, H.D.; Prakash, A. Pathology of intestinal tuberculosis and its distinction from Crohn’s disease. Gut, 1972, 13(4), 260-269.
[http://dx.doi.org/10.1136/gut.13.4.260] [PMID: 5033841]
[25]
Sharma, M.P.; Bhatia, V. Abdominal tuberculosis. Indian J. Med. Res., 2004, 120(4), 305-315.
[PMID: 15520484]
[26]
Kapoor, V.K. Abdominal tuberculosis. Postgrad. Med. J., 1998, 74(874), 459-467.
[http://dx.doi.org/10.1136/pgmj.74.874.459] [PMID: 9926119]
[27]
Windwer, C. Tuberculosis of the stomach. Rev. Gastroenterol., 1946, 13, 38-41.
[PMID: 21011828]
[28]
Bhatti, A.; Hussain, M.; Kumar, D.; Samo, K.A. Duodenal tuberculosis. J. Coll. Physicians Surg. Pak., 2012, 22(2), 111-112.
[PMID: 22313650]
[29]
Nagi, B.; Lal, A.; Gupta, P.; Kochhar, R.; Sinha, S.K. Radiological findings in duodenal tuberculosis: A 15-year experience. Abdom. Imaging, 2015, 40(5), 1104-1109.
[http://dx.doi.org/10.1007/s00261-014-0302-y] [PMID: 25416003]
[30]
Schaller, M.A.; Wicke, F.; Foerch, C.; Weidauer, S. Central nervous system tuberculosis: Etiology, clinical manifestations and neuroradiological features. Clin. Neuroradiol., 2019, 29(1), 3-18.
[http://dx.doi.org/10.1007/s00062-018-0726-9] [PMID: 30225516]
[31]
Rock, R.B.; Olin, M.; Baker, C.A.; Molitor, T.W.; Peterson, P.K. Central nervous system tuberculosis: Pathogenesis and clinical aspects. Clin. Microbiol. Rev., 2008, 21(2), 243-261.
[http://dx.doi.org/10.1128/CMR.00042-07] [PMID: 18400795]
[32]
Be, N.; Kim, K.; Bishai, W.; Jain, S. Pathogenesis of central nervous system tuberculosis. Curr. Mol. Med., 2009, 9(2), 94-99.
[http://dx.doi.org/10.2174/156652409787581655] [PMID: 19275620]
[33]
Enache, S.D.; Pleşea, I.E.; Anuşca, D.; Zaharia, B.; Pop, O.T. Osteoarticular tuberculosis--a ten years case review. Rom. J. Morphol. Embryol., 2005, 46(1), 67-72.
[PMID: 16286988]
[34]
Mariconda, M.; Cozzolino, A.; Attingenti, P.; Cozzolino, F.; Milano, C. Osteoarticular tuberculosis in a developed country. J. Infect., 2007, 54(4), 375-380.
[http://dx.doi.org/10.1016/j.jinf.2006.06.006] [PMID: 16860392]
[35]
Gupta, V.; Shoughy, S.S.; Mahajan, S.; Khairallah, M.; Rosenbaum, J.T.; Curi, A.; Tabbara, K.F. Clinics of ocular tuberculosis. Ocul. Immunol. Inflamm., 2015, 23(1), 14-24.
[http://dx.doi.org/10.3109/09273948.2014.986582] [PMID: 25615807]
[36]
Shakarchi, F. Ocular tuberculosis: Current perspectives. Clin. Ophthalmol., 2015, 9, 2223-2227.
[http://dx.doi.org/10.2147/OPTH.S65254] [PMID: 26648690]
[37]
Albert, D.M. Raven, ML Ocular tuberculosis. In: Tuberculosis and Nontuberculous Mycobacterial Infections; Wiley, 2017.
[http://dx.doi.org/10.1128/9781555819866.ch19]
[38]
Abbara, A.; Davidson, R.N. Etiology and management of genitourinary tuberculosis. Nat. Rev. Urol., 2011, 8(12), 678-688.
[http://dx.doi.org/10.1038/nrurol.2011.172] [PMID: 22157940]
[39]
Matos, M.J.; Bacelar, M.T.; Pinto, P.; Ramos, I. Genitourinary tuberculosis. Eur. J. Radiol., 2005, 55(2), 181-187.
[http://dx.doi.org/10.1016/j.ejrad.2005.04.016] [PMID: 15950419]
[40]
Yencha, M.W.; Linfesty, R.; Blackmon, A. Laryngeal tuberculosis. Am. J. Otolaryngol., 2000, 21(2), 122-126.
[http://dx.doi.org/10.1016/S0196-0709(00)85010-3] [PMID: 10758999]
[41]
Lim, J.Y.; Kim, K.M.; Choi, E.C.; Kim, Y.H.; Kim, H.S.; Choi, H.S. Current clinical propensity of laryngeal tuberculosis: Review of 60 cases. Eur. Arch. Otorhinolaryngol., 2006, 263(9), 838-842.
[http://dx.doi.org/10.1007/s00405-006-0063-5] [PMID: 16835742]
[42]
World Health Organization. Global Tuberculosis Report. 2022. Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022 (Accessed on: 20 April 2023).
[43]
World Health Organization. Global Tuberculosis Report, 2020. Available from: https://www.who.int/publications/i/item/9789240013131 (Accessed on: 20 April 2023).
[44]
World Health Organization. Global Tuberculosis Report. 2020. Available from: https://www.who.int/publications/i/item/9789240013131 (Accessed on: 20 April 2023).
[45]
World Health Organization. Global Tuberculosis Report. 2019. Available from: https://www.who.int/publications/i/item/9789241565714 (Accessed on: 20 April 2023).
[46]
World Health Organization. Global Tuberculosis Report. 2018. Available from: https://apps.who.int/iris/handle/10665/274453 (Accessed on: 20 April 2023).
[47]
World Health Organization. Global Tuberculosis Report. 2017. Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports (Accessed on: 20 April 2023).
[48]
World Health Organization. Global Tuberculosis Report. 2016. Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports (Accessed on: 20 April 2023).
[49]
World Health Organization. Global Tuberculosis Report. 2015. Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports (Accessed on: 20 April 2023).
[50]
World Health Organization. Global Tuberculosis Report., 2014. Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports (Accessed on: 20 April 2023).
[51]
World Health Organization. Global Tuberculosis Report. 2013. Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports (Accessed on: 20 April 2023).
[52]
Central TB Division of Ministry of Health and Family Welfare under Government of India, “National Strategic Plan for Tuberculosis: 2017-2025, Elimination by 2025,”. Can. J. Public Health, 2017, 111(4), 486-487. Available from: https://tbcindia.gov.in/WriteReadData/National Strategic Plan 2017-25.pdf
[53]
Ministry of Health and Family Welfare Government of India; , 2020, COVID-19, pp. 1-2.
[54]
Central TB Division. India TB Report 2023. 2023. Available from: https://tbcindia.gov.in/WriteReadData/l892s/5646719104TB%20AR-2023_23-%2003-2023_LRP.pdf (Accessed on: 20 April 2023).
[55]
Tripathi, K.D. Essentials of Medical Pharmacology, 8th ed; Jaypee Brothers Medical, 2018.
[56]
Unissa, A.N.; Subbian, S.; Hanna, L.E.; Selvakumar, N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect. Genet. Evol., 2016, 45, 474-492.
[http://dx.doi.org/10.1016/j.meegid.2016.09.004] [PMID: 27612406]
[57]
Timmins, G.S.; Deretic, V. Mechanisms of action of isoniazid. Mol. Microbiol., 2006, 62(5), 1220-1227.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05467.x] [PMID: 17074073]
[58]
Denholm, J.; McBryde, E.; Eisen, D.; Chen, C.; Penington, J.; Street, A. Adverse effects of isoniazid preventative therapy for latent tuberculosis infection: A prospective cohort study. Drug Healthc. Patient Saf., 2014, 6, 145-149.
[http://dx.doi.org/10.2147/DHPS.S68837] [PMID: 25364275]
[59]
Grant, A.D.; Mngadi, K.T.; van Halsema, C.L.; Luttig, M.M.; Fielding, K.L.; Churchyard, G.J. Adverse events with isoniazid preventive therapy: Experience from a large trial. AIDS, 2010, 24(S5), S29-S36.
[http://dx.doi.org/10.1097/01.aids.0000391019.10661.66] [PMID: 21079425]
[60]
Stehr, M.; Elamin, A.A.; Singh, M. Pyrazinamide: The importance of uncovering the mechanisms of action in mycobacteria. Expert Rev. Anti Infect. Ther., 2015, 13(5), 593-603.
[http://dx.doi.org/10.1586/14787210.2015.1021784] [PMID: 25746054]
[61]
Lamont, E.A.; Dillon, N.A.; Baughn, A.D. The bewildering antitubercular action of pyrazinamide. Microbiol. Mol. Biol. Rev., 2020, 84(2), e00070-e19.
[http://dx.doi.org/10.1128/MMBR.00070-19] [PMID: 32132245]
[62]
Kwon, B.S.; Kim, Y.; Lee, S.H.; Lim, S.Y.; Lee, Y.J.; Park, J.S.; Cho, Y.J.; Yoon, H.I.; Lee, C.T.; Lee, J.H. The high incidence of severe adverse events due to pyrazinamide in elderly patients with tuberculosis. PLoS One, 2020, 15(7), e0236109.
[http://dx.doi.org/10.1371/journal.pone.0236109] [PMID: 32692774]
[63]
Papastavros, T.; Dolovich, L.R.; Holbrook, A.; Whitehead, L.; Loeb, M. Adverse events associated with pyrazinamide and levofloxacin in the treatment of latent multidrug-resistant tuberculosis. CMAJ, 2002, 167(2), 131-136.
[PMID: 12160118]
[64]
Forget, E.J.; Menzies, D. Adverse reactions to first-line antituberculosis drugs. Expert Opin. Drug Saf., 2006, 5(2), 231-249.
[http://dx.doi.org/10.1517/14740338.5.2.231] [PMID: 16503745]
[65]
Hartmann, G.R.; Heinrich, P.; Kollenda, M.C.; Skrobranek, B.; Tropschug, M.; Weiß, W. Molecular mechanism of action of the antibiotic rifampicin. Angew. Chem. Int. Ed. Engl., 1985, 24(12), 1009-1014.
[http://dx.doi.org/10.1002/anie.198510093]
[66]
Unissa, N.A.; Hanna, L.E. Molecular mechanisms of action, resistance, detection to the first-line anti tuberculosis drugs: Rifampicin and pyrazinamide in the post whole genome sequencing era. Tuberculosis, 2017, 105, 96-107.
[http://dx.doi.org/10.1016/j.tube.2017.04.008] [PMID: 28610794]
[67]
Beebe, A.; Seaworth, B.; Patil, N. Rifampicin-induced nephrotoxicity in a tuberculosis patient. J. Clin. Tuberc. Other Mycobact. Dis., 2015, 1, 13-15.
[http://dx.doi.org/10.1016/j.jctube.2015.09.001] [PMID: 31723676]
[68]
Grosset, J.; Leventis, S. Adverse effects of rifampin. Clin. Infect. Dis., 1983, 5(S3), S440-S446.
[http://dx.doi.org/10.1093/clinids/5.Supplement_3.S440] [PMID: 6356277]
[69]
Goude, R.; Amin, A.G.; Chatterjee, D.; Parish, T. The arabinosyltransferase EmbC is inhibited by ethambutol in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2009, 53(10), 4138-4146.
[http://dx.doi.org/10.1128/AAC.00162-09] [PMID: 19596878]
[70]
Dew, R.H. Ethambutol: An Overview. Available from: https://www.uptodate.com/contents/ethambutol-an-overview (Accessed on: 20 August 2023).
[71]
Saxena, R.; Singh, D.; Phuljhele, S.; Kalaiselvan, V.; Karna, S.; Gandhi, R.; Prakash, A.; Lodha, R.; Mohan, A.; Menon, V.; Garg, R. Ethambutol toxicity: Expert panel consensus for the primary prevention, diagnosis and management of ethambutol-induced optic neuropathy. Indian J. Ophthalmol., 2021, 69(12), 3734-3739.
[http://dx.doi.org/10.4103/ijo.IJO_3746_20] [PMID: 34827033]
[72]
Etebu, E.; Arikekpar, I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Microbiol. Biotechnol. Res., 2016, 4(2016), 90-10.
[73]
Waters, M.; Tadi, P. Streptomycin. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.
[74]
Adeyemo, A.A.; Oluwatosin, O.; Omotade, O.O. Study of streptomycin-induced ototoxicity: Protocol for a longitudinal study. Springerplus, 2016, 5(1), 758.
[http://dx.doi.org/10.1186/s40064-016-2429-5] [PMID: 27386243]
[75]
Ahmed, M.; Mishra, A.; Sawlani, K.K.; Verma, V.; Garg, R.; Singh, H.P.; Kumar, S. Clinical predictors of streptomycin-vestibulotoxicity. Indian J. Otolaryngol. Head Neck Surg., 2016, 68(3), 359-366.
[http://dx.doi.org/10.1007/s12070-015-0949-x] [PMID: 27508140]
[76]
Piddock, L.J. New quinolones and gram-positive bacteria. Antimicrob. Agents Chemother., 1994, 38(2), 163-169.
[http://dx.doi.org/10.1128/AAC.38.2.163] [PMID: 8192436]
[77]
Blondeau, J.M. Fluoroquinolones: Mechanism of action, classification, and development of resistance. Surv. Ophthalmol., 2004, 49(2), S73-S78.
[http://dx.doi.org/10.1016/j.survophthal.2004.01.005] [PMID: 15028482]
[78]
Hooper, D.C. Mechanisms of action of antimicrobials: Focus on fluoroquinolones. Clin. Infect. Dis., 2001, 32, S9-S15.
[http://dx.doi.org/10.1086/319370] [PMID: 11249823]
[79]
Fish, DN Fluoroquinolone adverse effects and drug interactions. Pharmacotherapy: J Human Pharmacol. Drug Ther., 2001, 21(10P2), 253S-72S.
[http://dx.doi.org/10.1592/phco.21.16.253S.33993]
[80]
Halkin, H. Adverse effects of the fluoroquinolones. Clin. Infect. Dis., 1988, 10(S1), S258-S261.
[http://dx.doi.org/10.1093/clinids/10.Supplement_1.S258] [PMID: 3279499]
[81]
Baulard, A.R.; Betts, J.C.; Engohang-Ndong, J.; Quan, S.; McAdam, R.A.; Brennan, P.J.; Locht, C.; Besra, G.S. Activation of the pro-drug ethionamide is regulated in mycobacteria. J. Biol. Chem., 2000, 275(36), 28326-28331.
[http://dx.doi.org/10.1074/jbc.M003744200] [PMID: 10869356]
[82]
Arbex, M.A.; Varella, M.C.; Siqueira, H.R.; Mello, F.A. Antituberculosis drugs: Drug interactions, adverse effects, and use in special situations. Part 2: second line drugs. J. Bras. Pneumol., 2010, 36(5), 641-656.
[http://dx.doi.org/10.1590/S1806-37132010000500017] [PMID: 21085831]
[83]
Jain, A.K.; Sharma, P. Ethionamide induced blue vision (cyanopsia): Case report. Indian J. Tuberc., 2020, 67(3), 333-335.
[http://dx.doi.org/10.1016/j.ijtb.2019.04.011] [PMID: 32825860]
[84]
Sharma, P.; Bansal, R. Gynecomastia caused by ethionamide. Indian J. Pharmacol., 2012, 44(5), 654-655.
[http://dx.doi.org/10.4103/0253-7613.100408] [PMID: 23112434]
[85]
Mallela, A.R.; Koya, R.; Nagari, S.K.; Mohapatra, A.K. Ethionamide: Unusual cause of hypothyroidism. J. Clin. Diagn. Res., 2015, 9(8), OD08-OD09.
[http://dx.doi.org/10.7860/JCDR/2015/13531.6331] [PMID: 26435990]
[86]
Pinheiro, M.; Nunes, C.; Caio, J.M.; Moiteiro, C.; Lúcio, M.; Brezesinski, G.; Reis, S. The influence of rifabutin on human and bacterial membrane models: Implications for its mechanism of action. J. Phys. Chem. B, 2013, 117(20), 6187-6193.
[http://dx.doi.org/10.1021/jp403073v] [PMID: 23617457]
[87]
Pinheiro, M.; Arêde, M.; Nunes, C.; Caio, J.M.; Moiteiro, C.; Lúcio, M.; Reis, S. Differential interactions of rifabutin with human and bacterial membranes: Implication for its therapeutic and toxic effects. J. Med. Chem., 2013, 56(2), 417-426.
[http://dx.doi.org/10.1021/jm301116j] [PMID: 23215016]
[88]
Horne, D.J.; Spitters, C.; Narita, M. Experience with rifabutin replacing rifampin in the treatment of tuberculosis. Int. J. Tuberc. Lung Dis., 2011, 15(11), 1485-1490, i.
[http://dx.doi.org/10.5588/ijtld.11.0068] [PMID: 22008761]
[89]
Munsiff, S.S.; Kambili, C.; Ahuja, S.D. Rifapentine for the treatment of pulmonary tuberculosis. Clin. Infect. Dis., 2006, 43(11), 1468-1475.
[http://dx.doi.org/10.1086/508278] [PMID: 17083024]
[90]
Chan, J.G.Y.; Bai, X.; Traini, D. An update on the use of rifapentine for tuberculosis therapy. Expert Opin. Drug Deliv., 2014, 11(3), 421-431.
[http://dx.doi.org/10.1517/17425247.2014.877886] [PMID: 24397259]
[91]
Bruning, J.B.; Murillo, A.C.; Chacon, O.; Barletta, R.G.; Sacchettini, J.C. Structure of the Mycobacterium tuberculosis D-alanine:D-alanine ligase, a target of the antituberculosis drug D-cycloserine. Antimicrob. Agents Chemother., 2011, 55(1), 291-301.
[http://dx.doi.org/10.1128/AAC.00558-10] [PMID: 20956591]
[92]
Alghamdi, W.A.; Alsultan, A.; Al-Shaer, M.H.; An, G.; Ahmed, S.; Alkabab, Y.; Banu, S.; Barbakadze, K.; Houpt, E.; Kipiani, M.; Mikiashvili, L.; Schmidt, S.; Heysell, S.K.; Kempker, R.R.; Cegielski, J.P.; Peloquin, C.A. Cycloserine population pharmacokinetics and pharmacodynamics in patients with tuberculosis. Antimicrob. Agents Chemother., 2019, 63(5), e00055-e19.
[http://dx.doi.org/10.1128/AAC.00055-19] [PMID: 30858211]
[93]
Sharma, B.; Handa, R.; Nagpal, K.; Prakash, S.; Gupta, P.K.; Agrawal, R. Cycloserine-induced psychosis in a young female with drug-resistant tuberculosis. Gen. Hosp. Psychiatry, 2014, 36(4), 451.e3-451.e4.
[http://dx.doi.org/10.1016/j.genhosppsych.2014.03.009] [PMID: 24766906]
[94]
Mulubwa, M.; Mugabo, P. Amount of cycloserine emanating from terizidone metabolism and relationship with hepatic function in patients with drug-resistant tuberculosis. Drugs R D., 2019, 19(3), 289-296.
[http://dx.doi.org/10.1007/s40268-019-00281-4] [PMID: 31396892]
[95]
Court, R.; Centner, C.M.; Chirehwa, M.; Wiesner, L.; Denti, P.; de Vries, N.; Harding, J.; Gumbo, T.; Maartens, G.; McIlleron, H. Neuropsychiatric toxicity and cycloserine concentrations during treatment for multidrug-resistant tuberculosis. Int. J. Infect. Dis., 2021, 105, 688-694.
[http://dx.doi.org/10.1016/j.ijid.2021.03.001] [PMID: 33684562]
[96]
Zheng, J.; Rubin, E.J.; Bifani, P.; Mathys, V.; Lim, V.; Au, M.; Jang, J.; Nam, J.; Dick, T.; Walker, J.R.; Pethe, K.; Camacho, L.R. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J. Biol. Chem., 2013, 288(32), 23447-23456.
[http://dx.doi.org/10.1074/jbc.M113.475798] [PMID: 23779105]
[97]
Minato, Y.; Thiede, J.M.; Kordus, S.L.; McKlveen, E.J.; Turman, B.J.; Baughn, A.D. Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance. Antimicrob. Agents Chemother., 2015, 59(9), 5097-5106.
[http://dx.doi.org/10.1128/AAC.00647-15] [PMID: 26033719]
[98]
Georghiou, S.B.; Magana, M.; Garfein, R.S.; Catanzaro, D.G.; Catanzaro, A.; Rodwell, T.C. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: A systematic review. PLoS One, 2012, 7(3), e33275.
[http://dx.doi.org/10.1371/journal.pone.0033275] [PMID: 22479378]
[99]
Suzuki, J.; Kunimoto, T.; Hori, M. Effects of kanamycin on protein synthesis: Inhibition of elongation of peptide chains. J. Antibiot., 1970, 23(2), 99-101.
[http://dx.doi.org/10.7164/antibiotics.23.99] [PMID: 4906633]
[100]
Misumi, M.; Tanaka, N. Mechanism of inhibition of translocation by kanamycin and viomycin: A comparative study with fusidic acid. Biochem. Biophys. Res. Commun., 1980, 92(2), 647-654.
[http://dx.doi.org/10.1016/0006-291X(80)90382-4] [PMID: 6243944]
[101]
Johansen, S.K.; Maus, C.E.; Plikaytis, B.B.; Douthwaite, S. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol. Cell, 2006, 23(2), 173-182.
[http://dx.doi.org/10.1016/j.molcel.2006.05.044] [PMID: 16857584]
[102]
Ramirez, M.; Tolmasky, M. Amikacin: Uses, resistance, and prospects for inhibition. Molecules, 2017, 22(12), 2267.
[http://dx.doi.org/10.3390/molecules22122267] [PMID: 29257114]
[103]
Macedo, A.S.; Castro, P.M.; Roque, L.; Thomé, N.G.; Reis, C.P.; Pintado, M.E.; Fonte, P. Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J. Control. Release, 2020, 320, 125-141.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.006] [PMID: 31917295]
[104]
Milind, L.S.; Santosh, P.A.; Zaki, T.J.; John, D.I. Polymer based wafer technology: A review. Int. J. Pharm. Biol. Arch., 2013, 4(6), 1060-1074.
[105]
Fonseca-Santos, B.; Chorilli, M. An overview of polymeric dosage forms in buccal drug delivery: State of art, design of formulations and their in vivo performance evaluation. Mater. Sci. Eng. C, 2018, 86, 129-143.
[http://dx.doi.org/10.1016/j.msec.2017.12.022] [PMID: 29525088]
[106]
Pather, S.I.; Rathbone, M.J.; Şenel, S. Current status and the future of buccal drug delivery systems. Expert Opin. Drug Deliv., 2008, 5(5), 531-542.
[http://dx.doi.org/10.1517/17425247.5.5.531] [PMID: 18491980]
[107]
Dawson, D.V.; Drake, D.R.; Hill, J.R.; Brogden, K.A.; Fischer, C.L.; Wertz, P.W. Organization, barrier function and antimicrobial lipids of the oral mucosa. Int. J. Cosmet. Sci., 2013, 35(3), 220-223.
[http://dx.doi.org/10.1111/ics.12038] [PMID: 23320785]
[108]
Martín, M.J.; Calpena, A.C.; Fernández, F.; Mallandrich, M.; Gálvez, P.; Clares, B. Development of alginate microspheres as nystatin carriers for oral mucosa drug delivery. Carbohydr. Polym., 2015, 117, 140-149.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.032] [PMID: 25498619]
[109]
Artursson, P.; Palm, K.; Luthman, K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev., 2012, 64, 280-289.
[http://dx.doi.org/10.1016/j.addr.2012.09.005] [PMID: 11259831]
[110]
Komin, A.; Russell, L.M.; Hristova, K.A.; Searson, P.C. Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: Mechanisms and challenges. Adv. Drug Deliv. Rev., 2017, 110-111, 52-64.
[http://dx.doi.org/10.1016/j.addr.2016.06.002] [PMID: 27313077]
[111]
Şenel, S. An overview of physical, microbiological and immune barriers of oral mucosa. Int. J. Mol. Sci., 2021, 22(15), 7821.
[http://dx.doi.org/10.3390/ijms22157821] [PMID: 34360589]
[112]
Mishra, R.; Verma, S. An overview of buccal drug delivery system. Int. J. Pharm. Sci. Res., 2021, 16(1)
[http://dx.doi.org/10.31838/ijpr/2021.13.01.556]
[113]
Puratchikody, A.; Prasanth, V.V.; Mathew, S.T.; Kumar, A. Buccal drug delivery: Past, present and future-a review. Int. J. Drug Deliv., 2011, 3(2), 171.
[114]
R, S.; D, S.; R, G. Review on mucoadhesive drug delivery system with special emphasis on buccal route: An important tool in designing of novel controlled drug delivery system for the effective delivery of pharmaceuticals. J. Dev. Drugs, 2017, 6(1), 1-2.
[http://dx.doi.org/10.4172/2329-6631.1000169]
[115]
Mamatha, Y.; Selvi, A.; Prasanth, V.V.; Sipai, M.A.B.; Yadav, V. Buccal drug delivery: A technical approach. J. Drug Deliv. Ther., 2012, 2(2)
[http://dx.doi.org/10.22270/jddt.v2i2.96]
[116]
Pawar, H.L.; Mogal, R.T. Review evaluation of mouth dissolving films: Physical and chemical methods. World J. Pharm. Res., 2022, 11(11)
[http://dx.doi.org/10.20959/wjpr202211-24669]
[117]
Pattewar, S.V.; Kasture, S.B.; Pande, V.V.; Sharma, S.K. A new self microemulsifying mouth dissolving film. Indian J. Pharm. Educ. Res., 2016, 50(3s), S191-S199.
[http://dx.doi.org/10.5530/ijper.50.3.29]
[118]
Turković, E.; Vasiljević, I.; Drašković, M.; Parojčić, J. Orodispersible films — Pharmaceutical development for improved performance: A review. J. Drug Deliv. Sci. Technol., 2022, 75, 103708.
[http://dx.doi.org/10.1016/j.jddst.2022.103708]
[119]
Basu, B.; Mankad, A.; Dutta, A. Methylphenidate fast dissolving films: development, optimization using simplex centroid design and <i>in vitro</i> characterization. Turk J Pharm Sci, 2022, 19(3), 251-266.
[http://dx.doi.org/10.4274/tjps.galenos.2021.99223] [PMID: 35775238]
[120]
a) Smriti, T. Mouth dissolving films: A review. Int. J. Pharma Bio Sci., 2013, 4, 899-908.
[http://dx.doi.org/10.20959/wjpr20219-20973];
b) Gosavi, D.S.; Akarte, A.M.; Chaudhari, P.M.; Wagh, K.S.; Patil, P.H. Mouth dissolving films: a review. World J. Pharm. Res., 2021, May 24; 10(3), 187-209.
[http://dx.doi.org/10.20959/wjpr20219-20973]
[121]
Aldawsari, H.M.; Badr-Eldin, S.M. Enhanced pharmacokinetic performance of dapoxetine hydrochloride via the formulation of instantly-dissolving buccal films with acidic pH modifier and hydrophilic cyclodextrin: Factorial analysis, in vitro and in vivo assessment. J. Adv. Res., 2020, 24, 281-290.
[http://dx.doi.org/10.1016/j.jare.2020.04.019] [PMID: 32419956]
[122]
Tian, Y.; Orlu, M.; Woerdenbag, H.J.; Scarpa, M.; Kiefer, O.; Kottke, D.; Sjöholm, E.; Öblom, H.; Sandler, N.; Hinrichs, W.L.J.; Frijlink, H.W.; Breitkreutz, J.; Visser, J.C. Oromucosal films: From patient centricity to production by printing techniques. Expert Opin. Drug Deliv., 2019, 16(9), 981-993.
[http://dx.doi.org/10.1080/17425247.2019.1652595] [PMID: 31382842]
[123]
Sali, S.R.; Gondkar, S.B.; Saudagar, R.B. An emerging concept in oral drug delivery system: Mouth dissolving sublingual films. World J. Pharm. Res., 2018, 7(5), 1814-1824.
[124]
Kilicarslan, M.; Ilhan, M.; Inal, O.; Orhan, K. Preparation and evaluation of clindamycin phosphate loaded chitosan/alginate polyelectrolyte complex film as mucoadhesive drug delivery system for periodontal therapy. Eur. J. Pharm. Sci., 2018, 123, 441-451.
[http://dx.doi.org/10.1016/j.ejps.2018.08.007] [PMID: 30086353]
[125]
Joshi, R.; Garud, N.; Akram, W. Fast dissolving tablets: A review. Int. J. Pharm. Sci. Res., 2020, 11(4), 1562-1570.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.11(4).1562-70]
[126]
Tambe, B. Mouth dissolving tablets: An overview of formulation technology. Int. J. Inf. Res. Rev., 2018, 5, 5451-5459.
[127]
Ranganathan, V.; Yoong, J. Development and evaluation of mouth dissolving tablets using natural super Disintegrants. J. Young Pharm., 2017, 9(3), 332-335.
[http://dx.doi.org/10.5530/jyp.2017.9.66]
[128]
Gupta, J. Mouth dissolving tablets: An insight into challenges and future prospects of technologies in pharmaceutical industries. RJPT, 2022, 15(11), 5068-5077.
[http://dx.doi.org/10.52711/0974-360X.2022.00852]
[129]
Bhatti, S.; Kaushik, M. Utilization of natural superdisintegrant in mouth dissolving tablet: A simplified review. Int. J. Biol. Pharm. Allied Sci., 2022, 11(1), 32-38.
[http://dx.doi.org/10.31032/IJBPAS/2022/11.1.2058]
[130]
Yu, J.; Shan, X.; Chen, S.; Sun, X.; Song, P.; Zhao, R.; Hu, L. Preparation and evaluation of novel multi-channel orally disintegrating tablets. Eur. J. Pharm. Sci., 2020, 142, 105108.
[http://dx.doi.org/10.1016/j.ejps.2019.105108] [PMID: 31669391]
[131]
Comoglu, T.; Ozyilmaz, D.E. Orally disintegrating tablets and orally disintegrating mini tablets - novel dosage forms for pediatric use. Pharm. Dev. Technol., 2019, 24(7), 902-914.
[http://dx.doi.org/10.1080/10837450.2019.1615090] [PMID: 31215850]
[132]
Rahane, R.D.; Rachh, P.R. A review on fast dissolving tablet. J. Drug Deliv. Ther., 2018, 8(5), 50-55.
[http://dx.doi.org/10.22270/jddt.v8i5.1888]
[133]
a) Singh, S.; Shah, D. Development and characterization of mouth dissolving tablet of zolmitriptan. Asian Pacific Journal of Tropical Disease, 2012 Jan 1;2, S457-S464.
[http://dx.doi.org/10.1016/S2222-1808(12)60203-5];
b) Aglawe, S.B.; Gayke, A.U.; Sancheti, V.P.; Metkar, P.S. Formula-tion and evaluation of mouth dissolving tablets of oxcarbazepine. World J. Pharm. Res., 2017, 6(10), 1130-1137.
[http://dx.doi.org/10.20959/wjpr201710-9460]
[134]
Costa, J.S.R.; de Oliveira, C.K.; Oliveira-Nascimento, L. A mini-review on drug delivery through wafer technology: Formulation and manufacturing of buccal and oral lyophilizates. J. Adv. Res., 2019, 20, 33-41.
[http://dx.doi.org/10.1016/j.jare.2019.04.010] [PMID: 31193385]
[135]
Subramanian, S.; Mani, P. Design, development and characterization of flash release wafers containing levocetrizine hydrochloride and montelukast sodium. Res J Pharm Technol, 2022, 15(1), 11-16.
[http://dx.doi.org/10.52711/0974-360X.2022.00003]
[136]
Jana, B.K.; Singh, M.; Dutta, R.S.; Mazumder, B. Current drug delivery strategies for buccal cavity ailments using mouth dissolving wafer technology: A comprehensive review on the present state of the art. Curr. Drug Deliv., 2023, 21(3), 339-359.
[http://dx.doi.org/10.2174/1567201820666221128152010] [PMID: 36443976]
[137]
Kelodiya, J.; Shah, S.K.; Tyagi, C.K.; Budholiya, P. Formulation, development of fast dissolving sublingual wafers of an antiemetic drug using film former. AJPER, 2021, 10(4), 71-78.
[http://dx.doi.org/10.38164/AJPER/10.4.2021.71-78]
[138]
Chaudhari, V.S.; Malakar, T.K.; Murty, U.S.; Banerjee, S. Fused deposition modeling (FDM)-mediated 3D-printed mouth-dissolving wafers loaded with nanostructured lipid carriers (NLCs) for in vitro release. J. Mater. Res., 2021, 36(19), 3963-3973.
[http://dx.doi.org/10.1557/s43578-021-00288-1]
[139]
O, D.; K, D.; Hari, A. Solid dispersion incorporated fast dissolving oral wafers of cinnarizine: Development and evaluation. Int. J. Drug Deliv. Technol., 2018, 8(1), 33-38.
[http://dx.doi.org/10.25258/ijddt.v8i01.11904]
[140]
Kirsch, K.; Hanke, U.; Weitschies, W. Preparation and characterization of gastrointestinal wafer formulations. Int. J. Pharm., 2017, 522(1-2), 165-171.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.045] [PMID: 28263833]
[141]
Galgatte, U.; Chaudhari, P.P. Development of fast dissolving sublingual wafers by using film former: Optimization and characterization. J. Chem. Pharm. Res., 2009, 9(4), 82-91.
[142]
Sushmitha, S.; Priyanka, S.R.; Krishna, L.M.; Murthy, M.S. Formulation and evaluation of mucoadhesive fast melt-away wafers using selected polymers. RJPT, 2014, 7(2), 176-180.
[143]
Lim, S.; Paech, M.; Sunderland, B.; Liu, Y. In vitro and in vivo evaluation of a sublingual fentanyl wafer formulation. Drug Des. Devel. Ther., 2013, 7, 317-324.
[http://dx.doi.org/10.2147/DDDT.S42619] [PMID: 23596347]
[144]
Panchal, M.S.; Patel, H.; Bagada, A.; Vadalia, K.R. Formulation and evaluation of mouth dissolving film of ropinirole hydrochloride by using pullulan polymers. Int. J. Pharm. Res. Allied Sci., 2012, 1(3), 60-72.
[145]
Chachlioutaki, K.; Tzimtzimis, E.K.; Tzetzis, D.; Chang, M.W.; Ahmad, Z.; Karavasili, C.; Fatouros, D.G. Electrospun orodispersible films of isoniazid for pediatric tuberculosis treatment. Pharmaceutics, 2020, 12(5), 470.
[http://dx.doi.org/10.3390/pharmaceutics12050470] [PMID: 32455717]
[146]
Matawo, N.; Adeleke, O.A.; Wesley-Smith, J. Optimal design, characterization and preliminary safety evaluation of an edible orodispersible formulation for pediatric tuberculosis pharmacotherapy. Int. J. Mol. Sci., 2020, 21(16), 5714.
[http://dx.doi.org/10.3390/ijms21165714] [PMID: 32784947]
[147]
Suárez-González, J.; Santoveña-Estévez, A.; Soriano, M.; Fariña, J.B. Design and optimization of a child-friendly dispersible tablet containing isoniazid, pyrazinamide, and rifampicin for treating tuberculosis in pediatrics. Drug Dev. Ind. Pharm., 2020, 46(2), 309-317.
[http://dx.doi.org/10.1080/03639045.2020.1717516] [PMID: 31944867]
[148]
Ologunagba, M.O.; Akinyode, O.C.; Silva, B.O. Formulation and evaluation of dispersible isoniazid tablets for paediatric use: an extemporaneous model formulary application in a resource limited setting. Niger. J. Pharm. Res., 2020, 15(2), 269-282.
[http://dx.doi.org/10.4314/njpr.v15i2.14]
[149]
Adeleke, O.A.; Tsai, P.C.; Karry, K.M.; Monama, N.O.; Michniak-Kohn, B.B. Isoniazid-loaded orodispersible strips: Methodical design, optimization and in vitro-in silico characterization. Int. J. Pharm., 2018, 547(1-2), 347-359.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.004] [PMID: 29879506]
[150]
Shukla, V.; Manvi, F.V. Effect of two different superdisintegrants on combinaion dispersible tablets of isoniazid and rifampicin for oral treatment of tuberculosis. Int. J. Drug Deliv., 2010, 2(4), 322-332.
[http://dx.doi.org/10.5138/ijdd.2010.0975.0215.02044]
[151]
Genina, N.; Boetker, J.P.; Colombo, S.; Harmankaya, N.; Rantanen, J.; Bohr, A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing. J. Control. Release, 2017, 268, 40-48.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.003] [PMID: 28993169]
[152]
Kroth, R.; Cristiano Monteiro, M.; Conte, J.; Fretes Argenta, D.; Amaral, B.R.; Szpoganicz, B.; Caon, T. Transbuccal delivery of metal complexes of isoniazid as an alternative to overcome antimicrobial resistance problems. Int. J. Pharm., 2020, 590, 119924.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119924] [PMID: 33053418]
[153]
Kroth, R.; Argenta, D.F.; Conte, J.; Amaral, B.R.; Caon, T. Transbuccal delivery of isoniazid: Ex vivo permeability and drug-surfactant interaction studies. AAPS PharmSciTech, 2020, 21(8), 289.
[http://dx.doi.org/10.1208/s12249-020-01827-5] [PMID: 33079291]
[154]
Keating, A.V.; Soto, J.; Tuleu, C.; Forbes, C.; Zhao, M.; Craig, D.Q.M. Solid state characterisation and taste masking efficiency evaluation of polymer based extrudates of isoniazid for paediatric administration. Int. J. Pharm., 2018, 536(2), 536-546.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.008] [PMID: 28687346]
[155]
Dennison, T.J.; Smith, J.C.; Badhan, R.K.S.; Mohammed, A.R. Formulation and bioequivalence testing of fixed-dose combination orally disintegrating tablets for the treatment of tuberculosis in the paediatric population. J. Pharm. Sci., 2020, 109(10), 3105-3113.
[http://dx.doi.org/10.1016/j.xphs.2020.07.016] [PMID: 32710905]
[156]
Lankalapalli, S.; Tenneti, V.S. Formulation and evaluation of rifampicin liposomes for buccal drug delivery. Curr. Drug Deliv., 2016, 13(7), 1084-1099.
[http://dx.doi.org/10.2174/1567201813666151221145617] [PMID: 26687256]
[157]
Adeleke, O.A.; Monama, N.O.; Tsai, P.C.; Sithole, H.M.; Michniak-Kohn, B.B. Combined atomistic molecular calculations and experimental investigations for the architecture, screening, optimization, and characterization of pyrazinamide containing oral film formulations for tuberculosis management. Mol. Pharm., 2016, 13(2), 456-471.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00698] [PMID: 26650101]
[158]
Siddique, W.; Zaman, M.; Sarfraz, R.M.; Butt, M.H.; Rehman, A.U.; Fassih, N.; Albadrani, G.M.; Bayram, R.; Alfaifi, M.Y.; Abdel-Daim, M.M. The development of eletriptan hydrobromide immediate release buccal films using central composite rotatable design: An in vivo and in vitro approach. Polymers, 2022, 14(19), 3981.
[http://dx.doi.org/10.3390/polym14193981] [PMID: 36235932]
[159]
Karki, S.; Kim, H.; Na, S.J.; Shin, D.; Jo, K.; Lee, J. Thin films as an emerging platform for drug delivery. Asian J. Pharm Sci., 2016, 11(5), 559-574.
[http://dx.doi.org/10.1016/j.ajps.2016.05.004]
[160]
Zhang, J.; Zhang, X.; Li, W.; Guo, J.; Yang, L.; Yan, G. Poly (trimethylene carbonate)/doxycycline hydrochloride films in the treatment of Achilles tendon defect in rats. Front. Bioeng. Biotechnol., 2023, 11, 1135248.
[http://dx.doi.org/10.3389/fbioe.2023.1135248] [PMID: 36911187]
[161]
Oliveira, R.W.G.; de Oliveira, J.M.; da Paz, F.B.; Muniz, E.C.; de Moura, E.M.; Costa, J.C.S.; do Nascimento, M.O.; Carvalho, A.L.M.; Pinheiro, I.M.; Mendes, A.N.; Filgueiras, L.A.; de Souza, P.R.; de Moura, C.V.R. Films composed of white angico gum and chitosan containing chlorhexidine as an antimicrobial agent. Int. J. Biol. Macromol., 2023, 235, 123905.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123905] [PMID: 36870650]
[162]
Jacob, S.; Nair, A.B.; Boddu, S.H.S.; Gorain, B.; Sreeharsha, N.; Shah, J. An updated overview of the emerging role of patch and film-based buccal delivery systems. Pharmaceutics, 2021, 13(8), 1206.
[http://dx.doi.org/10.3390/pharmaceutics13081206] [PMID: 34452167]
[163]
Salehi, S.; Boddohi, S. New formulation and approach for mucoadhesive buccal film of rizatriptan benzoate. Prog. Biomater., 2017, 6(4), 175-187.
[http://dx.doi.org/10.1007/s40204-017-0077-7] [PMID: 29110144]
[164]
Perumal, V.A.; Govender, T.; Lutchman, D.; Mackraj, I. Investigating a new approach to film casting for enhanced drug content uniformity in polymeric films. Drug Dev. Ind. Pharm., 2008, 34(10), 1036-1047.
[http://dx.doi.org/10.1080/03639040801928952] [PMID: 18785043]
[165]
Gupta, M.S.; Kumar, T.P.; Reddy, D.; Pathak, K.; Gowda, D.V.; Babu, A.V.N.; Aodah, A.H.; Khafagy, E.S.; Alotaibi, H.F.; Abu Lila, A.S.; Moin, A.; Hussin, T. Development and characterization of pullulan-based orodispersible films of iron. Pharmaceutics, 2023, 15(3), 1027.
[http://dx.doi.org/10.3390/pharmaceutics15031027] [PMID: 36986887]
[166]
Kantak, M.N.; Kumar, L.; Bhide, P.J.; Shirodkar, R.K. Oral gastroretentive film of lacidipine for the treatment of gastroparesis. Assay Drug Dev. Technol., 2023, 21(3), 97-109.
[http://dx.doi.org/10.1089/adt.2022.091] [PMID: 36976774]
[167]
Gil, M.C.; Park, S.J.; Lee, B.S.; Park, C.; Lee, B.J. Dual thermal stabilizing effects of xanthan gums via glycosylation and hydrogen bonding and in vivo human bioavailability of desmopressin in orodispersible film. Int. J. Pharm., 2023, 637, 122879.
[http://dx.doi.org/10.1016/j.ijpharm.2023.122879] [PMID: 36958609]
[168]
Bauer, L.; Rogina, A.; Ivanković, M.; Ivanković, H. Medical-grade poly(lactic acid)/hydroxyapatite composite films: Thermal and in vitro degradation properties. Polymers, 2023, 15(6), 1512.
[http://dx.doi.org/10.3390/polym15061512] [PMID: 36987292]
[169]
Sowjanya, J.N.; Rao, P.R. Development, optimization, and in vitro evaluation of novel fast dissolving oral films (FDOF’s) of Uncaria tomentosa extract to treat osteoarthritis. Heliyon, 2023, 9(3), e14292.
[http://dx.doi.org/10.1016/j.heliyon.2023.e14292] [PMID: 36925552]
[170]
Maniruzzaman, M.; Boateng, J.S.; Snowden, M.J.; Douroumis, D. A review of hot-melt extrusion: Process technology to pharmaceutical products. ISRN Pharm., 2012, 2012, 1-9.
[http://dx.doi.org/10.5402/2012/436763] [PMID: 23326686]
[171]
Patil, H.; Tiwari, R.V.; Repka, M.A. Hot-melt extrusion: From theory to application in pharmaceutical formulation. AAPS PharmSciTech, 2016, 17(1), 20-42.
[http://dx.doi.org/10.1208/s12249-015-0360-7] [PMID: 26159653]
[172]
Kramarczyk, D.; Knapik-Kowalczuk, J.; Kurek, M.; Jamróz, W.; Jachowicz, R.; Paluch, M. Hot melt extruded posaconazole-based amorphous solid dispersions—the effect of different types of polymers. Pharmaceutics, 2023, 15(3), 799.
[http://dx.doi.org/10.3390/pharmaceutics15030799] [PMID: 36986660]
[173]
Wu, H.; Wang, Z.; Zhao, Y.; Gao, Y.; Wang, L.; Zhang, H.; Bu, R.; Ding, Z.; Han, J. Effect of different seed crystals on the supersaturation state of ritonavir tablets prepared by hot-melt extrusion. Eur. J. Pharm. Sci., 2023, 185, 106440.
[http://dx.doi.org/10.1016/j.ejps.2023.106440] [PMID: 37004961]
[174]
Chauhan, G.; Wang, X.; Yousry, C.; Gupta, V. Scalable production and in vitro efficacy of inhaled erlotinib nanoemulsion for enhanced efficacy in non-small cell lung cancer (NSCLC). Pharmaceutics, 2023, 15(3), 996.
[http://dx.doi.org/10.3390/pharmaceutics15030996] [PMID: 36986858]
[175]
Khizer, Z.; Akram, M.R.; Tahir, M.A.; Liu, W.; Lou, S.; Conway, B.R.; Ghori, M.U. Personalised 3d-printed mucoadhesive gastroretentive hydrophilic matrices for managing overactive bladder (OAB). Pharmaceuticals, 2023, 16(3), 372.
[http://dx.doi.org/10.3390/ph16030372] [PMID: 36986471]
[176]
Hanada, N.; Higashi, K.; Zhao, Z.; Ueda, K.; Moribe, K. Preparation of a ternary amorphous solid dispersion using hot-melt extrusion for obtaining a stable colloidal dispersion of amorphous probucol nanoparticles. Int. J. Pharm., 2023, 640, 122959.
[http://dx.doi.org/10.1016/j.ijpharm.2023.122959] [PMID: 37086931]
[177]
Paczkowska-Walendowska, M.; Miklaszewski, A.; Szymanowska, D.; Skalicka-Woźniak, K.; Cielecka-Piontek, J. Hot melt extrusion as an effective process in the development of mucoadhesive tablets containing scutellariae baicalensis radix extract and chitosan dedicated to the treatment of oral infections. Int. J. Mol. Sci., 2023, 24(6), 5834.
[http://dx.doi.org/10.3390/ijms24065834] [PMID: 36982908]
[178]
Zhang, J.; Lu, A.; Thakkar, R.; Zhang, Y.; Maniruzzaman, M. Development and evaluation of amorphous oral thin films using solvent-free processes: Comparison between 3D printing and hot-melt extrusion technologies. Pharmaceutics, 2021, 13(10), 1613.
[http://dx.doi.org/10.3390/pharmaceutics13101613] [PMID: 34683906]
[179]
Cho, H.W.; Baek, S.H.; Lee, B.J.; Jin, H.E. Orodispersible polymer films with the poorly water-soluble drug, olanzapine: Hot-melt pneumatic extrusion for single-process 3D printing. Pharmaceutics, 2020, 12(8), 692.
[http://dx.doi.org/10.3390/pharmaceutics12080692] [PMID: 32707862]
[180]
a) Bhagurkar, A.M.; Darji, M.; Lakhani, P.; Thipsay, P.; Bandari, S.; Repka, M.A. Effects of formulation composition on the characteristics of mucoadhesive films prepared by hot-melt extrusion technology. J. Pharm. Pharmacol., 2019, 71(3), 293-305.
[http://dx.doi.org/10.1111/jphp.13046] [PMID: 30485903];
b) Tian, Y.; Visser, J.C.; Klever, J.S.; Woerdenbag, H.J.; Frijlink, H.W.; Hinrichs, W.L. Orodispersible films based on blends of trehalose and pullulan for protein delivery. European Journal of Pharmaceutics and Biopharmaceutics., 2018, Dec 1; 133, 104-111.
[http://dx.doi.org/10.1016/j.ejpb.2018.09.016]
[181]
Kanaujia, P.; Poovizhi, P.; Ng, W.K.; Tan, R.B.H. Preparation, characterization and prevention of auto-oxidation of amorphous sirolimus by encapsulation in polymeric films using hot melt extrusion. Curr. Drug Deliv., 2019, 16(7), 663-671.
[http://dx.doi.org/10.2174/1567201816666190416123939] [PMID: 31038065]
[182]
Wang, J.; He, W.; Cheng, L.; Zhang, H.; Wang, Y.; Liu, C.; Dong, S.; Zha, W.; Kong, X.; Yao, C.; Li, X. A modified thin film method for large scale production of dimeric artesunate phospholipid liposomes and comparison with conventional approaches. Int. J. Pharm., 2022, 619, 121714.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121714] [PMID: 35367585]
[183]
Chen, M.M.; Huang, Y.Q.; Cao, H.; Liu, Y.; Guo, H.; Chen, L.S.; Wang, J.H.; Zhang, Q.Q. Collagen/chitosan film containing biotinylated glycol chitosan nanoparticles for localized drug delivery. Colloids Surf. B Biointerfaces, 2015, 128, 339-346.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.024] [PMID: 25784300]
[184]
Korelc, K.; Larsen, B.S.; Gašperlin, M.; Tho, I. Water-soluble chitosan eases development of mucoadhesive buccal films and wafers for children. Int. J. Pharm., 2023, 631, 122544.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122544] [PMID: 36572261]
[185]
Shamma, R.; Elkasabgy, N. Design of freeze-dried Soluplus/polyvinyl alcohol-based film for the oral delivery of an insoluble drug for the pediatric use. Drug Deliv., 2016, 23(2), 489-499.
[http://dx.doi.org/10.3109/10717544.2014.921944] [PMID: 24892631]
[186]
Xu, H.; Dun, M.; Zhang, Z.; Zhang, L.; Shan, W.; Wang, W. A new process of preparing rice straw-reinforced LLDPE composite. Polymers, 2022, 14(11), 2243.
[http://dx.doi.org/10.3390/polym14112243] [PMID: 35683917]
[187]
Kallem, P.; Banat, F.; Yejin, L.; Choi, H. High performance nanofiber-supported thin film composite forward osmosis membranes based on continuous thermal-rolling pretreated electrospun PES/PAN blend substrates. Chemosphere, 2020, 261, 127687.
[http://dx.doi.org/10.1016/j.chemosphere.2020.127687] [PMID: 32750620]
[188]
Vecchi, C.F.; Cesar, G.B.; Souza, P.R.; Caetano, W.; Bruschi, M.L. Mucoadhesive polymeric films comprising polyvinyl alcohol, polyvinylpyrrolidone, and poloxamer 407 for pharmaceutical applications. Pharm. Dev. Technol., 2021, 26(2), 138-149.
[http://dx.doi.org/10.1080/10837450.2020.1849283] [PMID: 33183099]
[189]
Shukla, D.; Chakraborty, S.; Singh, S.; Mishra, B. Mouth dissolving tablets I: An overview of formulation technology. Sci. Pharm., 2009, 77(2), 309-326.
[http://dx.doi.org/10.3797/scipharm.0811-09-01]
[190]
Seager, H. Drug-delivery products and the Zydis fast-dissolving dosage form. J. Pharm. Pharmacol., 2011, 50(4), 375-382.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb06876.x] [PMID: 9625481]
[191]
Garg, A.; Gupta, M.M. Mouth dissolving tablets: A review. J. Drug Deliv. Ther., 2013, 3(2)
[http://dx.doi.org/10.22270/jddt.v3i2.458]
[192]
Bhowmik, D.; Chiranjib, B.; Krishnakanth, P.; Chandira, R.M. Fast dissolving tablet: An overview. J. Chem. Pharm. Res., 2009, 1(1), 163-177.
[193]
McLaughlin, R; Banbury, S; Crowley, K. Orally disintegrating tablets: the effect of recent FDA guidance on ODT technologies and applications. 2017.
[194]
a) Allen, L.V., Jr Rapid-dissolve technology: An interview with Loyd V. Allen, Jr., PhD, RPh. International Journal of Pharmaceutical Compounding., 2003, Nov 1; 7(6), 449.;
b) Prajapati, B.G.; Ratnakar, N. A review on recent patents on fast dissolving drug delivery system. Int. J. Pharm. Tech. Res., 2009, 1(3), 790-798.
[195]
Jagani, H; Patel, R; Upadhyay, P; Bhangale, J; Kosalge, S. Fast dissolving tablets: Present and future prospectus. JAPHR, 2011, 2(1)
[196]
Sayeed, A.; Mohiuddin, M.H. Mouth dissolving tablets: An overview. Int. J. Res. Pharm. Biomed. Sci., 2011, 2(3), 959-970.
[197]
Patil, M.G.; Kakade, S.M.; Pathade, S.G. Formulation and evaluation of orally disintegrating tablet containing tramadol hydrochloride by mass extrusion technique. J. Appl. Pharm. Sci., 2011, 2011, 178-181.
[198]
a) Parkash, V.; Maan, S. Deepika.; Yadav, S.; Hemlata; Jogpal, V. Fast disintegrating tablets: Opportunity in drug delivery system. J. Adv. Pharm. Technol. Res., 2011, 2(4), 223-235.;
b) Makino, T.; Yamado, M.; Kikuta, J.I. Fast Dissolving Tablet. US patent 5,720,974, 1998.
[199]
Putta, P.; Mundra, S.; Boddeda, B. Patented technologies in fast dissolving tablets: A review. Am. J. PharmTech Res., 2019, 9(05)
[http://dx.doi.org/10.46624/ajptr.2019.v9.i5.020]
[200]
Nayak, A.K.; Manna, K. Current developments in orally disintegrating tablet technology. Indian J. Pharm. Educ. Res., 2011, 2(1), 21.
[201]
Pawar, P.B.; Mansuk, A.G.; Ramteke, K.H.; Sharma, Y.P.; Patil, S.N. Mouth dissolving tablet: A review. Int. J. Herb. Med. Res., 2011, 1(2), 22-29.
[202]
Gauri, S.; Kumar, G. Fast dissolving drug delivery and its technologies. Pharma Innov., 2012, 1(S2), 34.
[203]
Swamivelmanickam, M.; Manavalan, R.; Valliappan, K.; Nagar, A. Mouth dissolving tablets: An overview. Mouth, 2010, 4(5)
[204]
Chang, T.L.; Zhan, H.; Liang, D.; Liang, J.F. Nanocrystal technology for drug formulation and delivery. Front. Chem. Sci. Eng., 2015, 9(1), 1-14.
[http://dx.doi.org/10.1007/s11705-015-1509-3]
[205]
Hussain, A.; Singh, S.; Das, S.S.; Anjireddy, K.; Karpagam, S.; Shakeel, F. Nanomedicines as drug delivery carriers of anti-tubercular drugs: From pathogenesis to infection control. Curr. Drug Deliv., 2019, 16(5), 400-429.
[http://dx.doi.org/10.2174/1567201816666190201144815] [PMID: 30714523]
[206]
Sresta, N.; Babu, S.P.; Pallavi, K. Orodispersible tablets. Indian Pharmacist., 2017, 15(1), 23-30.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy