Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Vitamin B12 Protects against Genotoxicity Induced by Cisplatin

Author(s): Wejdan M. Al-Bataineh, Karem H. Alzoubi*, Omar F. Khabour, Amjad Mahasneh and Enaam M. Al Momany

Volume 24, Issue 11, 2024

Published on: 30 January, 2024

Page: [1169 - 1176] Pages: 8

DOI: 10.2174/0115680096284684240110044954

Price: $65

conference banner
Abstract

Background: Cisplatin is an effective synthetic chemotherapeutic drug used for cancer treatment. Vitamin B12 has been shown to possess anti-genotoxic activity. This study aimed to investigate the effect of vitamin B12 on chromosomal damage induced by cisplatin.

Methods: The level of sister chromatid exchanges (SCEs) and chromosomal aberrations (CAs) were measured in cultured human blood lymphocytes treated with cisplatin and/or vitamin B12.

Results: The results showed a significantly elevated frequency of CAs and SCEs of cisplatin-treated cultures compared to the control (P < 0.05). The CAs and SCEs induced by cisplatin were significantly lowered by pretreatment of cell cultures with vitamin B12. In addition, cisplatin caused a slight reduction in the mitotic index (MI), while vitamin B12 did not modulate the effect of cisplatin on MI.

Conclusion: Vitamin B12 can protect human lymphocytes against genotoxicity associated with cisplatin.

Keywords: Vitamin B12, cisplatin, sister chromatid exchanges, chromosomal aberrations, mitotic index, genotoxicity.

Graphical Abstract
[1]
Sun, D.; Urrabaz, R.; Buzello, C.; Nguyen, M. Effects of cisplatin on expression of DNA ligases in MiaPaCa human pancreatic cancer cells. Biochem. Biophys. Res. Commun., 2002, 298(4), 537-544.
[http://dx.doi.org/10.1016/S0006-291X(02)02493-2] [PMID: 12408985]
[2]
Hu, J.; Lieb, J.D.; Sancar, A.; Adar, S. Cisplatin DNA damage and repair maps of the human genome at single-nucleotide resolution. Proc. Natl. Acad. Sci., 2016, 113(41), 11507-11512.
[http://dx.doi.org/10.1073/pnas.1614430113] [PMID: 27688757]
[3]
Afsar, T.; Razak, S.; Almajwal, A.; Khan, M.R. Acacia hydaspica R. Parker ameliorates cisplatin induced oxidative stress, DNA damage and morphological alterations in rat pulmonary tissue. BMC Complement. Altern. Med., 2018, 18(1), 49.
[http://dx.doi.org/10.1186/s12906-018-2113-0] [PMID: 29394892]
[4]
Liu, Y.; Yue, C.; Li, J.; Wu, J.; Wang, S.; Sun, D.; Guo, Y.; Lin, Z.; Zhang, D.; Wang, R. Enhancement of cisplatin cytotoxicity by Retigeric acid B involves blocking DNA repair and activating DR5 in prostate cancer cells. Oncol. Lett., 2018, 15(3), 2871-2880.
[PMID: 29435013]
[5]
Dasari, S.; Bernard, T.P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[6]
Petrović, M.; Todorović, D. Biochemical and molecular machanims of action of cisplatin in cancer cells. Facta Universitatis, Series. Petrović, 2016, 18(1), 12-18.
[7]
Cullinane, C.; Mazur, S.J.; Essigmann, J.M.; Phillips, D.R.; Bohr, V.A. Inhibition of RNA polymerase II transcription in human cell extracts by cisplatin DNA damage. Biochemistry, 1999, 38(19), 6204-6212.
[http://dx.doi.org/10.1021/bi982685+] [PMID: 10320349]
[8]
Basu, A.; Krishnamurthy, S. Cellular responses to Cisplatin-induced DNA damage. J. Nucleic Acids, 2010, 2010, 1-16.
[http://dx.doi.org/10.4061/2010/201367] [PMID: 20811617]
[9]
Yimit, A.; Adebali, O.; Sancar, A.; Jiang, Y. Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs. Nat. Commun., 2019, 10(1), 309.
[http://dx.doi.org/10.1038/s41467-019-08290-2] [PMID: 30659176]
[10]
Petruccelli, L.A.; Dupéré-Richer, D.; Pettersson, F.; Retrouvey, H.; Skoulikas, S.; Miller, W.H., Jr Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells. PLoS One, 2011, 6(6), e20987.
[http://dx.doi.org/10.1371/journal.pone.0020987] [PMID: 21695163]
[11]
Marques, M.P.M.; Gianolio, D.; Cibin, G.; Tomkinson, J.; Parker, S.F.; Valero, R.; Pedro Lopes, R.; Batista de Carvalho, L.A.E. A molecular view of cisplatin’s mode of action: interplay with DNA bases and acquired resistance. Phys. Chem. Chem. Phys., 2015, 17(7), 5155-5171.
[http://dx.doi.org/10.1039/C4CP05183A] [PMID: 25601325]
[12]
Ziehe, M.; Esteban-Fernández, D.; Hochkirch, U.; Thomale, J.; Linscheid, M.W. On the complexity and dynamics of in vivo Cisplatin–DNA adduct formation using HPLC/ICP-MS. Metallomics, 2012, 4(10), 1098-1104.
[http://dx.doi.org/10.1039/c2mt20128c] [PMID: 22986644]
[13]
Rezaee, M.; Sanche, L.; Hunting, D.J. Cisplatin enhances the formation of DNA single- and double-strand breaks by hydrated electrons and hydroxyl radicals. Radiat. Res., 2013, 179(3), 323-331.
[http://dx.doi.org/10.1667/RR3185.1] [PMID: 23368416]
[14]
Wang, L.; Valiskova, B.; Forejt, J. Cisplatin-induced DNA double-strand breaks promote meiotic chromosome synapsis in PRDM9-controlled mouse hybrid sterility. eLife, 2018, 7, e42511.
[http://dx.doi.org/10.7554/eLife.42511] [PMID: 30592461]
[15]
Quintanilha, J.C.F.; Saavedra, K.F.; Visacri, M.B.; Moriel, P.; Salazar, L.A. Role of epigenetic mechanisms in cisplatin-induced toxicity. Crit. Rev. Oncol. Hematol., 2019, 137, 131-142.
[http://dx.doi.org/10.1016/j.critrevonc.2019.03.004] [PMID: 31014509]
[16]
Berndtsson, M.; Hägg, M.; Panaretakis, T.; Havelka, A.M.; Shoshan, M.C.; Linder, S. Acute apoptosis by cisplatin requires induction of reactive oxygen species but is not associated with damage to nuclear DNA. Int. J. Cancer, 2007, 120(1), 175-180.
[http://dx.doi.org/10.1002/ijc.22132] [PMID: 17044026]
[17]
Chen, X.; Wei, W.; Li, Y.; Huang, J.; Ci, X. Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis. Chem. Biol. Interact., 2019, 308, 269-278.
[http://dx.doi.org/10.1016/j.cbi.2019.05.040] [PMID: 31153982]
[18]
Han, Y.K.; Kim, J.S.; Jang, G.; Park, K.M. Cisplatin induces lung cell cilia disruption and lung damage via oxidative stress. Free Radic. Biol. Med., 2021, 177, 270-277.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.10.032] [PMID: 34710564]
[19]
Gong, S.; Feng, Y.; Zeng, Y.; Zhang, H.; Pan, M.; He, F.; Wu, R.; Chen, J.; Lu, J.; Zhang, S.; Yuan, S.; Chen, X. Gut microbiota accelerates cisplatin-induced acute liver injury associated with robust inflammation and oxidative stress in mice. J. Transl. Med., 2021, 19(1), 147.
[http://dx.doi.org/10.1186/s12967-021-02814-5] [PMID: 33849559]
[20]
Liu, X.; Wang, S.; Jin, S.; Huang, S.; Liu, Y.; Vitamin, D. Vitamin D 3 attenuates cisplatin-induced intestinal injury by inhibiting ferroptosis, oxidative stress, and ROS-mediated excessive mitochondrial fission. Food Funct., 2022, 13(19), 10210-10224.
[http://dx.doi.org/10.1039/D2FO01028C] [PMID: 36111853]
[21]
AL-Eitan, L.N.; Alzoubi, K.H.; Al-Smadi, L.I.; Khabour, O.F. Vitamin E protects against cisplatin-induced genotoxicity in human lymphocytes. Toxicol. In Vitro, 2020, 62, 104672.
[http://dx.doi.org/10.1016/j.tiv.2019.104672] [PMID: 31629897]
[22]
Crona, D.J.; Faso, A.; Nishijima, T.F.; McGraw, K.A.; Galsky, M.D.; Milowsky, M.I. A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist, 2017, 22(5), 609-619.
[http://dx.doi.org/10.1634/theoncologist.2016-0319] [PMID: 28438887]
[23]
Chovanec, M.; Abu Zaid, M.; Hanna, N.; El-Kouri, N.; Einhorn, L.H.; Albany, C. Long-term toxicity of cisplatin in germ-cell tumor survivors. Ann. Oncol., 2017, 28(11), 2670-2679.
[http://dx.doi.org/10.1093/annonc/mdx360] [PMID: 29045502]
[24]
Waissbluth, S.; Daniel, S.J. Cisplatin-induced ototoxicity: Transporters playing a role in cisplatin toxicity. Hear. Res., 2013, 299, 37-45.
[http://dx.doi.org/10.1016/j.heares.2013.02.002] [PMID: 23467171]
[25]
Ben Ayed, W.; Ben Said, A.; Hamdi, A.; Mokrani, A.; Masmoudi, Y.; Toukabri, I.; Limayem, I.; Yahyaoui, Y. Toxicity, risk factors and management of cisplatin-induced toxicity: A prospective study. J. Oncol. Pharm. Pract., 2020, 26(7), 1621-1629.
[http://dx.doi.org/10.1177/1078155219901305] [PMID: 32046580]
[26]
Shahid, F.; Farooqui, Z.; Khan, F. Cisplatin-induced gastrointestinal toxicity: An update on possible mechanisms and on available gastroprotective strategies. Eur. J. Pharmacol., 2018, 827, 49-57.
[http://dx.doi.org/10.1016/j.ejphar.2018.03.009] [PMID: 29530589]
[27]
Yoo, K.H.; Tang, J.J.; Rashid, M.A.; Cho, C.H.; Corujo-Ramirez, A.; Choi, J.; Bae, M.G.; Brogren, D.; Hawse, J.R.; Hou, X.; Weroha, S.J.; Oliveros, A.; Kirkeby, L.A.; Baur, J.A.; Jang, M.H. Nicotinamide mononucleotide prevents cisplatin-induced cognitive impairments. Cancer Res., 2021, 81(13), 3727-3737.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-3290] [PMID: 33771896]
[28]
Alzoubi, K.; Khabour, O.; Hussain, N.; Al-azzam, S.; Mhaidat, N. Evaluation of vitamin B12 effects on DNA damage induced by pioglitazone. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2012, 748(1-2), 48-51.
[http://dx.doi.org/10.1016/j.mrgentox.2012.06.009] [PMID: 22790087]
[29]
Alzoubi, K.; Khabour, O.; Khader, M.; Mhaidat, N.; Al-Azzam, S. Evaluation of vitamin B12 effects on DNA damage induced by paclitaxel. Drug Chem. Toxicol., 2014, 37(3), 276-280.
[http://dx.doi.org/10.3109/01480545.2013.851686] [PMID: 24215581]
[30]
Fenech, M.; Aitken, C.; Rinaldi, J. Folate, vitamin B12, homocysteine status and DNA damage in young Australian adults. Carcinogenesis, 1998, 19(7), 1163-1171.
[http://dx.doi.org/10.1093/carcin/19.7.1163] [PMID: 9683174]
[31]
van de Lagemaat, E.; de Groot, L.; van den Heuvel, E.; Vitamin, B. Vitamin B12 in relation to oxidative stress: A systematic review. Nutrients, 2019, 11(2), 482.
[http://dx.doi.org/10.3390/nu11020482] [PMID: 30823595]
[32]
Dries, L.S.; Haefliger, R.; Seibert, B.S.; de Lima, A.G.; Cardoso, C.O.; Perassolo, M.S. Cognition, oxidative stress and vitamin B12 levels evaluation on patients under long-term omeprazole use. J. Pharm. Pharmacol., 2022, 74(4), 547-555.
[http://dx.doi.org/10.1093/jpp/rgab001] [PMID: 33793790]
[33]
Misra, U.K.; Kalita, J.; Singh, S.K.; Rahi, S.K. Oxidative stress markers in vitamin B12 deficiency. Mol. Neurobiol., 2017, 54(2), 1278-1284.
[http://dx.doi.org/10.1007/s12035-016-9736-2] [PMID: 26843105]
[34]
Theiss, E.L.; Griebsch, L.V.; Lauer, A.A.; Janitschke, D.; Erhardt, V.K.J.; Haas, E.C.; Kuppler, K.N.; Radermacher, J.; Walzer, O.; Portius, D.; Grimm, H.S.; Hartmann, T.; Grimm, M.O.W. Vitamin B12 attenuates changes in phospholipid levels related to oxidative stress in SH-SY5Y cells. Cells, 2022, 11(16), 2574.
[http://dx.doi.org/10.3390/cells11162574] [PMID: 36010649]
[35]
Padmanabhan, S.; Waly, M.I.; Taranikanti, V.; Guizani, N.; Ali, A.; Rahman, M.S.; Al-Attabi, Z.; Al-Malky, R.N.; Al-Maskari, S.N.M.; Al-Ruqaishi, B.R.S.; Dong, J.; Deth, R.C. Folate/vitamin B12 supplementation combats oxidative stress-associated carcinogenesis in a rat model of colon cancer. Nutr. Cancer, 2019, 71(1), 100-110.
[http://dx.doi.org/10.1080/01635581.2018.1513047] [PMID: 30372163]
[36]
Solovieva, M.E.; Solovyev, V.V.; Kudryavtsev, A.A.; Trizna, Y.A.; Akatov, V.S. Vitamin B12b enhances the cytotoxicity of dithiothreitol. Free Radic. Biol. Med., 2008, 44(10), 1846-1856.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.02.002] [PMID: 18342018]
[37]
Donya, S.M.; Aly, F.A.; Abo-Zeid, M.A. Antigenotoxic efficacy of some vitamins against the mutagenicity induced by ifosfamide in mice. Nat. Sci., 2010, 8(2), 55-66.
[38]
Tarboush, N.A.; Almomani, D.H.; Khabour, O.F.; Azzam, M.I. Genotoxicity of glyphosate on cultured human lymphocytes. Int. J. Toxicol., 2022, 41(2), 126-131.
[http://dx.doi.org/10.1177/10915818211073514] [PMID: 35240877]
[39]
Rababa’h, A.M.; Khabour, O.F.; Alzoubi, K.H.; Al-momani, D.; Ababneh, M. Assessment of genotoxicity of levosimendan in human cultured lymphocytes. Curr. Mol. Pharmacol., 2019, 12(2), 160-165.
[http://dx.doi.org/10.2174/1874467212666190306164926] [PMID: 30848225]
[40]
Khabour, O.F.; Alawneh, K.; Al-Kofahi, E.; Mesmar, F. Assessment of genotoxicity associated with Behcet’s disease using sister-chromatid exchange assay: Vitamin E versus mitomycin C. Cytotechnology, 2015, 67(6), 1051-1057.
[http://dx.doi.org/10.1007/s10616-014-9744-x] [PMID: 24852698]
[41]
Khabour, O.F.; Hendawi, E.K.; Al-Eitan, L.N.; Alzoubi, K.H. Reduction of genotoxicity of carbamazepine to human lymphocytes by pre-treatment with vitamin B12. Curr. Mol. Pharmacol., 2023, 16(2), 228-233.
[http://dx.doi.org/10.2174/1874467215666220420135924] [PMID: 35450538]
[42]
Khabour, O.F.; Alzoubi, K.H.; Mfady, D.S.; Alasseiri, M.; Hasheesh, T.F. Tempol protects human lymphocytes from genotoxicity induced by cisplatin. Int. J. Clin. Exp. Med., 2014, 7(4), 982-988.
[PMID: 24955171]
[43]
Alzoubi, K.H.; Bayraktar, E.; Khabour, O.; Al-Azzam, S.I. Vitamin B12 protects against DNA damage induced by hydrochlorothiazide. Saudi Pharm. J., 2018, 26(6), 786-789.
[http://dx.doi.org/10.1016/j.jsps.2018.04.005] [PMID: 30202218]
[44]
Khabour, O.F.; Saleh, N.; Alzoubi, K.H.; Hisaindee, S.; Al-Fyad, D.; Al-Kaabi, L.; Dodeen, A.; Esmadi, F.T. Genotoxicity of structurally related copper and zinc containing Schiff base complexes. Drug Chem. Toxicol., 2013, 36(4), 435-442.
[http://dx.doi.org/10.3109/01480545.2013.776577] [PMID: 23528207]
[45]
Alzoubi, K.H.; Khabour, O.F.; Jaber, A.G.; Al-azzam, S.I.; Mhaidat, N.M.; Masadeh, M.M. Tempol prevents genotoxicity induced by vorinostat: role of oxidative DNA damage. Cytotechnology, 2014, 66(3), 449-455.
[http://dx.doi.org/10.1007/s10616-013-9597-8] [PMID: 23761013]
[46]
Mhaidat, N.M.; Alzoubi, K.H.; Khabour, O.F.; Alawneh, K.Z.; Raffee, L.A.; Alsatari, E.S.; Hussein, E.I.; Bani-Hani, K.E. Assessment of genotoxicity of vincristine, vinblastine and vinorelbine in human cultured lymphocytes: A comparative study. Balkan J. Med. Genet., 2016, 19(1), 13-20.
[http://dx.doi.org/10.1515/bjmg-2016-0002] [PMID: 27785403]
[47]
Alqudah, M.A.Y.; Al-Ashwal, F.Y.; Alzoubi, K.H.; Alkhatatbeh, M.; Khabour, O. Vitamin E protects human lymphocytes from genotoxicity induced by oxaliplatin. Drug Chem. Toxicol., 2018, 41(3), 281-286.
[http://dx.doi.org/10.1080/01480545.2017.1384835] [PMID: 29092638]
[48]
Laham, H.Z.; Khabour, O.F.; Alzoubi, K.H.; Sadiq, M.F. Enalapril protect human lymphocytes from genotoxicity of Hydrochlorothiazide. Pak. J. Pharm. Sci., 2019, 32(6), 2667-2671.
[PMID: 31969300]
[49]
Khabour, O.F.; Alsatari, E.S.; Azab, M.; Alzoubi, K.H.; Sadiq, M.F. Assessment of genotoxicity of waterpipe and cigarette smoking in lymphocytes using the sister-chromatid exchange assay: A comparative study. Environ. Mol. Mutagen., 2011, 52(3), 224-228.
[http://dx.doi.org/10.1002/em.20601] [PMID: 20740646]
[50]
Al-Sweedan, S.A.; Khabour, O.; Isam, R. Genotoxicity assessment in patients with thalassemia minor. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2012, 744(2), 167-171.
[http://dx.doi.org/10.1016/j.mrgentox.2012.02.010] [PMID: 22414564]
[51]
Rababa’h, A.M.; Hussein, S.A.; Khabour, O.F.; Alzoubi, K.H. The protective effect of cilostazol in genotoxicity induced by methotrexate in human cultured lymphocytes. Curr. Mol. Pharmacol., 2020, 13(2), 137-143.
[http://dx.doi.org/10.2174/1874467212666191023120118] [PMID: 31702497]
[52]
Khabour, O.F.; Enaya, F.M.; Alzoubi, K.; Al-Azzam, S.I. Evaluation of DNA damage induced by norcantharidin in human cultured lymphocytes. Drug Chem. Toxicol., 2016, 39(3), 303-306.
[http://dx.doi.org/10.3109/01480545.2015.1113988] [PMID: 26599593]
[53]
Azab, M.; Khabour, O.F.; Al-Omari, L.; Alzubi, M.A.Y.; Alzoubi, K. Effect of every-other-day fasting on spontaneous chromosomal damage in rat’s bone-marrow cells. J. Toxicol. Environ. Health A, 2009, 72(5), 295-300.
[http://dx.doi.org/10.1080/15287390802526357] [PMID: 19184744]
[54]
M’Bemba-Meka, P.; Lemieux, N.; Chakrabarti, S.K. Role of oxidative stress and intracellular calcium in nickel carbonate hydroxide-induced sister-chromatid exchange, and alterations in replication index and mitotic index in cultured human peripheral blood lymphocytes. Arch. Toxicol., 2007, 81(2), 89-99.
[http://dx.doi.org/10.1007/s00204-006-0128-7] [PMID: 16826409]
[55]
Palma, V.; Tudón, H.; Buentello, L.; Nava, S.; Ostrosky, P.; Salamanca, F. Methods for the analysis of cellular kinetics in PHA-stimulated blood lymphocytes using BrdU incorporation. A comparative study. Mutat. Res., 1993, 286(2), 267-273.
[http://dx.doi.org/10.1016/0027-5107(93)90191-H] [PMID: 7681538]
[56]
Mazumdar, M.; Giri, S.; Roy, S. Role of vitamin E-acetate on cisplatin induced genotoxicity: An in vivo analysis. Cent. Eur. J. Biol., 2012, 7(2), 334-342.
[57]
Mahmoodi, M.; Soleyman-Jahi, S.; Zendehdel, K.; Mozdarani, H.; Azimi, C.; Farzanfar, F.; Safari, Z.; Mohagheghi, M.A.; Khaleghian, M.; Divsalar, K.; Asgari, E.; Rezaei, N. Chromosomal aberrations, sister chromatid exchanges, and micronuclei in lymphocytes of oncology department personnel handling anti-neoplastic drugs. Drug Chem. Toxicol., 2017, 40(2), 235-240.
[http://dx.doi.org/10.1080/01480545.2016.1209678] [PMID: 27461518]
[58]
Sadeghi, R.S.; Kulej, K.; Kathayat, R.S.; Garcia, B.A.; Dickinson, B.C.; Brady, D.C.; Witze, E.S. Wnt5a signaling induced phosphorylation increases APT1 activity and promotes melanoma metastatic behavior. eLife, 2018, 7, e34362.
[http://dx.doi.org/10.7554/eLife.34362] [PMID: 29648538]
[59]
Fuertes, M.; Castilla, J.; Alonso, C.; Pérez, J. Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr. Med. Chem., 2003, 10(3), 257-266.
[http://dx.doi.org/10.2174/0929867033368484] [PMID: 12570712]
[60]
Xu, L.; Zhang, K.; Ma, X.; Li, Y.; Jin, Y.; Liang, C.; Wang, Y.; Duan, W.; Zhang, H.; Zhang, Z.; Shi, J.; Liu, J.; Wang, Y.; Li, W. Boosting cisplatin chemotherapy by nanomotor-enhanced tumor penetration and DNA adducts formation. J. Nanobiotechnology, 2022, 20(1), 429.
[http://dx.doi.org/10.1186/s12951-022-01622-3] [PMID: 36175999]
[61]
Riddell, I.A.; Lippard, S.J. Cisplatin and oxaliplatin: Our current understanding of their actions. Met. Ions Life Sci., 2018, 18, 1-42.
[http://dx.doi.org/10.1515/9783110470734-001] [PMID: 29394020]
[62]
Chen, S.H.; Huang, W.T.; Kao, W.C.; Hsiao, S.Y.; Pan, H.Y.; Fang, C.W.; Shiue, Y.L.; Chou, C.L.; Li, C.F. O6-methylguanine-DNA methyltransferase modulates cisplatin-induced DNA double-strand breaks by targeting the homologous recombination pathway in nasopharyngeal carcinoma. J. Biomed. Sci., 2021, 28(1), 2.
[http://dx.doi.org/10.1186/s12929-020-00699-y] [PMID: 33397362]
[63]
Xu, Y.; Wang, N.; Ding, Y.; Wang, C.; Yu, Y.; Liu, S.; Wang, X.; Li, Z. Ammonium chloride enhances cisplatin cytotoxicity through DNA double-strand breaks in human cervical cancer cells. Oncol. Rep., 2013, 30(3), 1195-1200.
[http://dx.doi.org/10.3892/or.2013.2554] [PMID: 23783842]
[64]
Farooqui, Z.; Ahmed, F.; Rizwan, S.; Shahid, F.; Khan, A.A.; Khan, F. Protective effect of Nigella sativa oil on cisplatin induced nephrotoxicity and oxidative damage in rat kidney. Biomed. Pharmacother., 2017, 85, 7-15.
[http://dx.doi.org/10.1016/j.biopha.2016.11.110] [PMID: 27930989]
[65]
Shruthi, S.; Bhasker, S.K. Genoprotective effects of gallic acid against cisplatin induced genotoxicity in bone marrow cells of mice. Toxicol. Res., 2018, 7(5), 951-958.
[http://dx.doi.org/10.1039/C8TX00058A] [PMID: 30310672]
[66]
Ghosh, P.; Roy, S.S.; Chakraborty, P.; Ghosh, S.; Bhattacharya, S. Effects of organoselenium compound 2-(5-selenocyanato-pentyl)-benzo[de]isoquinoline 1,3-dione on cisplatin induced nephrotoxicity and genotoxicity: an investigation of the influence of the compound on oxidative stress and antioxidant enzyme system. Biometals, 2013, 26(1), 61-73.
[http://dx.doi.org/10.1007/s10534-012-9594-y] [PMID: 23108958]
[67]
Cheng, T.C.; Hsu, Y.W.; Lu, F.J.; Chen, Y.Y.; Tsai, N.M.; Chen, W.K.; Tsai, C.F. Nephroprotective effect of electrolyzed reduced water against cisplatin-induced kidney toxicity and oxidative damage in mice. J. Chin. Med. Assoc., 2018, 81(2), 119-126.
[http://dx.doi.org/10.1016/j.jcma.2017.08.014] [PMID: 29030026]
[68]
Lugones, Y.; Loren, P.; Salazar, L.A. Cisplatin resistance: Genetic and epigenetic factors involved. Biomolecules, 2022, 12(10), 1365.
[http://dx.doi.org/10.3390/biom12101365] [PMID: 36291573]
[69]
Shen, D.W.; Pouliot, L.M.; Hall, M.D.; Gottesman, M.M. Cisplatin resistance: A cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol. Rev., 2012, 64(3), 706-721.
[http://dx.doi.org/10.1124/pr.111.005637] [PMID: 22659329]
[70]
Nefic, H. Anticlastogenic effect of Vitamin C on cisplatin induced chromosome aberrations in human lymphocyte cultures. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2001, 498(1-2), 89-98.
[http://dx.doi.org/10.1016/S1383-5718(01)00269-8] [PMID: 11673074]
[71]
Mueller, S.; Schittenhelm, M.; Honecker, F.; Malenke, E.; Lauber, K.; Wesselborg, S.; Hartmann, J.; Bokemeyer, C.; Mayer, F. Cell-cycle progression and response of germ cell tumors to cisplatin in vitro. Int. J. Oncol., 2006, 29(2), 471-479.
[http://dx.doi.org/10.3892/ijo.29.2.471] [PMID: 16820891]
[72]
Cai, L.; Zhang, Q.; Du, L.; Zheng, F. Silencing of miR-1246 induces cell cycle arrest and apoptosis in cisplatin-resistant ovarian cancer cells by promoting <b><i>ZNF23</i></b> transcription. Cytogenet. Genome Res., 2021, 161(10-11), 488-500.
[http://dx.doi.org/10.1159/000520069] [PMID: 34923485]
[73]
Plaimee, P.; Weerapreeyakul, N.; Barusrux, S.; Johns, N.P. Melatonin potentiates cisplatin-induced apoptosis and cell cycle arrest in human lung adenocarcinoma cells. Cell Prolif., 2015, 48(1), 67-77.
[http://dx.doi.org/10.1111/cpr.12158] [PMID: 25580987]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy