Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Interaction of Fe2O3 and Fe3O4 Nanoparticle with Pathogenic Bacteria: A In-silico Molecular Mechanism Study

Author(s): Sahil Luktuke, Aditya Raj, Sourav Santra, Sudip Das, Arghya Chakravorty, Karthikeyan Ramesh, Balaji Nila, Harjeet K, Siva Sankar Sana and Vimala Raghavan*

Volume 14, Issue 1, 2024

Published on: 30 January, 2024

Article ID: e300124226522 Pages: 9

DOI: 10.2174/0122106812286623240125130324

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Magnetic materials like iron, nickel, and cobalt have been a subject of interest among the scientific and research community for centuries. Owing to their unique properties, they are prevalent in the mechanical and electronic industries. In recent times, magnetic materials have undeniable applications in biotechnology and nanomedicine. Bacteria like Salmonella enterica, Clostridium botulinum, Bacillus subtilis, etc, pose a hazard to human health and livestock. This ultimately leads to huge yields and economic losses on a global scale. Antimicrobial resistance has become a significant public health concern in recent years, with the increasing prevalence of drugresistant infections posing a significant threat to global health. Many coherent studies have successfully reported magnetic metal oxide nanoparticles to be highly selective, specific, and effective in neutralizing pathogens through various mechanisms like cell membrane disruption, direct contact-mediated killing, or by generating Reactive Oxygen Species (ROS) and numerous costimulatory and inflammatory cytokines. Therefore, we explored the inhibitory effects of iron oxide nanoparticles (NPs) on various pathogenic bacteria via an in-silico approach. This method helped us to understand the active sites where the iron oxide NPs bind with the bacterial proteins.

Methods: The 3D crystal structures of all the pathogenic proteins of Streptococcus pneumoniae, Pseudomonas aeruginosa, Vibrio cholerae, Salmonella enterica, Shigella flexneri, Clostridium botulinum and nanoparticles (Fe2O3 and Fe3O4) under study were downloaded from RCSB PDB and ChemSpider official websites respectively. It was followed by the in-silico molecular Docking using PyRx and AutoDock Vina and analyzed on LigPlot.

Results: This study interprets the efficacy of the Fe2O3 and Fe3O4 nanoparticles against all the test bacteria. At the same time, Fe2O3 and Fe3O4 formed the most stable complexes with cholera enterotoxin subunit B and lectin II (PA-IIL) mutant S23A of Pseudomonas aeruginosa, respectively.

Conclusion: As in this era of AMR, researchers have been exploring alternative strategies to combat bacterial infections, including using magnetic nanoparticles as a potential treatment. They possess unique physical and chemical properties that make them attractive candidates for antimicrobial therapy, including their ability to penetrate bacterial biofilms and selectively target pathogenic bacteria while leaving healthy cells unharmed. This study examined the inhibitory effects of iron oxide (magnetic) nanoparticles, namely Fe2O3 and Fe3O4, on various bacterial proteins involved in cell-to-cell interactions and pathogenesis.

Keywords: Magnetic nanoparticles, pathogenic bacteria, antibacterial, molecular mechanism, molecular docking, protein interaction.

Graphical Abstract
[1]
Vinnik, D.A.; Zhivulin, V.E.; Sherstyuk, D.P.; Starikov, A.Y.; Zezyulina, P.A.; Gudkova, S.A.; Zherebtsov, D.A.; Rozanov, K.N.; Trukhanov, S.V.; Astapovich, K.A.; Turchenko, V.A.; Sombra, A.S.B.; Zhou, D.; Jotania, R.B.; Singh, C.; Trukhanov, A.V. Electromagnetic properties of zinc–nickel ferrites in the frequency range of 0.05–10 GHz. Mater. Today Chem., 2021, 20, 100460.
[http://dx.doi.org/10.1016/j.mtchem.2021.100460]
[2]
Vinnik, D.A.; Zhivulin, V.E.; Sherstyuk, D.P.; Starikov, A.Y.; Zezyulina, P.A.; Gudkova, S.A.; Zherebtsov, D.A.; Rozanov, K.N.; Trukhanov, S.V.; Astapovich, K.A.; Sombra, A.S.B.; Zhou, D.; Jotania, R.B.; Singh, C.; Trukhanov, A.V. Ni substitution effect on the structure, magnetization, resistivity and permeability of zinc ferrites. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(16), 5425-5436.
[http://dx.doi.org/10.1039/D0TC05692H]
[3]
Agayev, F.G.; Trukhanov, S.V.; Trukhanov, A.V.; Jabarov, S.H.; Ayyubova, G.S.; Mirzayev, M.N.; Trukhanova, E.L.; Vinnik, D.A.; Kozlovskiy, A.L.; Zdorovets, M.V.; Sombra, A.S.B.; Zhou, D.; Jotania, R.B.; Singh, C.; Trukhanov, A.V. Study of structural features and thermal properties of barium hexaferrite upon indium doping. J. Therm. Anal. Calorim., 2022, 147(24), 14107-14114.
[http://dx.doi.org/10.1007/s10973-022-11742-5]
[4]
Kozlovskiy, A.L.; Zdorovets, M.V. Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 glasses. Mater. Chem. Phys., 2021, 263, 124444.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124444]
[5]
Hussein, M.M.; Saafan, S.A.; Abosheiasha, H.F.; Kamal, A.A.; Mahmoud, A.E.; Zhou, D.; Trukhanov, S.V.; Zubar, T.I.; Trukhanov, A.V.; Darwish, M.A. Structural and dielectric characterization of synthesized nano-BSTO/PVDF composites for smart sensor applications. Materials Advances, 2023, 4(22), 5605-5617.
[http://dx.doi.org/10.1039/D3MA00437F]
[6]
Zdorovets, M.V.; Kozlovskiy, A.L.; Shlimas, D.I.; Borgekov, D.B. Phase transformations in FeCo – Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J. Mater. Sci. Mater. Electron., 2021, 32(12), 16694-16705.
[http://dx.doi.org/10.1007/s10854-021-06226-5]
[7]
Gangadhar, G.; Maheshwari, U.; Gupta, S. Application of nanomaterials for the removal of pollutants from effluent streams. Nanosci. Nanotechnol. Asia, 2012, 2(2), 140-150.
[http://dx.doi.org/10.2174/2210681211202020140]
[8]
Salgın, S.; Salgın, U.; Soyer, N. Investigation of magnetic iron oxide nanoparticle properties with coprecipitation methods under different reaction conditions. Nanosci. Nanotechnol. Asia, 2021, 11(1), 75-83.
[http://dx.doi.org/10.2174/2210681210666200117145606]
[9]
Yadollahpour, A. Magnetic nanoparticles in medicine: A review of synthesis methods and important characteristics. Orient. J. Chem., 2015, 31(S1), 271-277.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.33]
[10]
Vangijzegem, T.; Stanicki, D.; Laurent, S. Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics. Expert Opin. Drug Deliv., 2019, 16(1), 69-78.
[http://dx.doi.org/10.1080/17425247.2019.1554647] [PMID: 30496697]
[11]
Kadyrzhanov, K.K.; Shlimas, D.I.; Kozlovskiy, A.L.; Zdorovets, M.V. Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications. J. Mater. Sci. Mater. Electron., 2020, 31(14), 11729-11740.
[http://dx.doi.org/10.1007/s10854-020-03724-w]
[12]
El-Shater, R.E.; El Shimy, H.; Saafan, S.A.; Darwish, M.A.; Zhou, D.; Naidu, K.C.B.; Khandaker, M.U.; Mahmoud, Z.; Trukhanov, A.V.; Trukhanov, S.V.; Fakhry, F. Fabrication of doped ferrites and exploration of their structure and magnetic behavior. Materials Advances, 2023, 4(13), 2794-2810.
[http://dx.doi.org/10.1039/D3MA00105A]
[13]
Soltys, L.; Olkhovyy, O.; Tatarchuk, T.; Naushad, M. Green synthesis of metal and metal oxide nanoparticles: Principles of green chemistry and raw materials. Magnetochemistry, 2021, 7(11), 145.
[http://dx.doi.org/10.3390/magnetochemistry7110145]
[14]
Li, S.; Zhang, T.; Tang, R.; Qiu, H.; Wang, C.; Zhou, Z. Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparticles. J. Magn. Magn. Mater., 2015, 379, 226-231.
[http://dx.doi.org/10.1016/j.jmmm.2014.12.054]
[15]
Ganeshraja, A.S.; Clara, A.S.; Rajkumar, K.; Wang, Y.; Wang, Y.; Wang, J.; Anbalagan, K. Simple hydrothermal synthesis of metal oxides coupled nanocomposites: Structural, optical, magnetic and photocatalytic studies. Appl. Surf. Sci., 2015, 353, 553-563.
[http://dx.doi.org/10.1016/j.apsusc.2015.06.118]
[16]
Bhatt, A.S.; Bhat, D.K.; Tai, C.; Santosh, M.S. Microwave-assisted synthesis and magnetic studies of cobalt oxide nanoparticles. Mater. Chem. Phys., 2011, 125(3), 347-350.
[http://dx.doi.org/10.1016/j.matchemphys.2010.11.003]
[17]
Shaker, B.; Ahmad, S.; Lee, J.; Jung, C.; Na, D. In silico methods and tools for drug discovery. Comput. Biol. Med., 2021, 137, 104851.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104851] [PMID: 34520990]
[18]
Stanzione, F.; Giangreco, I.; Cole, J.C. Use of molecular docking computational tools in drug discovery. Prog. Med. Chem., 2021, 60, 273-343.
[http://dx.doi.org/10.1016/bs.pmch.2021.01.004]
[19]
Aich, D.; Samanta, P.K.; Saha, S.; Kamilya, T. Synthesis and characterization of super paramagnetic iron oxide nanoparticles. Nanosci. Nanotechnol. Asia, 2020, 10(2), 123-126.
[http://dx.doi.org/10.2174/2210681208666180910110114]
[20]
Novickij, V. Stanevičienė R.; Vepštaitė-Monstavičė I.; Gruškienė R.; Krivorotova, T.; Sereikaitė J.; Novickij, J.; Servienė E. Overcoming antimicrobial resistance in bacteria using bioactive magnetic nanoparticles and pulsed electromagnetic fields. Front. Microbiol., 2018, 8(JAN), 2678.
[http://dx.doi.org/10.3389/fmicb.2017.02678] [PMID: 29375537]
[21]
Salam, A.; Al-Amin, Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial resistance: A growing serious threat for global public health. Health Care, 2023, 11(13), 1946.
[http://dx.doi.org/10.3390/healthcare11131946]
[22]
Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci., 2023, 80, 11387.
[http://dx.doi.org/10.3389/bjbs.2023.11387] [PMID: 37448857]
[23]
Walsh, T.R.; Gales, A.C.; Laxminarayan, R.; Dodd, P.C. Antimicrobial resistance: Addressing a global threat to humanity. PLoS Med., 2023, 20(7), e1004264.
[http://dx.doi.org/10.1371/journal.pmed.1004264] [PMID: 37399216]
[24]
Halebian, S.; Harris, B.; Finegold, S.M.; Rolfe, R.D. Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J. Clin. Microbiol., 1981, 13(3), 444-448.
[http://dx.doi.org/10.1128/jcm.13.3.444-448.1981] [PMID: 6165736]
[25]
Vimal, A.; Jouvairiya, U.; Fatima Alvi, M.; Ahmad Faridi, S.; Osama, K. Varying effects of iron oxide nanoparticles (IONPs) on the bacterial cells. Nanosci. Nanotechnol. Asia, 2022, 12(4), e220822207852.
[http://dx.doi.org/10.2174/2210681212666220822123017]
[26]
Mewe, M.; Tielker, D.; Schönberg, R.; Schachner, M.; Jaeger, K.E.; Schumacher, U. Pseudomonas aeruginosa lectins I and II and their interaction with human airway cilia. J. Laryngol. Otol., 2005, 119(8), 595-599.
[http://dx.doi.org/10.1258/0022215054516313] [PMID: 16102212]
[27]
Kiratisin, P.; Tucker, K.D.; Passador, L. LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J. Bacteriol., 2002, 184(17), 4912-4919.
[http://dx.doi.org/10.1128/JB.184.17.4912-4919.2002] [PMID: 12169617]
[28]
Mishra, A.; Mishra, N. Antiquorum sensing activity of copper nanoparticle in pseudomonas aeruginosa: An in silico approach. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2021, 91(1), 29-36.
[http://dx.doi.org/10.1007/s40011-020-01193-z]
[29]
Flockton, T.; Schnorbus, L.; Araujo, A.; Adams, J.; Hammel, M.; Perez, L. Inhibition of pseudomonas aeruginosa biofilm formation with surface modified polymeric nanoparticles. Pathogens, 2019, 8(2), 55.
[http://dx.doi.org/10.3390/pathogens8020055] [PMID: 31022836]
[30]
Samanta, S.; Singh, B.R.; Adholeya, A. Intracellular synthesis of gold nanoparticles using an ectomycorrhizal strain EM-1083 of Laccaria fraterna and its nanoanti-quorum sensing potential against pseudomonas aeruginosa. Indian J. Microbiol., 2017, 57(4), 448-460.
[http://dx.doi.org/10.1007/s12088-017-0662-4] [PMID: 29151646]
[31]
Al-Shabib, N.A.; Husain, F.M.; Ahmad, N.; Qais, F.A.; Khan, A.; Khan, A.; Khan, M.S.; Khan, J.M.; Shahzad, S.A.; Ahmad, I. Facile synthesis of tin oxide hollow nanoflowers interfering with quorum sensing-regulated functions and bacterial biofilms. J. Nanomater., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/6845026]
[32]
Campos-García, J.; Caro, A.D.; Nájera, R.; Miller-Maier, R.M.; Al-Tahhan, R.A.; Soberón-Chávez, G. The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent β-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J. Bacteriol., 1998, 180(17), 4442-4451.
[http://dx.doi.org/10.1128/JB.180.17.4442-4451.1998] [PMID: 9721281]
[33]
Maldonado-Contreras, A.; Birtley, J.R.; Boll, E.; Zhao, Y.; Mumy, K.L.; Toscano, J.; Ayehunie, S.; Reinecker, H.C.; Stern, L.J.; McCormick, B.A. Shigella depends on SepA to destabilize the intestinal epithelial integrity via cofilin activation. Gut Microbes, 2017, 8(6), 544-560.
[http://dx.doi.org/10.1080/19490976.2017.1339006] [PMID: 28598765]
[34]
Parmar, K.M.; Sinha, S.K.; Prasad, R.S.; Jogi, M.S.; Laloo, D.; Dhobi, M.; Gurav, S.S.; Prasad, S.K. Identifying the mechanism of eriosematin E from Eriosema chinense Vogel. for its antidiarrhoeal potential against Shigella flexneri-induced diarrhoea using in vitro,in vivo and in silico models. Microb. Pathog., 2020, 149, 104582.
[http://dx.doi.org/10.1016/j.micpath.2020.104582] [PMID: 33086104]
[35]
Hrast, M.; Turk, S. Sosič I.; Knez, D.; Randall, C.P.; Barreteau, H.; Contreras-Martel, C.; Dessen, A.; O’Neill, A.J.; Mengin-Lecreulx, D.; Blanot, D.; Gobec, S. Structure–activity relationships of new cyanothiophene inhibitors of the essential peptidoglycan biosynthesis enzyme MurF. Eur. J. Med. Chem., 2013, 66, 32-45.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.013] [PMID: 23786712]
[36]
Kolberg, J.; Aase, A.; Bergmann, S.; Herstad, T.K.; Rødal, G.; Frank, R.; Rohde, M.; Hammerschmidt, S. Streptococcus pneumoniae enolase is important for plasminogen binding despite low abundance of enolase protein on the bacterial cell surface. Microbiology, 2006, 152(5), 1307-1317.
[http://dx.doi.org/10.1099/mic.0.28747-0] [PMID: 16622048]
[37]
Ferrándiz, M.J.; Carreño, D.; Ayora, S.; de la Campa, A.G. HU of streptococcus pneumoniae is essential for the preservation of dna supercoiling. Front. Microbiol., 2018, 9, 493.
[http://dx.doi.org/10.3389/fmicb.2018.00493] [PMID: 29662473]
[38]
Geno, K.A.; Hauser, J.R.; Gupta, K.; Yother, J. Streptococcus pneumoniae phosphotyrosine phosphatase CpsB and alterations in capsule production resulting from changes in oxygen availability. J. Bacteriol., 2014, 196(11), 1992-2003.
[http://dx.doi.org/10.1128/JB.01545-14] [PMID: 24659769]
[39]
El-Naggar, M.; Mohamed, M.E.; Mosallam, A.M.; Salem, W.; Rashdan, H.R.M.; Abdelmonsef, A.H. Synthesis, characterization, antibacterial activity, and computer-aided design of novel quinazolin-2,4-dione derivatives as potential inhibitors against vibrio cholerae. Evol. Bioinform. Online, 2020, 16, 1176934319897596.
[http://dx.doi.org/10.1177/1176934319897596] [PMID: 31933518]
[40]
Muanprasat, C.; Chatsudthipong, V. Cholera: Pathophysiology and emerging therapeutic targets. Future Med. Chem., 2013, 5(7), 781-798.
[http://dx.doi.org/10.4155/fmc.13.42] [PMID: 23651092]
[41]
Ragunathan, A.; Malathi, K.; Anbarasu, A. MurB as a target in an alternative approach to tackle the Vibrio cholerae resistance using molecular docking and simulation study. J. Cell. Biochem., 2018, 119(2), 1726-1732.
[http://dx.doi.org/10.1002/jcb.26333] [PMID: 28786497]
[42]
Taylor-Creel, K.; Hames, M.C.; Holloway, W.B.; McFeeters, H.; McFeeters, R.L. Expression, purification, and solubility optimization of peptidyl-tRNA hydrolase 1 from Bacillus cereus. Protein Expr. Purif., 2014, 95, 259-264.
[http://dx.doi.org/10.1016/j.pep.2014.01.007] [PMID: 24480186]
[43]
Segelke, B.; Knapp, M.; Kadkhodayan, S.; Balhorn, R.; Rupp, B. Crystal structure of Clostridium botulinum neurotoxin protease in a product-bound state: Evidence for noncanonical zinc protease activity. Proc. Natl. Acad. Sci., 2004, 101(18), 6888-6893.
[http://dx.doi.org/10.1073/pnas.0400584101] [PMID: 15107500]
[44]
Minnow, Y.V.T.; Goldberg, R.; Tummalapalli, S.R.; Rotella, D.P.; Goodey, N.M. Mechanism of inhibition of botulinum neurotoxin type A light chain by two quinolinol compounds. Arch. Biochem. Biophys., 2017, 618, 15-22.
[http://dx.doi.org/10.1016/j.abb.2017.01.006] [PMID: 28137423]
[45]
Latasa, C.; García, B.; Echeverz, M.; Toledo-Arana, A.; Valle, J.; Campoy, S.; García-del, P.F.; Solano, C.; Lasa, I. Salmonella biofilm development depends on the phosphorylation status of RcsB. J. Bacteriol., 2012, 194(14), 3708-3722.
[http://dx.doi.org/10.1128/JB.00361-12] [PMID: 22582278]
[46]
Ibuki, T.; Imada, K.; Minamino, T.; Kato, T.; Miyata, T.; Namba, K. Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nat. Struct. Mol. Biol., 2011, 18(3), 277-282.
[http://dx.doi.org/10.1038/nsmb.1977] [PMID: 21278755]
[47]
Sharma, K.K.; Singh, D.; Mohite, S.V.; Williamson, P.R.; Kennedy, J.F. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes “multicopper oxidases and superoxide dismutases”. Int. J. Biol. Macromol., 2023, 233, 123534.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123534] [PMID: 36740121]
[48]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[49]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19]
[50]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[51]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[52]
Balachandar, S.; Sethuram, M.; Muthuraja, P.; Shanmugavadivu, T.; Dhandapani, M. Ligand based pharmacophoric modelling and docking of bioactive pyrazolium 3-nitrophthalate (P3NP) on Bacillus subtilis, Aspergillus fumigatus and Aspergillus niger — Computational and Hirshfeld surface analysis. J. Photochem. Photobiol. B, 2016, 163, 352-365.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.08.045] [PMID: 27614246]
[53]
Khedkar, S.A.; Malde, A.K.; Coutinho, E.C. Design of inhibitors of the MurF enzyme of Streptococcus pneumoniae using docking, 3D-QSAR, and de Novo design. J. Chem. Inf. Model., 2007, 47(5), 1839-1846.
[http://dx.doi.org/10.1021/ci600568u] [PMID: 17663541]
[54]
Hassan, M.; Baig, A.A.; Attique, S.A.; Abbas, S.; Khan, F.; Zahid, S.; Ain, Q.U.; Usman, M.; Simbak, N.B.; Kamal, M.A.; Yusof, H.A. Molecular docking of alpha-enolase to elucidate the promising candidates against Streptococcus pneumoniae infection. Daru, 2021, 29(1), 73-84.
[http://dx.doi.org/10.1007/s40199-020-00384-3] [PMID: 33537864]
[55]
Zaman, Z.; Khan, S.; Nouroz, F.; Farooq, U.; Urooj, A. Targeting protein tyrosine phosphatase to unravel possible inhibitors for Streptococcus pneumoniae using molecular docking, molecular dynamics simulations coupled with free energy calculations. Life Sci., 2021, 264, 118621.
[http://dx.doi.org/10.1016/j.lfs.2020.118621] [PMID: 33164832]
[56]
Adam, J. Kříž, Z.; Prokop, M.; Wimmerová, M.; Koča, J. In silico mutagenesis and docking studies of Pseudomonas aeruginosa PA-IIL lectin predicting binding modes and energies. J. Chem. Inf. Model., 2008, 48(11), 2234-2242.
[http://dx.doi.org/10.1021/ci8002107] [PMID: 18937439]
[57]
Bonardi, A.; Nocentini, A.; Osman, S.M.; Alasmary, F.A.; Almutairi, T.M.; Abdullah, D.S.; Gratteri, P.; Supuran, C.T. Inhibition of α-, β- and γ-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae with aromatic sulphonamides and clinically licenced drugs – a joint docking/molecular dynamics study. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 469-479.
[http://dx.doi.org/10.1080/14756366.2020.1862102] [PMID: 33472446]
[58]
Huesa, J.; Giner-Lamia, J.; Pucciarelli, M.G.; Paredes-Martínez, F.; Portillo, F.G.; Marina, A.; Casino, P. Structure-based analyses of Salmonella RcsB variants unravel new features of the Rcs regulon. Nucleic Acids Res., 2021, 49(4), 2357-2374.
[http://dx.doi.org/10.1093/nar/gkab060] [PMID: 33638994]
[59]
Hu, B.; Morado, D.R.; Margolin, W.; Rohde, J.R.; Arizmendi, O.; Picking, W.L.; Picking, W.D.; Liu, J. Visualization of the type III secretion sorting platform of Shigella flexneri. Proc. Natl. Acad. Sci., 2015, 112(4), 1047-1052.
[http://dx.doi.org/10.1073/pnas.1411610112] [PMID: 25583506]
[60]
Mohsin, I.; Zhang, L.Q.; Li, D.C.; Papageorgiou, A.C. Crystal structure of a Cu,Zn superoxide dismutase from the thermophilic fungus chaetomium thermophilum. Protein Pept. Lett., 2021, 28(9), 1043-1053.
[http://dx.doi.org/10.2174/0929866528666210316104919] [PMID: 33726638]
[61]
Hirudkar, J.R.; Parmar, K.M.; Prasad, R.S.; Sinha, S.K.; Jogi, M.S.; Itankar, P.R.; Prasad, S.K. Quercetin a major biomarker of Psidium guajava L. inhibits SepA protease activity of Shigella flexneri in treatment of infectious diarrhoea. Microb. Pathog., 2020, 138, 103807.
[http://dx.doi.org/10.1016/j.micpath.2019.103807] [PMID: 31629796]
[62]
Roxas-Duncan, V.; Enyedy, I.; Montgomery, V.A.; Eccard, V.S.; Carrington, M.A.; Lai, H.; Gul, N.; Yang, D.C.H.; Smith, L.A. Identification and biochemical characterization of small-molecule inhibitors of Clostridium botulinum neurotoxin serotype A. Antimicrob. Agents Chemother., 2009, 53(8), 3478-3486.
[http://dx.doi.org/10.1128/AAC.00141-09] [PMID: 19528275]
[63]
Yu, H.; Li, Y.; Li, X.; Fan, L.; Yang, S. Highly dispersible and charge-tunable magnetic Fe 3 O 4 nanoparticles: facile fabrication and reversible binding to GO for efficient removal of dye pollutants. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(38), 15763-15767.
[http://dx.doi.org/10.1039/C4TA03476G]
[64]
Zhivulin, V.E.; Trofimov, E.A.; Zaitseva, O.V.; Sherstyuk, D.P.; Cherkasova, N.A.; Taskaev, S.V.; Vinnik, D.A.; Alekhina, Y.A.; Perov, N.S.; Naidu, K.C.B.; Elsaeedy, H.I.; Khandaker, M.U.; Tishkevich, D.I.; Zubar, T.I.; Trukhanov, A.V.; Trukhanov, S.V. Preparation, phase stability, and magnetization behavior of high entropy hexaferrites. iScience, 2023, 26(7), 107077.
[http://dx.doi.org/10.1016/j.isci.2023.107077] [PMID: 37485374]
[65]
Kozlovskiy, A. Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors, 2020, 20(17), 4851.
[http://dx.doi.org/10.3390/s20174851]
[66]
Trukhanov, S.V. Investigation of stability of ordered manganites. J. Exp. Theor. Phys., 2005, 101(3), 513-520.
[http://dx.doi.org/10.1134/1.2103220]
[67]
Kozlovskiy, A.L.; Alina, A.; Zdorovets, M.V. Study of the effect of ion irradiation on increasing the photocatalytic activity of WO3 microparticles. J. Mater. Sci. Mater. Electron., 2021, 32(3), 3863-3877.
[http://dx.doi.org/10.1007/s10854-020-05130-8]
[68]
Bhattacharyya, A.; Schmidt, M.P.; Stavitski, E.; Azimzadeh, B.; Martínez, C.E. Ligands representing important functional groups of natural organic matter facilitate Fe redox transformations and resulting binding environments. Geochim. Cosmochim. Acta, 2019, 251, 157-175.
[http://dx.doi.org/10.1016/j.gca.2019.02.027]
[69]
Limo, M.J.; Sola-Rabada, A.; Boix, E.; Thota, V.; Westcott, Z.C.; Puddu, V.; Perry, C.C. Interactions between metal oxides and biomolecules: From fundamental understanding to applications. Chem. Rev., 2018, 118(22), 11118-11193.
[http://dx.doi.org/10.1021/acs.chemrev.7b00660] [PMID: 30362737]
[70]
Shukoor, M.I.; Natalio, F.; Tahir, M.N.; Divekar, M.; Metz, N.; Therese, H.A.; Theato, P.; Ksenofontov, V.; Schröder, H.C.; Müller, W.E.G.; Tremel, W. Multifunctional polymer-derivatized γ-Fe2O3 nanocrystals as a methodology for the biomagnetic separation of recombinant His-tagged proteins. J. Magn. Magn. Mater., 2008, 320(19), 2339-2344.
[http://dx.doi.org/10.1016/j.jmmm.2008.04.160]
[71]
Pandey, P.; Pant, C.K.; Gururani, K.; Arora, P.; Kumar, S.; Sharma, Y.; Pathak, H.D.; Mehata, M.S. Surface interaction of L-alanine on hematite: an astrobiological implication. Orig. Life Evol. Biosph., 2013, 43(4-5), 331-339.
[http://dx.doi.org/10.1007/s11084-013-9351-4] [PMID: 24402033]
[72]
Barick, K.C.; Hassan, P.A. Glycine passivated Fe3O4 nanoparticles for thermal therapy. J. Colloid Interface Sci., 2012, 369(1), 96-102.
[http://dx.doi.org/10.1016/j.jcis.2011.12.008] [PMID: 22209576]
[73]
Mir, N.; Nikkaran, A.R.; Nejati-Yazdinejad, M.; Mir, A.A. Application of magnetite nanoparticles in phenylalanine removal from water samples. J Nanostruct, 2013, 3(3), 341-346.
[http://dx.doi.org/10.7508/JNS.2013.03.010]
[74]
Kamran, S. Study of the adsorption of L-phenylalanine, Ltryptophan, and L-tyrosine from aqueous samples by Fe3O4 modified magnetic nanoparticles with ionic liquid. Iran. j. anal. chem., 2016, 3, 105-115.
[75]
Wang, S.; Li, E.; Li, Y.; Li, J.; Du, Z.; Cheng, F. Enhanced removal of dissolved humic acid from water using eco‐friendly phenylalanine‐modified‐chitosan Fe3O4 magnetic nanoparticles. ChemistrySelect, 2020, 5(14), 4285-4291.
[http://dx.doi.org/10.1002/slct.202000709]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy