Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Cancer and Autoimmune Diseases as Two Sides of Chronic Inflammation and the Method of Therapy

Author(s): Vladimir Rogovskii*

Volume 24, Issue 11, 2024

Published on: 29 January, 2024

Page: [1089 - 1103] Pages: 15

DOI: 10.2174/0115680096282480240105071638

Price: $65

conference banner
Abstract

Chronic inflammation is associated with a prolonged increase in various inflammatory factors. According to clinical data, it can be linked with both cancer and autoimmune diseases in the same patients. This raises the critical question of how chronic inflammation relates to seemingly opposing diseases - tumors, in which there is immunosuppression, and autoimmune diseases, in which there is over-activation of the immune system. In this review, we consider chronic inflammation as a prerequisite for both immune suppression and an increased likelihood of autoimmune damage. We also discuss potential disease-modifying therapies targeting chronic inflammation, which can be helpful for both cancer and autoimmunity. On the one hand, pro-inflammatory factors persisting in the areas of chronic inflammation stimulate the production of anti-inflammatory factors due to a negative feedback loop, eliciting immune suppression. On the other hand, chronic inflammation can bring the baseline immunity closer to the threshold level required for triggering an autoimmune response using the bystander activation of immune cells. Focusing on the role of chronic inflammation in cancer and autoimmune diseases may open prospects for more intensive drug discovery for chronic inflammation.

Keywords: Chronic inflammation, cancer, autoimmune disease, immune suppression, anti-inflammatory therapy, bystander activation, disease-modifying therapy.

Next »
Graphical Abstract
[1]
Fang, L.; Liu, K.; Liu, C.; Wang, X.; Ma, W.; Xu, W.; Wu, J.; Sun, C. Tumor accomplice: T cell exhaustion induced by chronic inflammation. Front. Immunol., 2022, 13, 979116.
[http://dx.doi.org/10.3389/fimmu.2022.979116] [PMID: 36119037]
[2]
Pichler, R.; Siska, P.J.; Tymoszuk, P.; Martowicz, A.; Untergasser, G.; Mayr, R.; Weber, F.; Seeber, A.; Kocher, F.; Barth, D.A.; Pichler, M.; Thurnher, M. A chemokine network of T cell exhaustion and metabolic reprogramming in renal cell carcinoma. Front. Immunol., 2023, 14, 1095195.
[http://dx.doi.org/10.3389/fimmu.2023.1095195] [PMID: 37006314]
[3]
Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; Miller, A.H.; Mantovani, A.; Weyand, C.M.; Barzilai, N.; Goronzy, J.J.; Rando, T.A.; Effros, R.B.; Lucia, A.; Kleinstreuer, N.; Slavich, G.M. Chronic inflammation in the etiology of disease across the life span. Nat. Med., 2019, 25(12), 1822-1832.
[http://dx.doi.org/10.1038/s41591-019-0675-0] [PMID: 31806905]
[4]
Ben-Ari, E.T. Dual purpose: Some cancer therapies used to treat autoimmune diseases. J. Natl. Cancer Inst., 2004, 96(8), 577-579.
[http://dx.doi.org/10.1093/jnci/96.8.577] [PMID: 15100330]
[5]
Klöß, S.; Dehmel, S.; Braun, A.; Parnham, M.J.; Köhl, U.; Schiffmann, S. From cancer to immune-mediated diseases and tolerance induction: Lessons learned from immune oncology and classical anti-cancer treatment. Front. Immunol., 2020, 11, 1423.
[http://dx.doi.org/10.3389/fimmu.2020.01423] [PMID: 32733473]
[6]
Valencia, J.C.; Egbukichi, N.; Erwin-Cohen, R.A. Autoimmunity and cancer, the paradox comorbidities challenging therapy in the context of preexisting autoimmunity. J. Interferon Cytokine Res., 2019, 39(1), 72-84.
[http://dx.doi.org/10.1089/jir.2018.0060] [PMID: 30562133]
[7]
Ali, M.; Benfante, V.; Stefano, A.; Yezzi, A.; Di Raimondo, D.; Tuttolomondo, A.; Comelli, A. Anti-arthritic and anti-cancer activities of polyphenols: A review of the most recent in vitro assays. Life, 2023, 13(2), 361.
[http://dx.doi.org/10.3390/life13020361] [PMID: 36836717]
[8]
Sakowska, J.; Arcimowicz, Ł.; Jankowiak, M.; Papak, I.; Markiewicz, A.; Dziubek, K.; Kurkowiak, M.; Kote, S.; Kaźmierczak-Siedlecka, K.; Połom, K.; Marek-Trzonkowska, N.; Trzonkowski, P. Autoimmunity and cancer—two sides of the same coin. Front. Immunol., 2022, 13, 793234.
[http://dx.doi.org/10.3389/fimmu.2022.793234] [PMID: 35634292]
[9]
Pahwa, R.; Goyal, A.; Jialal, I. Chronic Inflammation In; StatPearls: Treasure Island, FL, 2023.
[10]
Guram, K.; Kim, S.S.; Wu, V.; Sanders, P.D.; Patel, S.; Schoenberger, S.P.; Cohen, E.E.W.; Chen, S.Y.; Sharabi, A.B. A threshold model for T-cell activation in the era of checkpoint blockade immunotherapy. Front. Immunol., 2019, 10, 491.
[http://dx.doi.org/10.3389/fimmu.2019.00491] [PMID: 30936880]
[11]
Lawrence, L.; Menon, S.; K, D.M.; Sivaram, V.P.; Padikkala, J. Inhibition of Dimethylbenz(a)anthracene (DMBA) - croton oil-induced mouse skin tumorigenesis by gmelina arborea with potential anti-inflammatory activity. J. Environ. Pathol. Toxicol. Oncol., 2016, 35(3), 263-272.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2016014572] [PMID: 27910781]
[12]
Wang, Z.; Xiao, S.; Huang, J.; Liu, S.; Xue, M.; Lu, F. Chemoprotective effect of boeravinone B against DMBA/croton oil induced skin cancer via reduction of inflammation. J. Oleo Sci., 2021, 70(7), 955-964.
[http://dx.doi.org/10.5650/jos.ess21055] [PMID: 34193671]
[13]
Fan, L.; Busser, B.W.; Lifsted, T.Q.; Lo, D.; Laufer, T.M.; Laufer, T.M. Antigen presentation by keratinocytes directs autoimmune skin disease. Proc. Natl. Acad. Sci., 2003, 100(6), 3386-3391.
[http://dx.doi.org/10.1073/pnas.0437899100] [PMID: 12629221]
[14]
Duan, L.; Rao, X.; Sigdel, K.R. Regulation of inflammation in autoimmune disease. J. Immunol. Res., 2019, 2019, 1-2.
[http://dx.doi.org/10.1155/2019/7403796] [PMID: 30944837]
[15]
Elkoshi, Z. Cancer and autoimmune diseases: A tale of two immunological opposites? Front. Immunol., 2022, 13, 821598.
[http://dx.doi.org/10.3389/fimmu.2022.821598] [PMID: 35145524]
[16]
Olén, O.; Erichsen, R.; Sachs, M.C.; Pedersen, L.; Halfvarson, J.; Askling, J.; Ekbom, A.; Sørensen, H.T.; Ludvigsson, J.F. Colorectal cancer in ulcerative colitis: A Scandinavian population-based cohort study. Lancet, 2020, 395(10218), 123-131.
[http://dx.doi.org/10.1016/S0140-6736(19)32545-0] [PMID: 31929014]
[17]
Emilsson, L.; Semrad, C.; Lebwohl, B.; Green, P.H.R.; Ludvigsson, J.F. Risk of small bowel adenocarcinoma, adenomas, and carcinoids in a nationwide cohort of individuals with celiac disease. Gastroenterology, 2020, 159(5), 1686-1694.e2.
[http://dx.doi.org/10.1053/j.gastro.2020.07.007] [PMID: 32679218]
[18]
Franks, A.L.; Slansky, J.E. Multiple associations between a broad spectrum of autoimmune diseases, chronic inflammatory diseases and cancer. Anticancer Res., 2012, 32(4), 1119-1136.
[PMID: 22493341]
[19]
He, M.; Lo, C.H.; Wang, K.; Polychronidis, G.; Wang, L.; Zhong, R.; Knudsen, M.D.; Fang, Z.; Song, M. Immune-mediated diseases associated with cancer risks. JAMA Oncol., 2022, 8(2), 209-219.
[http://dx.doi.org/10.1001/jamaoncol.2021.5680] [PMID: 34854871]
[20]
McGee, E.E.; Castro, F.A.; Engels, E.A.; Freedman, N.D.; Pfeiffer, R.M.; Nogueira, L.; Stolzenberg-Solomon, R.; McGlynn, K.A.; Hemminki, K.; Koshiol, J. Associations between autoimmune conditions and hepatobiliary cancer risk among elderly US adults. Int. J. Cancer, 2019, 144(4), 707-717.
[http://dx.doi.org/10.1002/ijc.31835] [PMID: 30155920]
[21]
Smedby, K.E.; Baecklund, E.; Askling, J. Malignant lymphomas in autoimmunity and inflammation: A review of risks, risk factors, and lymphoma characteristics. Cancer Epidemiol. Biomarkers Prev., 2006, 15(11), 2069-2077.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0300] [PMID: 17119030]
[22]
Yang, A.; Wu, Y.; Yu, G.; Wang, H. Role of specialized pro-resolving lipid mediators in pulmonary inflammation diseases: mechanisms and development. Respir. Res., 2021, 22(1), 204.
[http://dx.doi.org/10.1186/s12931-021-01792-y] [PMID: 34261470]
[23]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[24]
DiNicolantonio, J.J.; O’Keefe, J.H. Importance of maintaining a low omega–6/omega–3 ratio for reducing inflammation. Open Heart, 2018, 5(2), e000946.
[http://dx.doi.org/10.1136/openhrt-2018-000946] [PMID: 30564378]
[25]
Azevedo-Garcia, L.G.; Torres-Leal, F.L.; Aristizabal, J.C.; Berg, G.; Carvalho, H.B.; De Moraes, A.C.F. Reliability and validity estimate of the pro-inflammatory/anti-inflammatory food intake score in South American pediatric population: SAYCARE study. Int. J. Environ. Res. Public Health, 2023, 20(2), 1038.
[http://dx.doi.org/10.3390/ijerph20021038] [PMID: 36673794]
[26]
Chaudhary, R.; Prasad, A.; Agarwal, V.; Rehman, M.; Kumar, A.; Kaushik, A.S.; Srivastava, S.; Srivastava, S.; Mishra, V. Chronic stress predisposes to the aggravation of inflammation in autoimmune diseases with focus on rheumatoid arthritis and psoriasis. Int. Immunopharmacol., 2023, 125(Pt A), 111046.
[http://dx.doi.org/10.1016/j.intimp.2023.111046]
[27]
Newson, J.; Motwani, M.P.; Kendall, A.C.; Nicolaou, A.; Muccioli, G.G.; Alhouayek, M.; Bennett, M.; Van De Merwe, R.; James, S.; De Maeyer, R.P.H.; Gilroy, D.W. Inflammatory resolution triggers a prolonged phase of immune suppression through COX-1/mPGES-1-derived prostaglandin E 2. Cell Rep., 2017, 20(13), 3162-3175.
[http://dx.doi.org/10.1016/j.celrep.2017.08.098] [PMID: 28954232]
[28]
Bent, E.H.; Millán-Barea, L.R.; Zhuang, I.; Goulet, D.R.; Fröse, J.; Hemann, M.T. Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy. Nat. Commun., 2021, 12(1), 6218.
[http://dx.doi.org/10.1038/s41467-021-26407-4] [PMID: 34711820]
[29]
Veglia, F.; Sanseviero, E.; Gabrilovich, D.I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol., 2021, 21(8), 485-498.
[http://dx.doi.org/10.1038/s41577-020-00490-y] [PMID: 33526920]
[30]
Tobin, R.P.; Jordan, K.R.; Kapoor, P.; Spongberg, E.; Davis, D.; Vorwald, V.M.; Couts, K.L.; Gao, D.; Smith, D.E.; Borgers, J.S.W.; Robinson, S.; Amato, C.; Gonzalez, R.; Lewis, K.D.; Robinson, W.A.; Borges, V.F.; McCarter, M.D. IL-6 and IL-8 are linked with myeloid-derived suppressor cell accumulation and correlate with poor clinical outcomes in melanoma patients. Front. Oncol., 2019, 9, 1223.
[http://dx.doi.org/10.3389/fonc.2019.01223] [PMID: 31781510]
[31]
Weber, R.; Riester, Z.; Hüser, L.; Sticht, C.; Siebenmorgen, A.; Groth, C.; Hu, X.; Altevogt, P.; Utikal, J.S.; Umansky, V. IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma. J. Immunother. Cancer, 2020, 8(2), e000949.
[http://dx.doi.org/10.1136/jitc-2020-000949] [PMID: 32788238]
[32]
Sharma, V.; Sachdeva, N.; Gupta, V.; Nada, R.; Jacob, J.; Sahni, D.; Aggarwal, A. IL-6 is associated with expansion of myeloid derived suppressor cells and enhanced immunosuppression in pancreatic adenocarcinoma patients. Scand. J. Immunol., 2021, 94(6), e13107.
[http://dx.doi.org/10.1111/sji.13107]
[33]
Zheng, Z.; Zheng, X.; Zhu, Y.; Yao, Z.; Zhao, W.; Zhu, Y.; Sun, F.; Mu, X.; Wang, Y.; He, W.; Liu, Z.; Wu, K.; Zheng, J. IL-6 promotes the proliferation and immunosuppressive function of myeloid-derived suppressor cells via the MAPK signaling pathway in bladder cancer. BioMed Res. Int., 2021, 2021, 1-18.
[http://dx.doi.org/10.1155/2021/5535578] [PMID: 33981768]
[34]
Weber, R.; Groth, C.; Lasser, S.; Arkhypov, I.; Petrova, V.; Altevogt, P.; Utikal, J.; Umansky, V. IL-6 as a major regulator of MDSC activity and possible target for cancer immunotherapy. Cell. Immunol., 2021, 359, 104254.
[http://dx.doi.org/10.1016/j.cellimm.2020.104254] [PMID: 33296753]
[35]
Ebbing, E.A.; van der Zalm, A.P.; Steins, A.; Creemers, A.; Hermsen, S.; Rentenaar, R.; Klein, M.; Waasdorp, C.; Hooijer, G.K.J.; Meijer, S.L.; Krishnadath, K.K.; Punt, C.J.A.; van Berge Henegouwen, M.I.; Gisbertz, S.S.; van Delden, O.M.; Hulshof, M.C.C.M.; Medema, J.P.; van Laarhoven, H.W.M.; Bijlsma, M.F. Stromal-derived interleukin 6 drives epithelial-to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma. Proc. Natl. Acad. Sci., 2019, 116(6), 2237-2242.
[http://dx.doi.org/10.1073/pnas.1820459116] [PMID: 30670657]
[36]
Rašková, M.; Lacina, L.; Kejík, Z.; Venhauerová, A.; Skaličková, M.; Kolář, M.; Jakubek, M.; Rosel, D.; Smetana, K., Jr; Brábek, J. The role of IL-6 in cancer cell invasiveness and metastasis—overview and therapeutic opportunities. Cells, 2022, 11(22), 3698.
[http://dx.doi.org/10.3390/cells11223698] [PMID: 36429126]
[37]
Huseni, M.A.; Wang, L.; Klementowicz, J.E.; Yuen, K.; Breart, B.; Orr, C.; Liu, L.; Li, Y.; Gupta, V.; Li, C.; Rishipathak, D.; Peng, J.; Şenbabaoǧlu, Y.; Modrusan, Z.; Keerthivasan, S.; Madireddi, S.; Chen, Y.J.; Fraser, E.J.; Leng, N.; Hamidi, H.; Koeppen, H.; Ziai, J.; Hashimoto, K.; Fassò, M.; Williams, P.; McDermott, D.F.; Rosenberg, J.E.; Powles, T.; Emens, L.A.; Hegde, P.S.; Mellman, I.; Turley, S.J.; Wilson, M.S.; Mariathasan, S.; Molinero, L.; Merchant, M.; West, N.R. CD8+ T cell-intrinsic IL-6 signaling promotes resistance to anti-PD-L1 immunotherapy. Cell Rep. Med., 2023, 4(1), 100878.
[http://dx.doi.org/10.1016/j.xcrm.2022.100878] [PMID: 36599350]
[38]
Xu, C.; Xia, Y.; Zhang, B.W.; Drokow, E.K.; Li, H.Y.; Xu, S.; Wang, Z.; Wang, S.Y.; Jin, P.; Fang, T.; Xiong, X.M.; Huang, P.; Jin, N.; Tan, J.H.; Zhong, Q.; Chen, Y.X.; Zhang, Q.; Fang, Y.; Ye, F.; Gao, Q.L. Macrophages facilitate tumor cell PD-L1 expression via an IL-1beta-centered loop to attenuate immune checkpoint blockade. MedComm, 2023, 4(2), e242.
[39]
Yang, Y.; Lundqvist, A. Immunomodulatory effects of IL-2 and IL-15; Implications for cancer immunotherapy. Cancers, 2020, 12(12), 3586.
[http://dx.doi.org/10.3390/cancers12123586] [PMID: 33266177]
[40]
Montfort, A.; Colacios, C.; Levade, T.; Andrieu-Abadie, N.; Meyer, N.; Ségui, B. The TNF paradox in cancer progression and immunotherapy. Front. Immunol., 2019, 10, 1818.
[http://dx.doi.org/10.3389/fimmu.2019.01818] [PMID: 31417576]
[41]
Yang, C.M.; Yang, C.C.; Hsiao, L.D.; Yu, C.Y.; Tseng, H.C.; Hsu, C.K.; Situmorang, J.H. Upregulation of COX-2 and PGE2 induced by TNF-α mediated through TNFR1/MitoROS/PKCα/P38 MAPK, JNK1/2/FoxO1 cascade in human cardiac fibroblasts. J. Inflamm. Res., 2021, 14, 2807-2824.
[http://dx.doi.org/10.2147/JIR.S313665] [PMID: 34234507]
[42]
Tammali, R.; Ramana, K.V.; Srivastava, S.K. Aldose reductase regulates TNF-α-induced PGE2 production in human colon cancer cells. Cancer Lett., 2007, 252(2), 299-306.
[http://dx.doi.org/10.1016/j.canlet.2007.01.001] [PMID: 17300864]
[43]
Pellegrini, J.M.; Martin, C.; Morelli, M.P.; Schander, J.A.; Tateosian, N.L.; Amiano, N.O.; Rolandelli, A.; Palmero, D.J.; Levi, A.; Ciallella, L.; Colombo, M.I.; García, V.E. PGE2 displays immunosuppressive effects during human active tuberculosis. Sci. Rep., 2021, 11(1), 13559.
[http://dx.doi.org/10.1038/s41598-021-92667-1] [PMID: 34193890]
[44]
Hangai, S.; Ao, T.; Kimura, Y.; Matsuki, K.; Kawamura, T.; Negishi, H.; Nishio, J.; Kodama, T.; Taniguchi, T.; Yanai, H. PGE2 induced in and released by dying cells functions as an inhibitory DAMP. Proc. Natl. Acad. Sci., 2016, 113(14), 3844-3849.
[http://dx.doi.org/10.1073/pnas.1602023113] [PMID: 27001836]
[45]
Finetti, F.; Travelli, C.; Ercoli, J.; Colombo, G.; Buoso, E.; Trabalzini, L. Prostaglandin E2 and cancer: Insight into tumor progression and immunity. Biology, 2020, 9(12), 434.
[http://dx.doi.org/10.3390/biology9120434] [PMID: 33271839]
[46]
Walker, O.L.; Dahn, M.L.; Power, C.M.R.; Marcato, P. The prostaglandin E2 pathway and breast cancer stem cells: Evidence of increased signaling and potential targeting. Front. Oncol., 2022, 11, 791696.
[http://dx.doi.org/10.3389/fonc.2021.791696] [PMID: 35127497]
[47]
Aqbi, H.F.; Wallace, M.; Sappal, S.; Payne, K.K.; Manjili, M.H. IFN-γ orchestrates tumor elimination, tumor dormancy, tumor escape, and progression. J. Leukoc. Biol., 2018, 103(6), 1219-1223.
[http://dx.doi.org/10.1002/JLB.5MIR0917-351R] [PMID: 29469956]
[48]
Imai, Y.; Chiba, T.; Kondo, T.; Kanzaki, H.; Kanayama, K.; Ao, J.; Kojima, R.; Kusakabe, Y.; Nakamura, M.; Saito, T.; Nakagawa, R.; Suzuki, E.; Nakamoto, S.; Muroyama, R.; Tawada, A.; Matsumura, T.; Nakagawa, T.; Kato, J.; Kotani, A.; Matsubara, H.; Kato, N. Interferon-γ induced PD-L1 expression and soluble PD-L1 production in gastric cancer. Oncol. Lett., 2020, 20(3), 2161-2168.
[http://dx.doi.org/10.3892/ol.2020.11757] [PMID: 32782533]
[49]
Numata, Y.; Akutsu, N.; Ishigami, K.; Koide, H.; Wagatsuma, K.; Motoya, M.; Sasaki, S.; Nakase, H. Synergistic effect of IFN-γ and IL-1β on PD-L1 expression in hepatocellular carcinoma. Biochem. Biophys. Rep., 2022, 30, 101270.
[http://dx.doi.org/10.1016/j.bbrep.2022.101270] [PMID: 35573813]
[50]
Huangfu, L.; Li, R.; Huang, Y.; Wang, S. The IL-17 family in diseases: From bench to bedside. Signal Transduct. Target. Ther., 2023, 8(1), 402.
[http://dx.doi.org/10.1038/s41392-023-01620-3] [PMID: 37816755]
[51]
Calcinotto, A.; Brevi, A.; Chesi, M.; Ferrarese, R.; Garcia Perez, L.; Grioni, M.; Kumar, S.; Garbitt, V.M.; Sharik, M.E.; Henderson, K.J.; Tonon, G.; Tomura, M.; Miwa, Y.; Esplugues, E.; Flavell, R.A.; Huber, S.; Canducci, F.; Rajkumar, V.S.; Bergsagel, P.L.; Bellone, M. Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nat. Commun., 2018, 9(1), 4832.
[http://dx.doi.org/10.1038/s41467-018-07305-8] [PMID: 30510245]
[52]
Bellone, M.; Brevi, A.; Huber, S. Microbiota-propelled T helper 17 cells in inflammatory diseases and cancer. Microbiol. Mol. Biol. Rev., 2020, 84(2), e00064-19.
[http://dx.doi.org/10.1128/MMBR.00064-19] [PMID: 32132244]
[53]
Serhan, C.N.; Levy, B.D. Resolvins in inflammation: Emergence of the pro-resolving superfamily of mediators. J. Clin. Invest., 2018, 128(7), 2657-2669.
[http://dx.doi.org/10.1172/JCI97943] [PMID: 29757195]
[54]
Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev., 2018, 32(19-20), 1267-1284.
[http://dx.doi.org/10.1101/gad.314617.118] [PMID: 30275043]
[55]
Gatenbee, C.D.; Baker, A.M.; Schenck, R.O.; Strobl, M.; West, J.; Neves, M.P.; Hasan, S.Y.; Lakatos, E.; Martinez, P.; Cross, W.C.H.; Jansen, M.; Rodriguez-Justo, M.; Whelan, C.J.; Sottoriva, A.; Leedham, S.; Robertson-Tessi, M.; Graham, T.A.; Anderson, A.R.A. Immunosuppressive niche engineering at the onset of human colorectal cancer. Nat. Commun., 2022, 13(1), 1798.
[http://dx.doi.org/10.1038/s41467-022-29027-8] [PMID: 35379804]
[56]
Thapa, S.; Shrestha, U. Immune Reconstitution Inflammatory Syndrome In: StatPearls; ineligible companies: Treasure Island (FL), 2023.
[57]
Lv, T.; Cao, W.; Li, T. HIV-related immune activation and inflammation: Current understanding and strategies. J. Immunol. Res., 2021, 2021, 1-13.
[http://dx.doi.org/10.1155/2021/7316456] [PMID: 34631899]
[58]
Mills, K.H.G. IL-17 and IL-17-producing cells in protection versus pathology. Nat. Rev. Immunol., 2023, 23(1), 38-54.
[http://dx.doi.org/10.1038/s41577-022-00746-9] [PMID: 35790881]
[59]
Mortier, E.; Ma, A.; Malynn, B.A.; Neurath, M.F. Editorial: Modulating cytokines as treatment for autoimmune diseases and cancer. Front. Immunol., 2020, 11, 608636.
[http://dx.doi.org/10.3389/fimmu.2020.608636] [PMID: 33178231]
[60]
Talaat, R.M.; Tabll, A.A.; Gamal-Eldeen, A.M.; Russo, R.C. Editorial: Importance of cytokines and receptor members from the IL-1 family in the context of chronic autoimmune inflammatory diseases. Front. Immunol., 2022, 13, 974261.
[http://dx.doi.org/10.3389/fimmu.2022.974261] [PMID: 35928823]
[61]
Machiyama, H.; Yamaguchi, T.; Watanabe, T.M.; Yanagida, T.; Fujita, H. Activation probability of a single naïve T cell upon TCR ligation is controlled by T cells interacting with the same antigen-presenting cell. FEBS Lett., 2021, 595(11), 1512-1524.
[http://dx.doi.org/10.1002/1873-3468.14082] [PMID: 33826750]
[62]
Ramanathan, S.; Gagnon, J.; Ilangumaran, S. Antigen-nonspecific activation of CD8+ T lymphocytes by cytokines: relevance to immunity, autoimmunity, and cancer. Arch. Immunol. Ther. Exp., 2008, 56(5), 311-323.
[http://dx.doi.org/10.1007/s00005-008-0033-2] [PMID: 18836862]
[63]
Kim, T.S.; Shin, E.C. The activation of bystander CD8+ T cells and their roles in viral infection. Exp. Mol. Med., 2019, 51(12), 1-9.
[http://dx.doi.org/10.1038/s12276-019-0316-1] [PMID: 31827070]
[64]
Whiteside, S.K.; Snook, J.P.; Williams, M.A.; Weis, J.J.; Bystander, T. Bystander T cells: A balancing act of friends and foes. Trends Immunol., 2018, 39(12), 1021-1035.
[http://dx.doi.org/10.1016/j.it.2018.10.003] [PMID: 30413351]
[65]
Lee, H.G.; Lee, J.U.; Kim, D.H.; Lim, S.; Kang, I.; Choi, J.M. Pathogenic function of bystander-activated memory-like CD4+ T cells in autoimmune encephalomyelitis. Nat. Commun., 2019, 10(1), 709.
[http://dx.doi.org/10.1038/s41467-019-08482-w] [PMID: 30755603]
[66]
Ge, C.; Monk, I.R.; Pizzolla, A.; Wang, N.; Bedford, J.G.; Stinear, T.P.; Westall, G.P.; Wakim, L.M. Bystander activation of pulmonary trm cells attenuates the severity of bacterial pneumonia by enhancing neutrophil recruitment. Cell Rep., 2019, 29(13), 4236-4244.e3.
[http://dx.doi.org/10.1016/j.celrep.2019.11.103] [PMID: 31875535]
[67]
Trinschek, B.; Lüssi, F.; Haas, J.; Wildemann, B.; Zipp, F.; Wiendl, H.; Becker, C.; Jonuleit, H. Kinetics of IL-6 production defines T effector cell responsiveness to regulatory T cells in multiple sclerosis. PLoS One, 2013, 8(10), e77634.
[http://dx.doi.org/10.1371/journal.pone.0077634] [PMID: 24155968]
[68]
Shim, C.H.; Cho, S.; Shin, Y.M.; Choi, J.M. Emerging role of bystander T cell activation in autoimmune diseases. BMB Rep., 2022, 55(2), 57-64.
[http://dx.doi.org/10.5483/BMBRep.2022.55.2.183] [PMID: 35000675]
[69]
Yasuda, K.; Nakanishi, K.; Tsutsui, H. Interleukin-18 in health and disease. Int. J. Mol. Sci., 2019, 20(3), 649.
[http://dx.doi.org/10.3390/ijms20030649] [PMID: 30717382]
[70]
Snell, L.M.; McGaha, T.L.; Brooks, D.G.; Type, I. Type I interferon in chronic virus infection and cancer. Trends Immunol., 2017, 38(8), 542-557.
[http://dx.doi.org/10.1016/j.it.2017.05.005] [PMID: 28579323]
[71]
Koelman, L.; Pivovarova-Ramich, O.; Pfeiffer, A.F.H.; Grune, T.; Aleksandrova, K. Cytokines for evaluation of chronic inflammatory status in ageing research: Reliability and phenotypic characterisation. Immun. Ageing, 2019, 16(1), 11.
[http://dx.doi.org/10.1186/s12979-019-0151-1] [PMID: 31139232]
[72]
Maurice, N.J.; Taber, A.K.; Prlic, M. The ugly duckling turned to swan: a change in perception of bystander-activated memory CD8 T cells. J. Immunol., 2021, 206(3), 455-462.
[http://dx.doi.org/10.4049/jimmunol.2000937] [PMID: 33468558]
[73]
Chu, T.; Tyznik, A.J.; Roepke, S.; Berkley, A.M.; Woodward-Davis, A.; Pattacini, L.; Bevan, M.J.; Zehn, D.; Prlic, M. Bystander-activated memory CD8 T cells control early pathogen load in an innate-like, NKG2D-dependent manner. Cell Rep., 2013, 3(3), 701-708.
[http://dx.doi.org/10.1016/j.celrep.2013.02.020] [PMID: 23523350]
[74]
Vidal, P. Interferon α in cancer immunoediting: From elimination to escape. Scand. J. Immunol., 2020, 91(5), e12863.
[http://dx.doi.org/10.1111/sji.12863] [PMID: 31909839]
[75]
Provance, O.K.; Lewis-Wambi, J. Deciphering the role of interferon alpha signaling and microenvironment crosstalk in inflammatory breast cancer. Breast Cancer Res., 2019, 21(1), 59.
[http://dx.doi.org/10.1186/s13058-019-1140-1] [PMID: 31060575]
[76]
Gagnon, J.; Ramanathan, S.; Leblanc, C.; Cloutier, A.; McDonald, P.P.; Ilangumaran, S. IL-6, in synergy with IL-7 or IL-15, stimulates TCR-independent proliferation and functional differentiation of CD8+ T lymphocytes. J. Immunol., 2008, 180(12), 7958-7968.
[http://dx.doi.org/10.4049/jimmunol.180.12.7958] [PMID: 18523259]
[77]
Nguyen, D.P.; Li, J.; Tewari, A.K. Inflammation and prostate cancer: The role of interleukin 6 ( IL -6). BJU Int., 2014, 113(6), 986-992.
[http://dx.doi.org/10.1111/bju.12452] [PMID: 24053309]
[78]
Gyamfi, J.; Lee, Y.H.; Eom, M.; Choi, J. Interleukin-6/STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci. Rep., 2018, 8(1), 8859.
[http://dx.doi.org/10.1038/s41598-018-27184-9] [PMID: 29891854]
[79]
Karin, N. CXCR3 ligands in cancer and autoimmunity, chemoattraction of effector T cells, and beyond. Front. Immunol., 2020, 11, 976.
[http://dx.doi.org/10.3389/fimmu.2020.00976] [PMID: 32547545]
[80]
Madhurantakam, S.; Lee, Z.J.; Naqvi, A.; Prasad, S. Importance of IP-10 as a biomarker of host immune response: Critical perspective as a target for biosensing. Curr. Res. Biotechnol., 2023, 5, 100130.
[http://dx.doi.org/10.1016/j.crbiot.2023.100130]
[81]
Li, C.X.; Ling, C.C.; Shao, Y.; Xu, A.; Li, X.C.; Ng, K.T.P.; Liu, X.B.; Ma, Y.Y.; Qi, X.; Liu, H.; Liu, J.; Yeung, O.W.H.; Yang, X.X.; Liu, Q.S.; Lam, Y.F.; Zhai, Y.; Lo, C.M.; Man, K. CXCL10/CXCR3 signaling mobilized-regulatory T cells promote liver tumor recurrence after transplantation. J. Hepatol., 2016, 65(5), 944-952.
[http://dx.doi.org/10.1016/j.jhep.2016.05.032] [PMID: 27245433]
[82]
Lunardi, S.; Lim, S.Y.; Muschel, R.J.; Brunner, T.B. IP-10/CXCL10 attracts regulatory T cells: Implication for pancreatic cancer. OncoImmunology, 2015, 4(9), e1027473.
[http://dx.doi.org/10.1080/2162402X.2015.1027473] [PMID: 26405599]
[83]
Miyauchi, E.; Shimokawa, C.; Steimle, A.; Desai, M.S.; Ohno, H. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat. Rev. Immunol., 2023, 23(1), 9-23.
[http://dx.doi.org/10.1038/s41577-022-00727-y] [PMID: 35534624]
[84]
Golpour, F.; Abbasi-Alaei, M.; Babaei, F.; Mirzababaei, M.; Parvardeh, S.; Mohammadi, G.; Nassiri-Asl, M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed. Pharmacother., 2023, 163, 114763.
[http://dx.doi.org/10.1016/j.biopha.2023.114763] [PMID: 37105078]
[85]
Du, H.X.; Yue, S.Y.; Niu, D.; Liu, C.; Zhang, L.G.; Chen, J.; Chen, Y.; Guan, Y.; Hua, X.L.; Li, C.; Chen, X.G.; Zhang, L.; Liang, C.Z. Gut microflora modulates Th17/treg cell differentiation in experimental autoimmune prostatitis via the short-chain fatty acid propionate. Front. Immunol., 2022, 13, 915218.
[http://dx.doi.org/10.3389/fimmu.2022.915218] [PMID: 35860242]
[86]
Chen, P.; Tang, X. Gut microbiota as regulators of Th17/Treg balance in patients with myasthenia gravis. Front. Immunol., 2021, 12, 803101.
[http://dx.doi.org/10.3389/fimmu.2021.803101] [PMID: 35003133]
[87]
Woo, J.S.; Hwang, S.H.; Yang, S.; Lee, K.H.; Lee, Y.S.; Choi, J.W.; Park, J.S.; Jhun, J.; Park, S.H.; Cho, M.L. Lactobacillus acidophilus and propionate attenuate Sjögren’s syndrome by modulating the STIM1-STING signaling pathway. Cell Commun. Signal., 2023, 21(1), 135.
[http://dx.doi.org/10.1186/s12964-023-01141-0] [PMID: 37316856]
[88]
Rasouli-Saravani, A.; Jahankhani, K.; Moradi, S.; Gorgani, M.; Shafaghat, Z.; Mirsanei, Z.; Mehmandar, A.; Mirzaei, R. Role of microbiota short-chain fatty acids in the pathogenesis of autoimmune diseases. Biomed. Pharmacother., 2023, 162, 114620.
[http://dx.doi.org/10.1016/j.biopha.2023.114620] [PMID: 37004324]
[89]
Kunst, C.; Schmid, S.; Michalski, M.; Tümen, D.; Buttenschön, J.; Müller, M.; Gülow, K. The influence of gut microbiota on oxidative stress and the immune system. Biomedicines, 2023, 11(5), 1388.
[http://dx.doi.org/10.3390/biomedicines11051388] [PMID: 37239059]
[90]
Shandilya, S.; Kumar, S.; Kumar Jha, N.; Kumar Kesari, K.; Ruokolainen, J. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J. Adv. Res., 2022, 38, 223-244.
[http://dx.doi.org/10.1016/j.jare.2021.09.005] [PMID: 35572407]
[91]
de Vos, W.M.; Tilg, H.; Van Hul, M.; Cani, P.D. Gut microbiome and health: Mechanistic insights. Gut, 2022, 71(5), 1020-1032.
[http://dx.doi.org/10.1136/gutjnl-2021-326789] [PMID: 35105664]
[92]
Ding, X.; Jiang, W.; Li, M.; Xiong, S.; Wei, W.; Liu, M.; Xin, H.; Luo, Z.; Zhao, Y. An ROS/DAMP dual-scavenging nanomedicine for normalizing macrophage polarization and microbiome in colitis. Nano Today, 2023, 51, 101924.
[http://dx.doi.org/10.1016/j.nantod.2023.101924]
[93]
Barnabei, L.; Laplantine, E.; Mbongo, W. NF-κB: At the borders of autoimmunity and inflammation. Front. Immunol., 2021, 12, 716469.
[http://dx.doi.org/10.3389/fimmu.2021.716469] [PMID: 34434197]
[94]
Houston, S. STAT3 and autoimmunity. Nat. Immunol., 2023, 24(1), 1-1.
[PMID: 36596898]
[95]
Jantan, I.; Haque, M.A.; Arshad, L.; Harikrishnan, H.; Septama, A.W.; Mohamed-Hussein, Z.A. Dietary polyphenols suppress chronic inflammation by modulation of multiple inflammation-associated cell signaling pathways. J. Nutr. Biochem., 2021, 93, 108634.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108634] [PMID: 33794330]
[96]
Huda, R. Inflammation and autoimmune myasthenia gravis. Front. Immunol., 2023, 14, 1110499.
[http://dx.doi.org/10.3389/fimmu.2023.1110499] [PMID: 36793733]
[97]
Torkildsen, Ø.; Myhr, K.M.; Bø, L. Disease-modifying treatments for multiple sclerosis – a review of approved medications. Eur. J. Neurol., 2016, 23(S1), 18-27.
[http://dx.doi.org/10.1111/ene.12883] [PMID: 26563094]
[98]
Rogovskii, V.S.; Matyushin, A.I.; Shimanovskii, N.L. Urolithin A influences cytokine production by various cancer cell lines. Pharm. Chem. J., 2023, 57(4), 17-21.
[http://dx.doi.org/10.1007/s11094-023-02909-x]
[99]
Shen, P.X.; Li, X.; Deng, S.Y.; Zhao, L.; Zhang, Y.Y.; Deng, X.; Han, B.; Yu, J.; Li, Y.; Wang, Z.Z.; Zhang, Y. Urolithin A ameliorates experimental autoimmune encephalomyelitis by targeting aryl hydrocarbon receptor. EBioMedicine, 2021, 64, 103227.
[http://dx.doi.org/10.1016/j.ebiom.2021.103227] [PMID: 33530002]
[100]
Totiger, T.M.; Srinivasan, S.; Jala, V.R.; Lamichhane, P.; Dosch, A.R.; Gaidarski, A.A., III; Joshi, C.; Rangappa, S.; Castellanos, J.; Vemula, P.K.; Chen, X.; Kwon, D.; Kashikar, N.; VanSaun, M.; Merchant, N.B.; Nagathihalli, N.S. Urolithin A, a novel natural compound to target pi3k/akt/mtor pathway in pancreatic cancer. Mol. Cancer Ther., 2019, 18(2), 301-311.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0464] [PMID: 30404927]
[101]
Zarrin, A.A.; Bao, K.; Lupardus, P.; Vucic, D. Kinase inhibition in autoimmunity and inflammation. Nat. Rev. Drug Discov., 2021, 20(1), 39-63.
[http://dx.doi.org/10.1038/s41573-020-0082-8] [PMID: 33077936]
[102]
Yadav, D.K. Editorial: Kinase inhibitors in cancer therapy. Front. Cell Dev. Biol., 2022, 10, 1020297.
[http://dx.doi.org/10.3389/fcell.2022.1020297] [PMID: 36393866]
[103]
Cannon, A.S.; Nagarkatti, P.S.; Nagarkatti, M. Targeting AhR as a novel therapeutic modality against inflammatory diseases. Int. J. Mol. Sci., 2021, 23(1), 288.
[http://dx.doi.org/10.3390/ijms23010288] [PMID: 35008717]
[104]
Bhaumik, S.; Basu, R. Cellular and molecular dynamics of Th17 differentiation and its developmental plasticity in the intestinal immune response. Front. Immunol., 2017, 8, 254.
[http://dx.doi.org/10.3389/fimmu.2017.00254] [PMID: 28408906]
[105]
Gutiérrez-Vázquez, C.; Quintana, F.J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity, 2018, 48(1), 19-33.
[http://dx.doi.org/10.1016/j.immuni.2017.12.012] [PMID: 29343438]
[106]
Bock, K.W. Aryl hydrocarbon receptor (AHR)-mediated inflammation and resolution: Non-genomic and genomic signaling. Biochem. Pharmacol., 2020, 182, 114220.
[http://dx.doi.org/10.1016/j.bcp.2020.114220] [PMID: 32941865]
[107]
O’Donnell, E.F.; Saili, K.S.; Koch, D.C.; Kopparapu, P.R.; Farrer, D.; Bisson, W.H.; Mathew, L.K.; Sengupta, S.; Kerkvliet, N.I.; Tanguay, R.L.; Kolluri, S.K. The anti-inflammatory drug leflunomide is an agonist of the aryl hydrocarbon receptor. PLoS One, 2010, 5(10), e13128.
[http://dx.doi.org/10.1371/journal.pone.0013128] [PMID: 20957046]
[108]
Zhang, C.; Chu, M. Leflunomide: A promising drug with good antitumor potential. Biochem. Biophys. Res. Commun., 2018, 496(2), 726-730.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.107] [PMID: 29357281]
[109]
Rosenzweig, M.; Palmer, J.; Tsai, N.C.; Synold, T.; Wu, X.; Tao, S.; Hammond, S.N.; Buettner, R.; Duarte, L.; Htut, M.; Karanes, C.; Nathwani, N.; Pichiorri, F.; Sahebi, F.; Sanchez, J.F.; Chowdhury, A.; Krishnan, A.; Forman, S.J.; Rosen, S.T. Repurposing leflunomide for relapsed/refractory multiple myeloma: A phase 1 study. Leuk. Lymphoma, 2020, 61(7), 1669-1677.
[http://dx.doi.org/10.1080/10428194.2020.1742900] [PMID: 32268821]
[110]
Sohrab, S.S.; Raj, R.; Nagar, A.; Hawthorne, S.; Paiva-Santos, A.C.; Kamal, M.A.; El-Daly, M.M.; Azhar, E.I.; Sharma, A. Chronic inflammation’s transformation to cancer: A nanotherapeutic paradigm. Molecules, 2023, 28(11), 4413.
[http://dx.doi.org/10.3390/molecules28114413] [PMID: 37298889]
[111]
Lv, T.; Meng, Y.; Liu, Y.; Han, Y.; Xin, H.; Peng, X.; Huang, J. RNA nanotechnology: A new chapter in targeted therapy. Colloids Surf. B Biointerfaces, 2023, 230, 113533.
[http://dx.doi.org/10.1016/j.colsurfb.2023.113533] [PMID: 37713955]
[112]
Liu, Y.; Cheng, W.; Xin, H.; Liu, R.; Wang, Q.; Cai, W.; Peng, X.; Yang, F.; Xin, H. Nanoparticles advanced from preclinical studies to clinical trials for lung cancer therapy. Cancer Nanotechnol., 2023, 14(1), 28.
[http://dx.doi.org/10.1186/s12645-023-00174-x] [PMID: 37009262]
[113]
Wang, H.C.; Huang, S.K. Metformin inhibits IgE- and aryl hydrocarbon receptor-mediated mast cell activation in vitro and in vivo. Eur. J. Immunol., 2018, 48(12), 1989-1996.
[http://dx.doi.org/10.1002/eji.201847706] [PMID: 30242842]
[114]
Yang, F.; Qin, Y.; Wang, Y.; Meng, S.; Xian, H.; Che, H.; Lv, J.; Li, Y.; Yu, Y.; Bai, Y.; Wang, L. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. Int. J. Biol. Sci., 2019, 15(5), 1010-1019.
[http://dx.doi.org/10.7150/ijbs.29680] [PMID: 31182921]
[115]
Tsuji, G.; Hashimoto-Hachiya, A.; Yen, V.H.; Takemura, M.; Yumine, A.; Furue, K.; Furue, M.; Nakahara, T. Metformin inhibits IL-1β secretion via impairment of NLRP3 inflammasome in keratinocytes: implications for preventing the development of psoriasis. Cell Death Discov., 2020, 6(1), 11.
[http://dx.doi.org/10.1038/s41420-020-0245-8] [PMID: 32194991]
[116]
Ozaki, E.; Campbell, M.; Doyle, S.L. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: Current perspectives. J. Inflamm. Res., 2015, 8, 15-27.
[PMID: 25653548]
[117]
Postler, T.S.; Peng, V.; Bhatt, D.M.; Ghosh, S. Metformin selectively dampens the acute inflammatory response through an AMPK-dependent mechanism. Sci. Rep., 2021, 11(1), 18721.
[http://dx.doi.org/10.1038/s41598-021-97441-x] [PMID: 34548527]
[118]
Mishra, A.K.; Dingli, D. Metformin inhibits IL-6 signaling by decreasing IL-6R expression on multiple myeloma cells. Leukemia, 2019, 33(11), 2695-2709.
[http://dx.doi.org/10.1038/s41375-019-0470-4] [PMID: 30988378]
[119]
Kim, J.W.; Choe, J.Y.; Park, S.H. Metformin and its therapeutic applications in autoimmune inflammatory rheumatic disease. Korean J. Intern. Med., 2022, 37(1), 13-26.
[http://dx.doi.org/10.3904/kjim.2021.363] [PMID: 34879473]
[120]
Saraei, P.; Asadi, I.; Kakar, M.A.; Moradi-Kor, N. The beneficial effects of metformin on cancer prevention and therapy: A comprehensive review of recent advances. Cancer Manag. Res., 2019, 11, 3295-3313.
[http://dx.doi.org/10.2147/CMAR.S200059] [PMID: 31114366]
[121]
Khan, H.; Sureda, A.; Belwal, T.; Çetinkaya, S.; Süntar, İ.; Tejada, S.; Devkota, H.P.; Ullah, H.; Aschner, M. Polyphenols in the treatment of autoimmune diseases. Autoimmun. Rev., 2019, 18(7), 647-657.
[http://dx.doi.org/10.1016/j.autrev.2019.05.001] [PMID: 31059841]
[122]
Mileo, A.M.; Nisticò, P.; Miccadei, S. Polyphenols: Immunomodulatory and therapeutic implication in colorectal cancer. Front. Immunol., 2019, 10, 729.
[http://dx.doi.org/10.3389/fimmu.2019.00729] [PMID: 31031748]
[123]
Speciale, A.; Muscarà, C.; Molonia, M.S.; Cristani, M.; Cimino, F.; Saija, A. Recent advances in glycyrrhetinic acid-functionalized biomaterials for liver cancer-targeting therapy. Molecules, 2022, 27(6), 1775.
[http://dx.doi.org/10.3390/molecules27061775] [PMID: 35335138]
[124]
Jain, R.; Hussein, M.A.; Pierce, S.; Martens, C.; Shahagadkar, P.; Munirathinam, G. Oncopreventive and oncotherapeutic potential of licorice triterpenoid compound glycyrrhizin and its derivatives: Molecular insights. Pharmacol. Res., 2022, 178, 106138.
[http://dx.doi.org/10.1016/j.phrs.2022.106138] [PMID: 35192957]
[125]
Li, J.; Shi, J.; Sun, Y.; Zheng, F. Glycyrrhizin, a potential drug for autoimmune encephalomyelitis by inhibiting high-mobility group box 1. DNA Cell Biol., 2018, 37(12), 941-946.
[http://dx.doi.org/10.1089/dna.2018.4444] [PMID: 30325653]
[126]
Feng, Y.; Mei, L.; Wang, M.; Huang, Q.; Huang, R. Anti-inflammatory and Pro-apoptotic effects of 18beta-glycyrrhetinic acid in vitro and in vivo models of rheumatoid arthritis. Front. Pharmacol., 2021, 12, 681525.
[http://dx.doi.org/10.3389/fphar.2021.681525] [PMID: 34381358]
[127]
Tian, H.; Cheng, Y.; Zhang, Y.; Bai, X.; Jiang, Y.; Li, J.; Fan, S.; Ding, H. 18β-Glycyrrhetinic acid alleviates demyelination by modulating the microglial M1/M2 phenotype in a mouse model of cuprizone-induced demyelination. Neurosci. Lett., 2021, 755, 135871.
[http://dx.doi.org/10.1016/j.neulet.2021.135871] [PMID: 33812928]
[128]
Li, J.; Zhang, Z.; Huang, X. Tripterine and all-trans retinoic acid (ATRA) – loaded lipid-polymer hybrid nanoparticles for synergistic anti-arthritic therapy against inflammatory arthritis. Artif. Cells Nanomed. Biotechnol., 2021, 49(1), 575-585.
[http://dx.doi.org/10.1080/21691401.2021.1964983] [PMID: 34396850]
[129]
Olson, D.J.; Luke, J.J. Myeloid maturity: ATRA to enhance anti–PD-1? Clin. Cancer Res., 2023, 29(7), 1167-1169.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-3652] [PMID: 36656164]
[130]
Tobin, R.P.; Cogswell, D.T.; Cates, V.M.; Davis, D.M.; Borgers, J.S.W.; Van Gulick, R.J.; Katsnelson, E.; Couts, K.L.; Jordan, K.R.; Gao, D.; Davila, E.; Medina, T.M.; Lewis, K.D.; Gonzalez, R.; McFarland, R.W.; Robinson, W.A.; McCarter, M.D. Targeting MDSC differentiation using ATRA: A phase I/II clinical trial combining pembrolizumab and all-trans retinoic acid for metastatic melanoma. Clin. Cancer Res., 2023, 29(7), 1209-1219.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-2495] [PMID: 36378549]
[131]
Li, C.; Xu, Y.; Zhang, J.; Zhang, Y.; He, W.; Ju, J.; Wu, Y.; Wang, Y. The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice. Sci. Rep., 2023, 13(1), 13278.
[http://dx.doi.org/10.1038/s41598-023-39279-z] [PMID: 37587146]
[132]
Abdallah, M.; Dumontier, C.; Orkaby, A.; Cho, K.; Charest, B.; Preis, S.; Driver, J.A. Metformin use and incidence of cancer: A large retrospective cohort study of U.S. Veterans. Blood, 2022, 140(S1), 10991-10992.
[http://dx.doi.org/10.1182/blood-2022-167640]
[133]
Goodwin, P.J.; Chen, B.E.; Gelmon, K.A.; Whelan, T.J.; Ennis, M.; Lemieux, J.; Ligibel, J.A.; Hershman, D.L.; Mayer, I.A.; Hobday, T.J.; Bliss, J.M.; Rastogi, P.; Rabaglio-Poretti, M.; Mukherjee, S.D.; Mackey, J.R.; Abramson, V.G.; Oja, C.; Wesolowski, R.; Thompson, A.M.; Rea, D.W.; Stos, P.M.; Shepherd, L.E.; Stambolic, V.; Parulekar, W.R. Effect of metformin vs placebo on invasive disease–free survival in patients with breast cancer. JAMA, 2022, 327(20), 1963-1973.
[http://dx.doi.org/10.1001/jama.2022.6147] [PMID: 35608580]
[134]
Skinner, H.; Hu, C.; Tsakiridis, T.; Santana-Davila, R.; Lu, B.; Erasmus, J.J.; Doemer, A.J.; Videtic, G.M.M.; Coster, J.; Yang, A.X.; Lee, R.Y.; Werner-Wasik, M.; Schaner, P.E.; McCormack, S.E.; Esparaz, B.T.; McGarry, R.C.; Bazan, J.; Struve, T.; Paulus, R.; Bradley, J.D. Addition of metformin to concurrent chemoradiation in patients with locally advanced non–small cell lung cancer. JAMA Oncol., 2021, 7(9), 1324-1332.
[http://dx.doi.org/10.1001/jamaoncol.2021.2318] [PMID: 34323922]
[135]
Choi, Y.H.; Han, D.H.; Kim, S.; Kim, M.J.; Sung, H.H.; Jeon, H.G.; Jeong, B.C.; Seo, S.I.; Jeon, S.S.; Lee, H.M.; Choi, H.Y. A randomized, double-blind, placebo-controlled trial to evaluate the role of curcumin in prostate cancer patients with intermittent androgen deprivation. Prostate, 2019, 79(6), 614-621.
[http://dx.doi.org/10.1002/pros.23766] [PMID: 30671976]
[136]
Howells, L.M.; Iwuji, C.O.O.; Irving, G.R.B.; Barber, S.; Walter, H.; Sidat, Z.; Griffin-Teall, N.; Singh, R.; Foreman, N.; Patel, S.R.; Morgan, B.; Steward, W.P.; Gescher, A.; Thomas, A.L.; Brown, K. Curcumin combined with FOLFOX chemotherapy is safe and tolerable in patients with metastatic colorectal cancer in a randomized phase IIa trial. J. Nutr., 2019, 149(7), 1133-1139.
[http://dx.doi.org/10.1093/jn/nxz029] [PMID: 31132111]
[137]
Sinicrope, F.A.; Viggiano, T.R.; Buttar, N.S.; Song, L.M.W.K.; Schroeder, K.W.; Kraichely, R.E.; Larson, M.V.; Sedlack, R.E.; Kisiel, J.B.; Gostout, C.J.; Kalaiger, A.M.; Patai, Á.V.; Della’Zanna, G.; Umar, A.; Limburg, P.J.; Meyers, J.P.; Foster, N.R.; Yang, C.S.; Sontag, S. Randomized phase II trial of polyphenon E versus placebo in patients at high risk of recurrent colonic neoplasia. Cancer Prev. Res., 2021, 14(5), 573-580.
[http://dx.doi.org/10.1158/1940-6207.CAPR-20-0598] [PMID: 33648940]
[138]
Lin, C.Y.; Wu, C.H.; Hsu, C.Y.; Chen, T.H.; Lin, M.S.; Lin, Y.S.; Su, Y.J. Reduced mortality associated with the use of metformin among patients with autoimmune diseases. Front. Endocrinol., 2021, 12, 641635.
[http://dx.doi.org/10.3389/fendo.2021.641635] [PMID: 33967957]
[139]
Amalraj, A.; Varma, K.; Jacob, J.; Divya, C.; Kunnumakkara, A.B.; Stohs, S.J.; Gopi, S. A novel highly bioavailable curcumin formulation improves symptoms and diagnostic indicators in rheumatoid arthritis patients: A randomized, double-blind, placebo-controlled, two-dose, three-arm, and parallel-group study. J. Med. Food, 2017, 20(10), 1022-1030.
[http://dx.doi.org/10.1089/jmf.2017.3930] [PMID: 28850308]
[140]
Petracca, M.; Quarantelli, M.; Moccia, M.; Vacca, G.; Satelliti, B.; D’Ambrosio, G.; Carotenuto, A.; Ragucci, M.; Assogna, F.; Capacchione, A.; Lanzillo, R.; Morra, V.B. ProspeCtive study to evaluate efficacy, safety and tOlerability of dietary supplemeNT of Curcumin (BCM95) in subjects with Active relapsing MultIple Sclerosis treated with subcutaNeous Interferon beta 1a 44 mcg TIW (CONTAIN): A randomized, controlled trial. Mult. Scler. Relat. Disord., 2021, 56, 103274.
[http://dx.doi.org/10.1016/j.msard.2021.103274] [PMID: 34583214]
[141]
Chiricozzi, A.; Panduri, S.; Dini, V.; Tonini, A.; Gualtieri, B.; Romanelli, M. Optimizing acitretin use in patients with plaque psoriasis. Dermatol. Ther., 2017, 30(2), e12453.
[http://dx.doi.org/10.1111/dth.12453] [PMID: 27998019]
[142]
de la Rubia Ortí, J.E.; Platero, J.L.; Benlloch, M.; Franco-Martinez, L.; Tvarijonaviciute, A.; Escribá-Alepuz, J.; Sancho-Castillo, S. Role of haptoglobin as a marker of muscular improvement in patients with multiple sclerosis after administration of epigallocatechin gallate and increase of beta-hydroxybutyrate in the blood: A pilot study. Biomolecules, 2021, 11(5), 617.
[http://dx.doi.org/10.3390/biom11050617] [PMID: 33919169]
[143]
Zhang, C.; Guan, D.; Jiang, M.; Liang, C.; Li, L.; Zhao, N.; Zha, Q.; Zhang, W.; Lu, C.; Zhang, G.; Liu, J.; Lu, A. Efficacy of leflunomide combined with ligustrazine in the treatment of rheumatoid arthritis: Prediction with network pharmacology and validation in a clinical trial. Chin. Med., 2019, 14(1), 26.
[http://dx.doi.org/10.1186/s13020-019-0247-8] [PMID: 31388350]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy