Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Antimetastatic Drug, Pharmacologic Challenge and Opportunity

Author(s): Da-Yong Lu* and Ting-Ren Lu

Volume 20, Issue 2, 2025

Published on: 24 January, 2024

Page: [169 - 179] Pages: 11

DOI: 10.2174/0115748855284405231212051251

Price: $65

TIMBC 2025
Abstract

Cancer is a complex and high-mortality disease in the clinic. Cancer metastasis leads to most cancer deaths. The therapeutics for cancer metastasis are greatly unsatisfactory now. Despite different types of antimetastatic agents and drugs have been reported, 90% of patients die in 5 years after metastatic nodules at secondary sites have been found.

Many pharmacologic challenges and opportunities for current metastasis therapies are presented. To overcome the dilemma and shortcomings of antimetastatic treatment, medical, chemical, pharmaceutical, methodological and technical issues are integrated and highlighted. To introduce up-to-date knowledge and insights into drug targeting and pharmaceutical features and clinical paradigms, relevant drug design insights are discussed—including different pathological modes, diagnosis advances, metastatic cascade, tumor plasticity, variety of animal models, therapeutic biomarkers, computational tools and cancer genomics. Integrated knowledge, systems and therapeutics are focused.

In summary, medicinal comparison, pharmaceutical innovation and clinical strategies should be increasingly investigated.

Keywords: Metastatic cascade, pharmacotherapy, cancer plasticity, cancer therapy, animal models, microenvironment, cancer stem cells, herbal medicine.

[1]
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73(1): 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[2]
Ali I. Rahis-ud-din, Saleem K, Aboul-Enein HY, Rather A. Social aspects of cancer genesis. Cancer Ther 2011; 8(1): 6-14.
[3]
Gupta GP, Massagué J. Cancer metastasis: Building a frame-work. Cell 2006; 127(4): 679-95.
[http://dx.doi.org/10.1016/j.cell.2006.11.001] [PMID: 17110329]
[4]
Lu DY, Xu B, Lu TR. Anticancer drug development, evaluative architecture. Lett Drug Des Discov 2023; 23.
[5]
Ahuja V. New drug approvals by FDA from 2013-2017. Environ Toxicol Pharmacol 2018; 6(9): 772-4.
[6]
Lambert AW, Pattabiraman DR, Weinberg RA. Emerging bio-logical principles of metastasis. Cell 2017; 168(4): 670-91.
[http://dx.doi.org/10.1016/j.cell.2016.11.037] [PMID: 28187288]
[7]
Lim EJ, Kang JH, Kim YJ, Kim S, Lee SJ. ICAM-1 promotes cancer progression by regulating SRC activity as an adapter protein in colorectal cancer. Cell Death Dis 2022; 13(4): 417.
[http://dx.doi.org/10.1038/s41419-022-04862-1] [PMID: 35487888]
[8]
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5(1): 28.
[http://dx.doi.org/10.1038/s41392-020-0134-x] [PMID: 32296047]
[9]
Parker AL, Benguigui M, Fornetti J, et al. Current challenges in metastasis research and future innovation for clinical translation. Clin Exp Metastasis 2022; 39(2): 263-77.
[http://dx.doi.org/10.1007/s10585-021-10144-5] [PMID: 35072851]
[10]
Lu D-Y, Lu T-R. Anti-metastatic drug development, overview and perspectives. HPMIJ 2023; 6(2): 45-51.
[http://dx.doi.org/10.15406/hpmij.2023.06.00217]
[11]
Lu DY, Lu TR, Wu HY, Cao S. Cancer metastasis treatments. Curr Drug Ther 2013; 8(1): 24-9.
[http://dx.doi.org/10.2174/1574885511308010003]
[12]
Ruggeri BA, Camp F, Miknyoczki S. Animal models of disease: Preclinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol 2014; 87(1): 150-61.
[http://dx.doi.org/10.1016/j.bcp.2013.06.020] [PMID: 23817077]
[13]
Herter-Sprie GS, Kung AL, Wong KK. New cast for a new era: Preclinical cancer drug development revisited. J Clin Invest 2013; 123(9): 3639-45.
[http://dx.doi.org/10.1172/JCI68340] [PMID: 23999436]
[14]
Lu DY, Lu TR, Xu B, et al. Anti-metastatic drug development, work out towards new direction. Med Chem 2018; 8(7): 192-6.
[15]
Hellmann K, Burrage K. Control of malignant metastases by ICRF l59. Nature 1969; 224(5216): 273-5.
[http://dx.doi.org/10.1038/224273a0] [PMID: 5344607]
[16]
Herman EH, Witial DT, Hellmann K, Waravdekar VS. Biologi-cal properties of ICRF-159 and related bis(dioxopiperazine) compounds. Adv Pharmacol 1982; 19: 249-90.
[http://dx.doi.org/10.1016/S1054-3589(08)60025-3] [PMID: 6819768]
[17]
Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010; 141(1): 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[18]
Taraboletti G, Margosio B. Antiangiogenic and antivascular therapy for cancer. Curr Opin Pharmacol 2001; 1(4): 378-84.
[http://dx.doi.org/10.1016/S1471-4892(01)00065-0] [PMID: 11710736]
[19]
Folkman J. Angiogenesis. Annu Rev Med 2006; 57(1): 1-18.
[http://dx.doi.org/10.1146/annurev.med.57.121304.131306] [PMID: 16409133]
[20]
Wong MH, Stockler MR, Pavlakis N. Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst Rev 2012; 15(2): CD003474.
[http://dx.doi.org/10.1002/14657858.cd003474pmed3] [PMID: 22336790]
[21]
Battafarano G, Rossi M, Marampon F, Del Fattore A. Cellular and molecular medication of bone metastatic lesion. Int J Mol Sci 2018; 19(6): 1709.
[http://dx.doi.org/10.3390/ijms19061709] [PMID: 29890702]
[22]
Lu DY, Chen XL, Ding J. Treatment of solid tumors and metastases by fibrinogen-targeted anticancer drug therapy. Med Hypotheses 2007; 68(1): 188-93.
[http://dx.doi.org/10.1016/j.mehy.2006.06.045] [PMID: 16956730]
[23]
Bobek V. Anticoagulant and fibrinolytic drugs - possible agents in treatment of lung cancer? Anticancer Agents Med Chem 2012; 12(6): 580-8.
[http://dx.doi.org/10.2174/187152012800617687] [PMID: 22292773]
[24]
Rothwell PM, Fowkes FGR, Belch JFF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from random-ised trials. Lancet 2011; 377(9759): 31-41.
[http://dx.doi.org/10.1016/S0140-6736(10)62110-1] [PMID: 21144578]
[25]
Fidler IJ. Macrophages and metastasis--a biological approach to cancer therapy. Cancer Res 1985; 45(10): 4714-26.
[PMID: 2992766]
[26]
Lu DY, Xi YC. Antimetastatic therapies according to metastatic cascade. Adv Pharmacoepidemiol Drug Saf 2012; 1(3): e107.
[http://dx.doi.org/10.4172/2167-1052.1000e107]
[27]
Yarla NS, Sukocheva O, Peluso I, Putta S, Bramhachari PV, Yadala K. Targeting arachidonic acid pathway—associated NF-kB in pancreatic cancer Role of Transcription Factors in Gastro-intestinal Malignancies. 401-9.
[28]
Lu D, Cao J. Structural aberrations of cellular sialic acids and their functions in cancer metastases. J Shanghai Univ 2001; 5(2): 164-70.
[http://dx.doi.org/10.1007/s11741-001-0016-6]
[29]
Lu DY, Lu TR, Wu HY. Antimetastatic therapy targeting aberrant sialylation profiles in cancer cells. Drugs Ther Stud 2011; 1(1): 12.
[http://dx.doi.org/10.4081/dts.2011.e12]
[30]
Lu DY, Lu TR, Wu HY. Development of antimetastatic drugs by targeting tumor sialic acids. Sci Pharm 2012; 80(3): 497-508.
[http://dx.doi.org/10.3797/scipharm.1205-01] [PMID: 23008802]
[31]
Vajaria BN, Patel KR, Begum R, Patel PS. Sialylation: An avenue to target cancer cells. Pathol Oncol Res 2016; 22(3): 443-7.
[http://dx.doi.org/10.1007/s12253-015-0033-6] [PMID: 26685886]
[32]
Lu DY, Lu TR, Ding J, et al. Anti-metastatic therapy at aberrant sialylation in cancer cells, a potential hotspot. ClinProteomBioinform 2017; 2(1): 118.
[33]
Munkley J, Scott E. Targeting aberrant sialylation to treat cancer. Medicines 2019; 6(4): 102.
[http://dx.doi.org/10.3390/medicines6040102] [PMID: 31614918]
[34]
Thejass P, Kuttan G. Antimetastatic activity of Sulforaphane. Life Sci 2006; 78(26): 3043-50.
[http://dx.doi.org/10.1016/j.lfs.2005.12.038] [PMID: 16600309]
[35]
Lee SJ, Chung IM, Kim MY, Park KD, Park WW, Moon HI. Inhibition of lung metastasis in mice by oligonol. Phytother Res 2009; 23(7): 1043-6.
[http://dx.doi.org/10.1002/ptr.2810] [PMID: 19288502]
[36]
Parasuraman S. Herbal drug discovery: Challenges and perspectives. Curr Pharmacogenomics Person Med 2018; 16(1): 63-8.
[http://dx.doi.org/10.2174/1875692116666180419153313]
[37]
Yakisich JS. Challenges and limitations of targeting cancer stem cells and/or the tumour microenvironment. Drugs Ther Stud 2012; 2(1): 10.
[http://dx.doi.org/10.4081/dts.2012.e10]
[38]
Park TS, Donnenberg VS, Donnenberg AD, Zambidis ET, Zimmerlin L. Dynamic interactions between cancer stem cells and their stromal partners. Curr Pathobiol Rep 2014; 2(1): 41-52.
[http://dx.doi.org/10.1007/s40139-013-0036-5] [PMID: 24660130]
[39]
Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: Impact, heterogeneity, and uncertainty. Cancer Cell 2012; 21(3): 283-96.
[http://dx.doi.org/10.1016/j.ccr.2012.03.003] [PMID: 22439924]
[40]
Fidler IJ. The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 2003; 3(6): 453-8.
[http://dx.doi.org/10.1038/nrc1098] [PMID: 12778135]
[41]
Nieto MA, Huang RYJ, Jackson RA, Thiery JP. EMT: 2016. Cell 2016; 166(1): 21-45.
[http://dx.doi.org/10.1016/j.cell.2016.06.028] [PMID: 27368099]
[42]
Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871-90.
[http://dx.doi.org/10.1016/j.cell.2009.11.007] [PMID: 19945376]
[43]
Lorentzen A, Becker PF, Kosla J, et al. Single cell polarity in liquid phase facilitates tumour metastasis. Nat Commun 2018; 9(1): 887.
[http://dx.doi.org/10.1038/s41467-018-03139-6] [PMID: 29491397]
[44]
Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004; 351(8): 781-91.
[http://dx.doi.org/10.1056/NEJMoa040766] [PMID: 15317891]
[45]
Yang G, Li X, Li X, et al. Traditional chinese medicine in cancer care: A review of case series published in the chinese literature. Evid Based Complement Alternat Med 2012; 2012: 1-8.
[http://dx.doi.org/10.1155/2012/751046] [PMID: 22778776]
[46]
Kitagishi Y, Matsuda S, Minami A, Ono Y, Nakanishi A, Ogura Y. Regulation in cell cycle via p53 and PTEN tumor suppressors. Cancer Stud Mol Med 2014; 1(1): 1-7.
[http://dx.doi.org/10.17140/CSMMOJ-1-101]
[47]
Lu DY, Lu TR. Anticancer activities and mechanisms of bisdioxopiperazine compounds probimane and MST-16. Anticancer Agents Med Chem 2010; 10(1): 78-91.
[http://dx.doi.org/10.2174/1871520611009010078] [PMID: 19845502]
[48]
Lu DY, Lu TR. Antimetastatic activities and mechanisms of bisdioxopiperazine compounds. Anticancer Agents Med Chem 2010; 10(7): 564-70.
[http://dx.doi.org/10.2174/187152010793498654] [PMID: 20950258]
[49]
Lu DY, Ding J, Chen RT, Xu B, Yarla NS, Lu TR. Antimetastatic mechanisms of Bisdioxopiperazine compound study, a gateway to success. J Mol Cell Pharmacol 2017; 1(1): e101.
[50]
Lu DY, Xu B, Ding J. Antitumor effects of two bisdioxopiperazines against two experimental lung cancer models in vivo. BMC Pharmacol 2004; 4(1): 32.
[http://dx.doi.org/10.1186/1471-2210-4-32] [PMID: 15617579]
[51]
Lu D, Huang M, Xu C, et al. Anti-proliferative effects, cell cycle G2/M phase arrest and blocking of chromosome segregation by probimane and MST-16 in human tumor cell lines. BMC Pharmacol 2005; 5(1): 11.
[http://dx.doi.org/10.1186/1471-2210-5-11] [PMID: 15963241]
[52]
Xu B, Ding J, Zhu H, Xu C-H, Huang M, Lu D-Y. Medicinal chemistry of probimane and MST-16: comparison of anticancer effects between bisdioxopiperazines. Med Chem 2006; 2(4): 369-75.
[http://dx.doi.org/10.2174/157340606777724095] [PMID: 16848748]
[53]
Lu DY, Wu FG, Zhen ZM, et al. Different spontaneous pulmonary metastasis inhibitions against lewis lung carcinoma in mice by bisdioxopiperazine compounds of different treatment schedules. Sci Pharm 2010; 78(1): 13-20.
[http://dx.doi.org/10.3797/scipharm.0910-16] [PMID: 21179367]
[54]
James SE, Salsbury AJ. Effect of (plus or minus)-1,2-bis(3,5-dioxopiperazin-1-yl)propane on tumor blood vessels and its relationship to the antimetastatic effect in the Lewis lung carcinoma. Cancer Res 1974; 34(4): 839-42.
[PMID: 4814996]
[55]
Lu DY, Chen RT, Lu TR, et al. The absorption, distributions and excretions of 14C-probimane. Sci Pharm 2010; 78(3): 445-50.
[http://dx.doi.org/10.3797/scipharm.1005-05] [PMID: 21179357]
[56]
Lu DY, Lu DR, Ding J. Cell biological manifestations of bisdioxopiperazines treatment of human tumor cell lines in culture. Anticancer Agents Med Chem 2010; 10(9): 657-60.
[http://dx.doi.org/10.2174/187152010794479843] [PMID: 21235436]
[57]
Chen F, Qi X, Qian M, Dai Y, Sun Y. Tackling the tumor microenvironment: What challenge does it pose to anticancer therapies? Protein Cell 2014; 5(11): 816-26.
[http://dx.doi.org/10.1007/s13238-014-0097-1] [PMID: 25185441]
[58]
Hofbauer LC, Bozec A, Rauner M, Jakob F, Perner S, Pantel K. Novel approaches to target the microenvironment of bone metastasis. Nat Rev Clin Oncol 2021; 18(8): 488-505.
[http://dx.doi.org/10.1038/s41571-021-00499-9] [PMID: 33875860]
[59]
Litak J, Czyżewski W, Szymoniuk M, et al. Biological and clinical aspects of metastatic spinal tumors. Cancers 2022; 14(19): 4599.
[http://dx.doi.org/10.3390/cancers14194599] [PMID: 36230523]
[60]
Lee SH, Choi Y. Communication between the skeletal and immune systems. Osteoporos Sarcopenia 2015; 1(2): 81-91.
[http://dx.doi.org/10.1016/j.afos.2015.09.004]
[61]
Lu J, Hu D, Zhang Y, Ma C, Shen L, Shuai B. Current comprehensive understanding of denosumab (the RANKL neutralizing antibody) in the treatment of bone metastasis of malignant tumors, including pharmacological mechanism and clinical trials. Front Oncol 2023; 13: 1133828.
[http://dx.doi.org/10.3389/fonc.2023.1133828] [PMID: 36860316]
[62]
Lu DY, Xu B. Cancer bone metastasis, experimental study. Acta Orthop Orthopaedica 2022; 5(12): 1-3.
[63]
Lu DY, Xu B. Bone cancer and metastatic trials, drug treatment. Acta Orthop Orthopaedica 2021; 4(9): 31-3.
[http://dx.doi.org/10.31080/ASOR.2021.04.0355]
[64]
Kumar A. Immuno-oncology: Is it a new hope for cancer patients? Cancer Stud Mol Med 2015; 2(1): 66-8.
[http://dx.doi.org/10.17140/CSMMOJ-2-108]
[65]
van Denderen BJW, Thompson EW. The to and fro of tumour spread. Nature 2013; 493(7433): 487-8.
[http://dx.doi.org/10.1038/493487a] [PMID: 23344357]
[66]
Lu DY, Lu TR, Xu B, et al. Cancer metastasis, a clinical dilemma for therapeutics. Curr Drug Ther 2016; 11(2): 163-9.
[http://dx.doi.org/10.2174/1574885511666160810143216]
[67]
Eslami-S Z, Cortés-Hernández LE, Thomas F, Pantel K, Alix-Panabières C. Functional analysis of circulating tumour cells: the KEY to understand the biology of the metastatic cascade. Br J Cancer 2022; 127(5): 800-10.
[http://dx.doi.org/10.1038/s41416-022-01819-1] [PMID: 35484215]
[68]
Pantel K, Alix-Panabières C. Crucial roles of circulating tumor cells in the metastatic cascade and tumor immune escape: Biology and clinical translation. J Immunother Cancer 2022; 10(12): e005615.
[http://dx.doi.org/10.1136/jitc-2022-005615] [PMID: 36517082]
[69]
Dvorak HF. Tumor stroma, tumor blood vessels, and anti-angiogenesis therapy. Cancer J 2015; 21(4): 237-43.
[http://dx.doi.org/10.1097/PPO.0000000000000124] [PMID: 26222073]
[70]
Dvorak HF, Weaver VM, Tlsty TD, Bergers G. Tumor microenvironment and progression. J Surg Oncol 2011; 103(6): 468-74.
[http://dx.doi.org/10.1002/jso.21709] [PMID: 21480238]
[71]
Lu DY, Lu TR, Chen XL, Xu B, Ding J. Plasma fibrinogen concentrations in patients with solid tumor and therapeutic improvements by combining anticoagulants and fibrinolytical agents. Adv Pharmacoepidemiol Drug Saf 2015; 4(4): e133.
[72]
Goodman SL, Picard M. Integrins as therapeutic targets. Trends Pharmacol Sci 2012; 33(7): 405-12.
[http://dx.doi.org/10.1016/j.tips.2012.04.002] [PMID: 22633092]
[73]
Bendas G, Borsig L. Cancer cell adhesion and metastasis: Selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol 2012; 2012: 1-10.
[http://dx.doi.org/10.1155/2012/676731] [PMID: 22505933]
[74]
Lu DY, Lu TR, Chen EH, Ding J, Xu B. Tumor fibrin/fibrinogen matrix as a unique therapeutic target for pulmonary cancer growth and metastases. Clin Res Pulmonol 2015; 3(1): 1027.
[75]
Pastò A, Consonni FM, Sica A. Influence of innate immunity on cancer stemness. Int J Mol Sci 2020; 21(9): 3352.
[http://dx.doi.org/10.3390/ijms21093352] [PMID: 32397392]
[76]
Frenzel T, Hoffmann B, Schmitz R, Bethge A, Schumacher U, Wedemann G. Radiotherapy and chemotherapy change vessel tree geometry and metastatic spread in a small cell lung cancer xenograft mouse tumor model. PLoS One 2017; 12(11): e0187144.
[http://dx.doi.org/10.1371/journal.pone.0187144] [PMID: 29107953]
[77]
Sims-Mourtada J, Opdenaker LM, Davis J, Wu C. Long-term, low dose genistein decreases stem cell populations and sensitizes inflammatory breast cancer cell lines to radiation. Cancer Stud Mol Med 2015; 2(1): 60-5.
[http://dx.doi.org/10.17140/CSMMOJ-2-107]
[78]
Pietrobono S, Stecca B. Aberrant sialylation in cancer: Biomarker and potential target for therapeutic intervention. Cancers 2021; 13(9): 2014.
[http://dx.doi.org/10.3390/cancers13092014] [PMID: 33921986]
[79]
Hu B, Du Q, Shen KP, Xu L. Principles and scientific basis of traditional cancer treatments. J Bioanalys Biomed 2012; S6: 005.
[80]
Lu DY, Lu TR, Che JY, Wu HY. Old theories revisited on cancer assistant therapy. Int J Medical and Health Sciences Res 2014; 1(5): 50-7.
[81]
Shu L, Cheung KL, Khor TO, Chen C, Kong AN. Phytochemicals: Cancer chemoprevention and suppression of tumor onset and metastasis. Cancer Metastasis Rev 2010; 29(3): 483-502.
[http://dx.doi.org/10.1007/s10555-010-9239-y] [PMID: 20798979]
[82]
Iorio F, Knijnenburg TA, Vis DJ, et al. A landscape of pharmacogenomic interactions in cancer. Cell 2016; 166(3): 740-54.
[http://dx.doi.org/10.1016/j.cell.2016.06.017] [PMID: 27397505]
[83]
Ali I, Haque A, Wani WA, Saleem K, Al Za’abi M. Analyses of anticancer drugs by capillary electrophoresis: A review. Biomed Chromatogr 2013; 27(10): 1296-311.
[http://dx.doi.org/10.1002/bmc.2953] [PMID: 23843248]
[84]
Ali I, Lone MN, Alothman ZA, Alwarthan A. Insights into the pharmacology of new heterocycles embedded with oxopyrrolidine rings: DNA binding, molecular docking, and anticancer studies. J Mol Liq 2017; 234: 391-402.
[http://dx.doi.org/10.1016/j.molliq.2017.03.112]
[85]
Vetvicka V, Fusek M. Procathepsin D as a tumor marker, anti-cancer drug or screening agent. Anticancer Agents Med Chem 2012; 12(2): 172-5.
[http://dx.doi.org/10.2174/187152012799014904] [PMID: 22292775]
[86]
Chen L, Yang S, Jakoncic J, Zhang JJ, Huang XY. Migrastatin analogues target fascin to block tumour metastasis. Nature 2010; 464(7291): 1062-6.
[http://dx.doi.org/10.1038/nature08978] [PMID: 20393565]
[87]
Valastyan S, Reinhardt F, Benaich N, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 2009; 137(6): 1032-46.
[http://dx.doi.org/10.1016/j.cell.2009.03.047] [PMID: 19524507]
[88]
Iiizumi M, Liu W, Pai SK, Furuta E, Watabe K. Drug development against metastasis-related genes and their pathways: A rationale for cancer therapy. Biochim Biophys Acta 2008; 1786(2): 87-104.
[PMID: 18692117]
[89]
Ali I, Saleem K, Uddin R, Haque A, El-Azzouny A. Natural products: Human friendly anti-cancer medications. Egypt Pharm J 2010; 9(2): 133-79.
[90]
Lu DY, Lu TR, Lu Y, Yarla NS, Wu HY. Discover natural chemical drugs in modern medicines. Metabolomics 2016; 6(3): 181.
[91]
Lu DY, Lu TR. Herbal medicine in new era. Am J Hosp Palliat Care 2019; 3(4): 125-30.
[http://dx.doi.org/10.15406/hpmij.2019.03.00165]
[92]
Lu DY, Lu TR, Yarla NS, et al. Natural drug cancer treatments, strategies from herbal medicine to chemical or biological drugs. Stud Nat Prod Chem 2020; 66: 91-115.
[http://dx.doi.org/10.1016/B978-0-12-817907-9.00004-0]
[93]
Lu DY, Lu TR. Drug discoveries from natural resources. J Primary Health Care & General Practice 2019; 3(1): 28.
[94]
Pattanayak S. Anti-cancer plants and their therapeutic use as succulent biomedicine capsules. Explor Anim Med Res 2023; 13: 01-50.
[http://dx.doi.org/10.52635/eamr/13(S)01-50]
[95]
Lu DY, Lu TR. Knowledge of the molecular signaling pathways improves the chances of treatment of gastro-intestinal stromal tumors. Can Stud Mol Med Open 2022; 2(1): 69-71.
[http://dx.doi.org/10.30654/MJPS.10011]
[96]
Garg PK. Potential of molecular imaging to advance molecular medicine. Cancer Stud Mol Med 2017; 3(1): e3-4.
[http://dx.doi.org/10.17140/CSMMOJ-3-e004]
[97]
de Macedo JE. Knowledge of the molecular signaling pathways improves the chances of treatment of gastro-intestinal stromal tumors. Cancer Stud Mol Med 2015; 2(1): 69-71.
[http://dx.doi.org/10.17140/CSMMOJ-2-109]
[98]
Yui Y, Kumai J, Watanabe K, Wakamatsu T, Sasagawa S. Lung fibrosis is a novel therapeutic target to suppress lung metastasis of osteosarcoma. Int J Cancer 2022; 151(5): 739-51.
[http://dx.doi.org/10.1002/ijc.34008] [PMID: 35342929]
[99]
Jelgersma C, Vajkoczy P. How to target spinal metastasis in experimental research: An overview of currently used experimental mouse model and future prospects. Int J Mol Sci 2021; 22(11): 5420.
[http://dx.doi.org/10.3390/ijms22115420] [PMID: 34063821]
[100]
Suraya R, Nagano T, Kobayashi K, Nishimura Y. Microbiome as a target for cancer therapy. Integr Cancer Ther 2020; 19.
[http://dx.doi.org/10.1177/1534735420920721] [PMID: 32564632]
[101]
Malaviya A, Paari KA, Malviya S, Kondapalli V, Ghosh A, Samuel RA. Gut microbiota and cancer correlates. In: Probiotic Research in Therapeutics. Springer 2021; pp. 1-27.
[http://dx.doi.org/10.1007/978-981-15-8214-1_1]
[102]
Hollingshead MG, Greenberg N, Gottholm-Ahalt M, et al. ROADMAPS: An online database of response data, dosing regimens, and toxicities of approved oncology drugs as single agents to guide preclinical in vivo studies. Cancer Res 2022; 82(12): 2219-25.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-4151] [PMID: 35472132]
[103]
Emran TB, Shahriar A, Mahmud AR, et al. Multidrug resistance in cancer: Understanding molecular mechanisms, immune-prevention and therapeutic approaches. Front Oncol 2022; 12: 891652.
[http://dx.doi.org/10.3389/fonc.2022.891652] [PMID: 35814435]
[104]
Dianat-Moghadam H, Mahari A, Salahlou R, Khalili M, Azizi M, Sadeghzadeh H. Immune evader cancer stem cells direct the perspective approaches to cancer immunotherapy. Stem Cell Res Ther 2022; 13(1): 150.
[http://dx.doi.org/10.1186/s13287-022-02829-9] [PMID: 35395787]
[105]
Zhu H, Liao SD, Shi JJ, et al. DJ-1 mediates the resistance of cancer cells to dihydroarteminisinin through cancer cells through reactive oxygen species removal. Free Radic Biol Med 2014; 71: 121-32.
[106]
Lu DY, Lu TR, Xu B, Che JY, Shen Y, Yarla NS. Individualized cancer therapy, future approaches. Curr Pharmacogenomics Person Med 2018; 16(2): 156-63.
[http://dx.doi.org/10.2174/1875692116666180821095434]
[107]
Lu DY, Lu TR, Che JY, Yarla NS. Individualized cancer therapy, what is the next generation? EC Cancer 2018; 2(6): 286-97.
[108]
Lu DY, Qu RX, Lu TR, Wu HY. Cancer bioinformatics for update anticancer drug developments and personalized therapeutics. Rev Recent Clin Trials 2017; 12(2): 101-10.
[http://dx.doi.org/10.2174/1574887112666170209161444] [PMID: 28190390]
[109]
Lu DY, Lu TR, Xu B, Ding J. Pharmacogenetics of cancer therapy: Breakthroughs from beyond? Future Science OA 2015; 1(4): FFSO80.
[http://dx.doi.org/10.4155/fso.15.80]
[110]
Al-Janabi I. Pharmacogenomics driving precision cancer medicine. AJMS 2022; 3: 48-63.
[http://dx.doi.org/10.54133/ajms.v3i.85]
[111]
Lu DY, Lu TR. Drug sensitivity testing for cancer therapy, technique analysis and trend. Curr Rev Clin Exp Pharmacol 2023; 18(1): 3-11.
[http://dx.doi.org/10.2174/2772432816666210910104649] [PMID: 34515020]
[112]
Lu DY, Lu TR, Yarla NS, Xu B. Drug sensitivity testing for cancer therapy, key areas. Rev Recent Clin Trials 2022; 17(4): 291-9.
[http://dx.doi.org/10.2174/1574887117666220819094528] [PMID: 35986532]
[113]
Lu DY, Lu TR. Drug sensitivity testing, a unique drug selection strategy. ABST 2020; 2: 59-66.
[http://dx.doi.org/10.1016/j.abst.2020.11.001]
[114]
Popova AA, Levkin PA. Precision medicine in oncology: In vitro drug sensitivity and resistance test (DSRT) for selection of personalized anticancer therapy. Adv Ther 2020; 3(2): 1900100.
[http://dx.doi.org/10.1002/adtp.201900100]
[115]
Lu DY, Lu TR, Xu B, Yarla NS. Anticancer drug developments, challenge from historic perspective. EC Pharmacol Toxicol 2018; 6(11): 922-36.
[116]
Lu DY, Lu TR, Chen EH, et al. Keep up the pace of drug development evolution and expenditure. Cancer Rep Rev 2018; 2(5): 165.
[http://dx.doi.org/10.15761/CRR.1000165]
[117]
Masilamani K, Senthilnathan B, Manoyogambiga M, et al. Techniques and tools for in silico drug design for the development of anticancer drugs. Int J Life Sci Pharma Res 2023; 13(5): 130-48.
[http://dx.doi.org/10.22376/ijlpr.2023.13.5.P130-P148]
[118]
Belete TM. Recent updates on the development of Deuterium-containing drugs for the treatment of cancer. Drug Des Devel Ther 2022; 16: 3465-72.
[http://dx.doi.org/10.2147/DDDT.S379496] [PMID: 36217450]
[119]
Lu DY, Lu TR, Chen EH, et al. Anticancer drug development, system updating and global participation. Curr Drug Ther 2017; 12(1): 37-45.
[http://dx.doi.org/10.2174/1574885511666161025122906]
[120]
Lu DY, Lu TR, Cao S. Cancer metastases and clinical therapies. Cell Dev Biol 2012; 1(4): e110.
[http://dx.doi.org/10.4172/2168-9296.1000e110]
[121]
Lu DY, Chen EH, Wu HY, Lu TR, Xu B, Ding J. Anticancer drug combination, how far we can go through? Anticancer Agents Med Chem 2017; 17(1): 21-8.
[http://dx.doi.org/10.2174/1871520616666160404112028] [PMID: 27039923]
[122]
Lu DY, Lu TR, Yarla NS, et al. Drug combination in clinical cancer treatment. Rev Recent Clin Trials 2017; 12(3): 202-11.
[PMID: 28782482]
[123]
Komarova NL. Mathematical modeling of tumorigenesis: Mission possible. Curr Opin Oncol 2005; 17(1): 39-43.
[http://dx.doi.org/10.1097/01.cco.0000143681.37692.32] [PMID: 15608511]
[124]
Khalil IG, Hill C. Systems biology for cancer. Curr Opin Oncol 2005; 17(1): 44-8.
[http://dx.doi.org/10.1097/01.cco.0000150951.38222.16] [PMID: 15608512]
[125]
Wang XS, Lee S, Zhang H, Tang G, Wang Y. An integral genomic signature approach for tailored cancer therapy using genome-wide sequencing data. Nat Commun 2022; 13(1): 2936.
[http://dx.doi.org/10.1038/s41467-022-30449-7] [PMID: 35618721]
[126]
Loewe L. A framework for evolutionary systems biology. BMC Syst Biol 2009; 3(1): 27.
[http://dx.doi.org/10.1186/1752-0509-3-27] [PMID: 19239699]
[127]
Werner HMJ, Mills GB, Ram PT. Cancer Systems Biology: A peek into the future of patient care? Nat Rev Clin Oncol 2014; 11(3): 167-76.
[http://dx.doi.org/10.1038/nrclinonc.2014.6] [PMID: 24492837]
[128]
Lee J, Kim Y, Jin S, et al. Q-omics: Smart software for assisting oncology and cancer research. Mol Cells 2021; 44(11): 843-50.
[http://dx.doi.org/10.14348/molcells.2021.0169] [PMID: 34819397]
[129]
Yadav M, Eswari JS. Modern paradigm towards potential target identification for antiviral (SARS-nCoV-2) and anticancer lipopeptides: A pharmacophore-based approach. Avicenna J Med Biotechnol 2022; 14(1): 70-8.
[http://dx.doi.org/10.18502/ajmb.v14i1.8172] [PMID: 35509362]
[130]
Kherlopian AR, Song T, Duan Q, et al. A review of imaging techniques for systems biology. BMC Syst Biol 2008; 2(1): 74.
[http://dx.doi.org/10.1186/1752-0509-2-74] [PMID: 18700030]
[131]
Franssen LC, Lorenzi T, Burgess AEF, Chaplain MAJ. A mathematical framework for modeling the metastatic spread of cancer. Bull Math Biol 2019; 81(6): 1965-2010.
[http://dx.doi.org/10.1007/s11538-019-00597-x] [PMID: 30903592]
[132]
Gerlee P, Johansson M. Inferring rates of metastatic dissemination using stochastic network models. PLOS Comput Biol 2019; 15(4): e1006868.
[http://dx.doi.org/10.1371/journal.pcbi.1006868] [PMID: 30933969]
[133]
May M. Why drug delivery is the key to new medicines. Nat Med 2022; 28(6): 1100-2.
[http://dx.doi.org/10.1038/s41591-022-01826-y] [PMID: 35668179]
[134]
Lu D, Shen W, Cao J, Lu T, Cui B, Fu Z. Effect of magnetized water on the mice given high doses of antineoplastic drugs. J Shanghai Univ 1999; 3(1): 81-3.
[http://dx.doi.org/10.1007/s11741-999-0036-1]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy