Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Insights into the Biological Properties of Prostate Cancer Stem Cells: Implications for Cancer Progression and Therapy

Author(s): Jafar Poodineh, Azimeh Akhlaghpour, Farhoodeh Ghaedrahmati, Fatemeh Khojasteh Pour, Shahab Uddin, Maryam Farzaneh* and Shirin Azizidoost*

Volume 20, Issue 2, 2025

Published on: 23 January, 2024

Page: [166 - 182] Pages: 17

DOI: 10.2174/011574888X268997231206112056

Price: $65

Abstract

Prostate cancer (PCa) is the second prevalent cancer in men. Recent studies have highlighted the critical role of prostate cancer stem cells (PCSCs) in driving tumor initiation and metastasis of the prostate tissue. PCSCs are a rare population of cells in the prostate that possess self-renewal and differentiation capabilities, making them a potential therapeutic target for effective PCa treatment. Therefore, targeting PCSCs might be a novel strategy for the treatment of PCs. Research has shown that various signaling pathways, such as Notch, SHH, TGF-β, Wnt, STAT3, AKT, and EGFR, are involved in regulating PCSC proliferation, migration, and invasion. Additionally, non-coding RNAs, such as long ncRNAs and miRNAs, have emerged as critical regulators of PCSC pathogenesis and drug resistance. Here, we highlight that targeting these pathways could offer new opportunities for the management of PCa. This review summarizes the current knowledge surrounding the essential signaling pathways implicated in PCSC tumorigenesis and invasiveness.

Keywords: Prostate , prostate cancer stem cells , signaling pathways , miRNAs , LncRNAs, AR.

Graphical Abstract
[1]
Song, J.; Zhou, Y.; Yakymovych, I.; Schmidt, A.; Li, C.; Heldin, C.H.; Landström, M. The ubiquitin-ligase TRAF6 and TGFβ type I receptor form a complex with Aurora kinase B contributing to mitotic progression and cytokinesis in cancer cells. EBioMedicine, 2022, 82, 104155.
[http://dx.doi.org/10.1016/j.ebiom.2022.104155] [PMID: 35853811]
[2]
Descotes, J.L. Diagnosis of prostate cancer. Asian J. Urol., 2019, 6(2), 129-136.
[http://dx.doi.org/10.1016/j.ajur.2018.11.007] [PMID: 31061798]
[3]
Ali, A.; Du Feu, A.; Oliveira, P.; Choudhury, A.; Bristow, R.G.; Baena, E. Prostate zones and cancer: Lost in transition? Nat. Rev. Urol., 2022, 19(2), 101-115.
[http://dx.doi.org/10.1038/s41585-021-00524-7] [PMID: 34667303]
[4]
Baures, M.; Dariane, C.; Tika, E.; Puig Lombardi, E.; Barry Delongchamps, N.; Blanpain, C.; Guidotti, J.E.; Goffin, V. Prostate luminal progenitor cells: from mouse to human, from health to disease. Nat. Rev. Urol., 2022, 19(4), 201-218.
[http://dx.doi.org/10.1038/s41585-021-00561-2] [PMID: 35079142]
[5]
Sato, S.; Kimura, T.; Onuma, H.; Egawa, S.; Takahashi, H. Transition zone prostate cancer is associated with better clinical outcomes than peripheral zone cancer. BJUI Compass, 2021, 2(3), 169-177.
[http://dx.doi.org/10.1002/bco2.47] [PMID: 35475132]
[6]
Park, J.W.; Lee, J.K.; Phillips, J.W.; Huang, P.; Cheng, D.; Huang, J.; Witte, O.N. Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay. Proc. Natl. Acad. Sci., 2016, 113(16), 4482-4487.
[http://dx.doi.org/10.1073/pnas.1603645113] [PMID: 27044116]
[7]
Fontana, F.; Marzagalli, M.; Montagnani Marelli, M.; Raimondi, M.; Moretti, R.; Limonta, P. Gonadotropin-releasing hormone receptors in prostate cancer: Molecular aspects and biological functions. Int. J. Mol. Sci., 2020, 21(24), 9511.
[http://dx.doi.org/10.3390/ijms21249511] [PMID: 33327545]
[8]
Checcucci, E.; Amparore, D.; De Luca, S.; Autorino, R.; Fiori, C.; Porpiglia, F. Precision prostate cancer surgery: An overview of new technologies and techniques. J. Urol. Nephrol., 2019, 71, 487-501.
[9]
Abufaraj, M.; Iwata, T.; Kimura, S.; Haddad, A.; Al-Ani, H.; Abusubaih, L.; Moschini, M.; Briganti, A.; Karakiewicz, P.I.; Shariat, S.F. Differential impact of gonadotropin-releasing hormone antagonist versus agonist on clinical safety and oncologic outcomes on patients with metastatic prostate cancer: A meta-analysis of randomized controlled trials. Eur. Urol., 2021, 79(1), 44-53.
[http://dx.doi.org/10.1016/j.eururo.2020.06.002] [PMID: 32605859]
[10]
George, D.J.; Dearnaley, D.P. Relugolix, an oral gonadotropin-releasing hormone antagonist for the treatment of prostate cancer. Future Oncol., 2021, 17(33), 4431-4446.
[http://dx.doi.org/10.2217/fon-2021-0575] [PMID: 34409852]
[11]
Aragon-Ching, J.B.; Nader, R.; El Amm, J. Role of chemotherapy in prostate cancer. Asian J. Androl., 2018, 20(3), 221-229.
[http://dx.doi.org/10.4103/aja.aja_40_17] [PMID: 29063869]
[12]
Subudhi, S.K. New approaches to immunotherapy for metastatic castration-resistant prostate cancer. Clin. Adv. Hematol. Oncol., 2019, 17(5), 283-286.
[PMID: 31188806]
[13]
David, R.; Buckby, A.; Kahokehr, A.A.; Lee, J.; Watson, D.I.; Leung, J. Long term genitourinary toxicity following curative intent intensity-modulated radiotherapy for prostate cancer: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis., 2022, 1-8.
[PMID: 35260794]
[14]
Crawford, E.D.; Heidenreich, A.; Lawrentschuk, N.; Tombal, B.; Pompeo, A.C.L.; Mendoza-Valdes, A.; Miller, K.; Debruyne, F.M.J.; Klotz, L. Androgen- targeted therapy in men with prostate cancer: Evolving practice and future considerations. Prostate Cancer Prostatic Dis., 2019, 22(1), 24-38.
[http://dx.doi.org/10.1038/s41391-018-0079-0] [PMID: 30131604]
[15]
Carceles-Cordon, M.; Kelly, W.K.; Gomella, L.; Knudsen, K.E.; Rodriguez-Bravo, V.; Domingo-Domenech, J. Cellular rewiring in lethal prostate cancer: The architect of drug resistance. Nat. Rev. Urol., 2020, 17(5), 292-307.
[http://dx.doi.org/10.1038/s41585-020-0298-8] [PMID: 32203305]
[16]
Teo, M.Y.; Rathkopf, D.E.; Kantoff, P. Treatment of advanced prostate cancer. Annu. Rev. Med., 2019, 70(1), 479-499.
[http://dx.doi.org/10.1146/annurev-med-051517-011947] [PMID: 30691365]
[17]
Sawant, M.; Mahajan, K.; Renganathan, A.; Weimholt, C.; Luo, J.; Kukshal, V.; Jez, J.M.; Jeon, M.S.; Zhang, B.; Li, T.; Fang, B.; Luo, Y.; Lawrence, N.J.; Lawrence, H.R.; Feng, F.Y.; Mahajan, N.P. Chronologically modified androgen receptor in recurrent castration-resistant prostate cancer and its therapeutic targeting. Sci. Transl. Med., 2022, 14(649), eabg4132.
[http://dx.doi.org/10.1126/scitranslmed.abg4132] [PMID: 35704598]
[18]
Helsen, C.; Van den Broeck, T.; Voet, A.; Prekovic, S.; Van Poppel, H.; Joniau, S.; Claessens, F. Androgen receptor antagonists for prostate cancer therapy. Endocr. Relat. Cancer, 2014, 21(4), T105-T118.
[http://dx.doi.org/10.1530/ERC-13-0545] [PMID: 24639562]
[19]
Mei, W.; Lin, X.; Kapoor, A.; Gu, Y.; Zhao, K.; Tang, D. The contributions of prostate cancer stem cells in prostate cancer initiation and metastasis. Cancers, 2019, 11(4), 434.
[http://dx.doi.org/10.3390/cancers11040434] [PMID: 30934773]
[20]
Su, C.; Zhang, J.; Yarden, Y.; Fu, L. The key roles of cancer stem cell-derived extracellular vesicles. Signal Transduct. Target. Ther., 2021, 6(1), 109.
[http://dx.doi.org/10.1038/s41392-021-00499-2] [PMID: 33678805]
[21]
Zhou, H.M.; Zhang, J.G.; Zhang, X.; Li, Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct. Target. Ther., 2021, 6(1), 62.
[http://dx.doi.org/10.1038/s41392-020-00430-1] [PMID: 33589595]
[22]
Li, J.J.; Shen, M.M. Prostate stem cells and cancer stem cells. Cold Spring Harb. Perspect. Med., 2019, 9(6), a030395.
[http://dx.doi.org/10.1101/cshperspect.a030395] [PMID: 30291148]
[23]
Song, H.; Weinstein, H.N.W.; Allegakoen, P.; Wadsworth, M.H., II; Xie, J.; Yang, H.; Castro, E.A.; Lu, K.L.; Stohr, B.A.; Feng, F.Y.; Carroll, P.R.; Wang, B.; Cooperberg, M.R.; Shalek, A.K.; Huang, F.W. Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states. Nat. Commun., 2022, 13(1), 141.
[http://dx.doi.org/10.1038/s41467-021-27322-4] [PMID: 35013146]
[24]
Huang, R.; Wang, S.; Wang, N.; Zheng, Y.; Zhou, J.; Yang, B.; Wang, X.; Zhang, J.; Guo, L.; Wang, S.; Chen, Z.; Wang, Z.; Xiang, S. CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating β-catenin/STAT3 signaling. Cell Death Dis., 2020, 11(4), 234.
[http://dx.doi.org/10.1038/s41419-020-2435-y] [PMID: 32300100]
[25]
Giridharan, M.; Rupani, V.; Banerjee, S. Signaling pathways and targeted therapies for stem cells in prostate cancer. ACS Pharmacol. Transl. Sci., 2022, 5(4), 193-206.
[http://dx.doi.org/10.1021/acsptsci.2c00019] [PMID: 35434534]
[26]
Wang, L.; Zi, H.; Luo, Y.; Liu, T.; Zheng, H.; Xie, C.; Wang, X.; Huang, X. Inhibition of Notch pathway enhances the anti-tumor effect of docetaxel in prostate cancer stem- like cells. Stem Cell Res. Ther., 2020, 11(1), 258.
[http://dx.doi.org/10.1186/s13287-020-01773-w] [PMID: 32586404]
[27]
Kyriazi, A.A.; Papiris, E.; Kitsos Kalyvianakis, K.; Sakellaris, G.; Baritaki, S. Dual effects of non-coding RNAs (ncRNAs) in cancer stem cell biology. Int. J. Mol. Sci., 2020, 21(18), 6658.
[http://dx.doi.org/10.3390/ijms21186658] [PMID: 32932969]
[28]
Altschuler, J.; Stockert, J.A.; Kyprianou, N. Non-coding RNAs set a new phenotypic frontier in prostate cancer metastasis and resistance. Int. J. Mol. Sci., 2021, 22(4), 2100.
[http://dx.doi.org/10.3390/ijms22042100] [PMID: 33672595]
[29]
Bolton, E.M.; Tuzova, A.V.; Walsh, A.L.; Lynch, T.; Perry, A.S. Noncoding RNAs in prostate cancer: The long and the short of it. Clin. Cancer Res., 2014, 20(1), 35-43.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1989] [PMID: 24146262]
[30]
Erdogan, S.; Turkekul, K.; Dibirdik, I.; Doganlar, Z.B.; Doganlar, O.; Bilir, A. Midkine silencing enhances the anti–prostate cancer stem cell activity of the flavone apigenin: Cooperation on signaling pathways regulated by ERK, p38, PTEN, PARP, and NF-κB. Invest. New Drugs, 2020, 38(2), 246-263.
[http://dx.doi.org/10.1007/s10637-019-00774-8] [PMID: 30993586]
[31]
Collins, A.T.; Berry, P.A.; Hyde, C.; Stower, M.J.; Maitland, N.J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res., 2005, 65(23), 10946-10951.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2018] [PMID: 16322242]
[32]
Shen, Y.; Cao, J.; Liang, Z.; Lin, Q.; Wang, J.; Yang, X.; Zhang, R.; Zong, J.; Du, X.; Peng, Y.; Zhang, J.; Shi, J. Estrogen receptor α-NOTCH1 axis enhances basal stem-like cells and epithelial-mesenchymal transition phenotypes in prostate cancer. Cell Commun. Signal., 2019, 17(1), 50.
[http://dx.doi.org/10.1186/s12964-019-0367-x] [PMID: 31122254]
[33]
Qin, W.; Zheng, Y.; Qian, B.Z.; Zhao, M. Prostate cancer stem cells and nanotechnology: A focus on Wnt signaling. Front. Pharmacol., 2017, 8, 153.
[http://dx.doi.org/10.3389/fphar.2017.00153] [PMID: 28400729]
[34]
Li, W.J.; Liu, X.; Dougherty, E.M.; Tang, D.G. MicroRNA-34a, prostate cancer stem cells, and therapeutic development. Cancers, 2022, 14(18), 4538.
[http://dx.doi.org/10.3390/cancers14184538] [PMID: 36139695]
[35]
Cojoc, M.; Mäbert, K.; Muders, M.H.; Dubrovska, A. A role for cancer stem cells in therapy resistance: Cellular and molecular mechanisms. Seminars in cancer biology; Elsevier, 2015, pp. 16-27.
[http://dx.doi.org/10.1016/j.semcancer.2014.06.004]
[36]
Trerotola, M.; Rathore, S.; Goel, H.L.; Li, J.; Alberti, S.; Piantelli, M.; Adams, D.; Jiang, Z.; Languino, L.R. CD133, Trop-2 and α2β1 integrin surface receptors as markers of putative human prostate cancer stem cells. Am. J. Transl. Res., 2010, 2(2), 135-144.
[PMID: 20407603]
[37]
Yang, J.; Aljitawi, O.; van Veldhuizen, P. Prostate cancer stem cells: The Role of CD133. Cancers, 2022, 14(21), 5448.
[http://dx.doi.org/10.3390/cancers14215448] [PMID: 36358865]
[38]
Kushwaha, PP; Verma, S; Kumar, S; Gupta, S Role of prostate cancer stem-like cells in the development of antiandrogen resistance. Cancer Drug Resist, 2022, 5, 459-471.
[http://dx.doi.org/10.20517/cdr.2022.07]
[39]
Patrawala, L.; Calhoun-Davis, T.; Schneider-Broussard, R.; Tang, D.G. Hierarchical organization of prostate cancer cells in xenograft tumors: The CD44+α2β1+ cell population is enriched in tumor-initiating cells. Cancer Res., 2007, 67(14), 6796-6805.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0490] [PMID: 17638891]
[40]
Jung, Y.; Cackowski, F.C.; Yumoto, K.; Decker, A.M.; Wang, J.; Kim, J.K.; Lee, E.; Wang, Y.; Chung, J.S.; Gursky, A.M.; Krebsbach, P.H.; Pienta, K.J.; Morgan, T.M.; Taichman, R.S. CXCL12γ promotes metastatic castration-resistant prostate cancer by inducing cancer stem cell and neuroendocrine phenotypes. Cancer Res., 2018, 78(8), 2026-2039.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2332] [PMID: 29431639]
[41]
Mahira, S.; Kommineni, N.; Husain, G.M.; Khan, W. Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: A new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomed. Pharmacother., 2019, 110, 803-817.
[http://dx.doi.org/10.1016/j.biopha.2018.11.145] [PMID: 30554119]
[42]
Jiao, J.; Hindoyan, A.; Wang, S.; Tran, L.M.; Goldstein, A.S.; Lawson, D.; Chen, D.; Li, Y.; Guo, C.; Zhang, B.; Fazli, L.; Gleave, M.; Witte, O.N.; Garraway, I.P.; Wu, H. Identification of CD166 as a surface marker for enriching prostate stem/progenitor and cancer initiating cells. PLoS One, 2012, 7(8), e42564.
[http://dx.doi.org/10.1371/journal.pone.0042564] [PMID: 22880034]
[43]
Li, C.; Liu, S.; Yan, R.; Han, N.; Wong, K.K.; Li, L. CD54-NOTCH1 axis controls tumor initiation and cancer stem cell functions in human prostate cancer. Theranostics, 2017, 7(1), 67-80.
[http://dx.doi.org/10.7150/thno.16752] [PMID: 28042317]
[44]
Chaves, L.P.; Melo, C.M.; Saggioro, F.P.; Reis, R.B.; Squire, J.A. Epithelial–mesenchymal transition signaling and prostate cancer stem cells: Emerging biomarkers and opportunities for precision therapeutics. Genes, 2021, 12(12), 1900.
[http://dx.doi.org/10.3390/genes12121900] [PMID: 34946849]
[45]
Deng, Z.; Wu, Y.; Ma, W.; Zhang, S.; Zhang, Y.Q. Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM. BMC Immunol., 2015, 16(1), 1-9.
[http://dx.doi.org/10.1186/s12865-014-0064-x] [PMID: 25636521]
[46]
Moltzahn, F.; Thalmann, G.N. Cancer stem cells in prostate cancer. Transl. Androl. Urol., 2013, 2(3), 242-253.
[PMID: 26816738]
[47]
Sabnis, N.G.; Miller, A.; Titus, M.A.; Huss, W.J. The efflux transporter ABCG2 maintains prostate stem cells. Mol. Cancer Res., 2017, 15(2), 128-140.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0270-T] [PMID: 27856956]
[48]
Gao, J.; Hao, Y.; Piao, X.; Gu, X. Aldehyde Dehydrogenase 2 as a therapeutic target in oxidative stress-related diseases: Post-translational modifications deserve more attention. Int. J. Mol. Sci., 2022, 23(5), 2682.
[http://dx.doi.org/10.3390/ijms23052682] [PMID: 35269824]
[49]
Püschel, J.; Dubrovska, A.; Gorodetska, I. The multifaceted role of aldehyde dehydrogenases in prostate cancer stem cells. Cancers, 2021, 13(18), 4703.
[http://dx.doi.org/10.3390/cancers13184703] [PMID: 34572930]
[50]
Cojoc, M.; Peitzsch, C.; Kurth, I.; Trautmann, F.; Kunz-Schughart, L.A.; Telegeev, G.D.; Stakhovsky, E.A.; Walker, J.R.; Simin, K.; Lyle, S.; Fuessel, S.; Erdmann, K.; Wirth, M.P.; Krause, M.; Baumann, M.; Dubrovska, A. Aldehyde dehydrogenase is regulated by β-Catenin/TCF and promotes radioresistance in prostate cancer progenitor cells. Cancer Res., 2015, 75(7), 1482-1494.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1924] [PMID: 25670168]
[51]
Yu, C.; Yao, Z.; Dai, J.; Zhang, H.; Escara-Wilke, J.; Zhang, X.; Keller, E.T. ALDH activity indicates increased tumorigenic cells, but not cancer stem cells, in prostate cancer cell lines. In vivo 2011, 25(1), 69-76.
[PMID: 21282737]
[52]
Marhold, M.; Tomasich, E.; El-Gazzar, A.; Heller, G.; Spittler, A.; Horvat, R.; Krainer, M.; Horak, P. HIF1α Regulates mTOR signaling and viability of prostate cancer stem cells. Mol. Cancer Res., 2015, 13(3), 556-564.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0153-T] [PMID: 25349289]
[53]
Kong, D.; Banerjee, S.; Ahmad, A.; Li, Y.; Wang, Z.; Sethi, S.; Sarkar, F.H. Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One, 2010, 5(8), e12445.
[http://dx.doi.org/10.1371/journal.pone.0012445] [PMID: 20805998]
[54]
Kerr, C.L.; Hussain, A. Regulators of prostate cancer stem cells. Curr. Opin. Oncol., 2014, 26(3), 328-333.
[http://dx.doi.org/10.1097/CCO.0000000000000080] [PMID: 24651383]
[55]
Montanari, M.; Rossetti, S.; Cavaliere, C.; D’Aniello, C.; Malzone, M.G.; Vanacore, D.; Franco, R.D.; Mantia, E.L.; Iovane, G.; Piscitelli, R.; Muscariello, R.; Berretta, M.; Perdonà, S.; Muto, P.; Botti, G.; Bianchi, A.A.M.; Veneziani, B.M.; Facchini, G. Epithelial-mesenchymal transition in prostate cancer: An overview. Oncotarget, 2017, 8(21), 35376-35389.
[http://dx.doi.org/10.18632/oncotarget.15686] [PMID: 28430640]
[56]
Skvortsov, S.; Skvortsova, I.I.; Tang, D.G.; Dubrovska, A. Concise Review: Prostate cancer stem cells: Current understanding. Stem Cells, 2018, 36(10), 1457-1474.
[http://dx.doi.org/10.1002/stem.2859] [PMID: 29845679]
[57]
Bae, K.M.; Parker, N.N.; Dai, Y.; Vieweg, J.; Siemann, D.W. E-cadherin plasticity in prostate cancer stem cell invasion. Am. J. Cancer Res., 2011, 1(1), 71-84.
[PMID: 21968440]
[58]
Chen, X.; Rycaj, K.; Liu, X.; Tang, D.G. New insights into prostate cancer stem cells. Cell Cycle, 2013, 12(4), 579-586.
[http://dx.doi.org/10.4161/cc.23721] [PMID: 23370446]
[59]
Huang, C.K.; Luo, J.; Lee, S.O.; Chang, C. Concise review: Androgen receptor differential roles in stem/progenitor cells including prostate, embryonic, stromal, and hematopoietic lineages. Stem Cells, 2014, 32(9), 2299-2308.
[http://dx.doi.org/10.1002/stem.1722] [PMID: 24740898]
[60]
Civenni, G.; Malek, A.; Albino, D.; Garcia-Escudero, R.; Napoli, S.; Di Marco, S.; Pinton, S.; Sarti, M.; Carbone, G.M.; Catapano, C.V. RNAi-mediated silencing of Myc transcription inhibits stem-like cell maintenance and tumorigenicity in prostate cancer. Cancer Res., 2013, 73(22), 6816-6827.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0615] [PMID: 24063893]
[61]
Sarveswaran, S.; Varma, N.R.S.; Morisetty, S.; Ghosh, J. Inhibition of 5-lipoxygenase downregulates stemness and kills prostate cancer stem cells by triggering apoptosis via activation of c-Jun N-terminal kinase. Oncotarget, 2019, 10(4), 424-436.
[http://dx.doi.org/10.18632/oncotarget.13422] [PMID: 30728896]
[62]
Jamroze, A.; Chatta, G.; Tang, D.G. Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance. Cancer Lett., 2021, 518, 1-9.
[http://dx.doi.org/10.1016/j.canlet.2021.06.006] [PMID: 34118355]
[63]
Chang, L.; Graham, P.H.; Hao, J.; Ni, J.; Bucci, J.; Cozzi, P.J.; Kearsley, J.H.; Li, Y. Acquisition of epithelial–mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis., 2013, 4(10), e875.
[http://dx.doi.org/10.1038/cddis.2013.407] [PMID: 24157869]
[64]
Zhang, Y.; Li, Y. Long non-coding RNA NORAD contributes to the proliferation, invasion and EMT progression of prostate cancer via the miR-30a-5p/RAB11A/WNT/β-catenin pathway. Cancer Cell Int., 2020, 20(1), 571.
[http://dx.doi.org/10.1186/s12935-020-01665-2] [PMID: 33292272]
[65]
Bocci, F.; Jolly, M.K.; George, J.T.; Levine, H.; Onuchic, J.N. A mechanism-based computational model to capture the interconnections among epithelial-mesenchymal transition, cancer stem cells and Notch-Jagged signaling. Oncotarget, 2018, 9(52), 29906-29920.
[http://dx.doi.org/10.18632/oncotarget.25692] [PMID: 30042822]
[66]
Gao, W.; Wang, Y.; Yu, S.; Wang, Z.; Ma, T.; Chan, A.M.L.; Chiu, P.K.F.; Ng, C.F.; Wu, D.; Chan, F.L. Endothelial nitric oxide synthase (eNOS)-NO signaling axis functions to promote the growth of prostate cancer stem-like cells. Stem Cell Res. Ther., 2022, 13(1), 188.
[http://dx.doi.org/10.1186/s13287-022-02864-6] [PMID: 35526071]
[67]
Wolf, I.; Gratzke, C.; Wolf, P. Prostate cancer stem cells: clinical aspects and targeted therapies. Front. Oncol., 2022, 12, 935715.
[http://dx.doi.org/10.3389/fonc.2022.935715] [PMID: 35875084]
[68]
Lee, Y.C.; Lin, S.C.; Yu, G.; Zhu, M.; Song, J.H.; Rivera, K.; Pappin, D.J.; Logothetis, C.J.; Panaretakis, T.; Wang, G.; Yu-Lee, L.Y.; Lin, S.H. Prostate tumor-induced stromal reprogramming generates Tenascin C that promotes prostate cancer metastasis through YAP/TAZ inhibition. Oncogene, 2022, 41(6), 757-769.
[http://dx.doi.org/10.1038/s41388-021-02131-7] [PMID: 34845375]
[69]
He, Z.; Zhang, S. Tumor-associated macrophages and their functional transformation in the hypoxic tumor microenvironment. Front. Immunol., 2021, 12, 741305.
[http://dx.doi.org/10.3389/fimmu.2021.741305] [PMID: 34603327]
[70]
Rinkenbaugh, A.; Baldwin, A. The NF-κB pathway and cancer stem cells. Cells, 2016, 5(2), 16.
[http://dx.doi.org/10.3390/cells5020016] [PMID: 27058560]
[71]
Witte, K.E.; Pfitzenmaier, J.; Storm, J.; Lütkemeyer, M.; Wimmer, C.; Schulten, W.; Czaniera, N.; Geisler, M.; Förster, C.; Wilkens, L.; Knabbe, C.; Mertzlufft, F.; Kaltschmidt, B.; am Esch, J.S.; Kaltschmidt, C. Analysis of several pathways for efficient killing of prostate cancer stem cells: A central role of NF-κB RELA. Int. J. Mol. Sci., 2021, 22(16), 8901.
[http://dx.doi.org/10.3390/ijms22168901] [PMID: 34445612]
[72]
Shorning, B.Y.; Dass, M.S.; Smalley, M.J.; Pearson, H.B. The PI3K-AKT-mTOR pathway and prostate cancer: At the crossroads of AR, MAPK, and WNT signaling. Int. J. Mol. Sci., 2020, 21(12), 4507.
[http://dx.doi.org/10.3390/ijms21124507] [PMID: 32630372]
[73]
Rajasekhar, V.K.; Studer, L.; Gerald, W.; Socci, N.D.; Scher, H.I. Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-κB signalling. Nat. Commun., 2011, 2(1), 162.
[http://dx.doi.org/10.1038/ncomms1159] [PMID: 21245843]
[74]
Murillo-Garzón, V.; Kypta, R. WNT signalling in prostate cancer. Nat. Rev. Urol., 2017, 14(11), 683-696.
[http://dx.doi.org/10.1038/nrurol.2017.144] [PMID: 28895566]
[75]
Wan, X.; Liu, J.; Lu, J.F.; Tzelepi, V.; Yang, J.; Starbuck, M.W.; Diao, L.; Wang, J.; Efstathiou, E.; Vazquez, E.S.; Troncoso, P.; Maity, S.N.; Navone, N.M. Activation of β-catenin signaling in androgen receptor-negative prostate cancer cells. Clin. Cancer Res., 2012, 18(3), 726-736.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2521] [PMID: 22298898]
[76]
Bisson, I.; Prowse, D.M. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res., 2009, 19(6), 683-697.
[http://dx.doi.org/10.1038/cr.2009.43] [PMID: 19365403]
[77]
Zhang, K.; Guo, Y.; Wang, X.; Zhao, H.; Ji, Z.; Cheng, C.; Li, L.; Fang, Y.; Xu, D.; Zhu, H.H.; Gao, W.Q. WNT/β-catenin directs self-renewal symmetric cell division of hTERThigh prostate cancer stem cells. Cancer Res., 2017, 77(9), 2534-2547.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1887] [PMID: 28209613]
[78]
Luo, Y.; Lan, L.; Jiang, Y.G.; Zhao, J.H.; Li, M.C.; Wei, N.B.; Lin, Y.H. Epithelial-mesenchymal transition and migration of prostate cancer stem cells is driven by cancer-associated fibroblasts in an HIF-1α/β-catenin-dependent pathway. Mol. Cells, 2013, 36(2), 138-144.
[http://dx.doi.org/10.1007/s10059-013-0096-8] [PMID: 23839513]
[79]
Jiang, Y.; Dai, J.; Zhang, H.; Sottnik, J.L.; Keller, J.M.; Escott, K.J.; Sanganee, H.J.; Yao, Z.; McCauley, L.K.; Keller, E.T. Activation of the Wnt pathway through AR79, a GSK3β inhibitor, promotes prostate cancer growth in soft tissue and bone. Mol. Cancer Res., 2013, 11(12), 1597-1610.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0332-T] [PMID: 24088787]
[80]
Li, Q.; Ye, L.; Guo, W.; Wang, M.; Huang, S.; Peng, X. PHF21B overexpression promotes cancer stem cell-like traits in prostate cancer cells by activating the Wnt/β-catenin signaling pathway. J. Exp. Clin. Cancer Res., 2017, 36(1), 85.
[http://dx.doi.org/10.1186/s13046-017-0560-y] [PMID: 28645312]
[81]
Pai, V.C.; Hsu, C.C.; Chan, T.S.; Liao, W.Y.; Chuu, C.P.; Chen, W.Y.; Li, C.R.; Lin, C.Y.; Huang, S.P.; Chen, L.T.; Tsai, K.K. ASPM promotes prostate cancer stemness and progression by augmenting Wnt−Dvl-3−β-catenin signaling. Oncogene, 2019, 38(8), 1340-1353.
[http://dx.doi.org/10.1038/s41388-018-0497-4] [PMID: 30266990]
[82]
Hsieh, I.S.; Chang, K.C.; Tsai, Y.T.; Ke, J.Y.; Lu, P.J.; Lee, K.H.; Yeh, S.D.; Hong, T.M.; Chen, Y.L. MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis, 2013, 34(3), 530-538.
[http://dx.doi.org/10.1093/carcin/bgs371] [PMID: 23188675]
[83]
Song, X.L.; Huang, B.; Zhou, B.W.; Wang, C.; Liao, Z.W.; Yu, Y.; Zhao, S.C. miR-1301-3p promotes prostate cancer stem cell expansion by targeting SFRP1 and GSK3β. Biomed. Pharmacother., 2018, 99, 369-374.
[http://dx.doi.org/10.1016/j.biopha.2018.01.086] [PMID: 29358129]
[84]
Zhong, D.; Zhang, H.; Jiang, Y.; Wu, P.; Qi, H.; Cai, C.; Zheng, S.; Dang, Q. Saikosaponin-d: A potential chemotherapeutics in castration resistant prostate cancer by suppressing cancer metastases and cancer stem cell phenotypes. Biochem. Biophys. Res. Commun., 2016, 474(4), 722-729.
[http://dx.doi.org/10.1016/j.bbrc.2016.05.017] [PMID: 27155154]
[85]
Zhu, M.; Yu, X.; Zheng, Z.; Huang, J.; Yang, X.; Shi, H. Capsaicin suppressed activity of prostate cancer stem cells by inhibition of Wnt/β-catenin pathway. Phytother. Res., 2020, 34(4), 817-824.
[http://dx.doi.org/10.1002/ptr.6563] [PMID: 31782192]
[86]
Hsieh, A.C.; Edlind, M.P. PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian J. Androl., 2014, 16(3), 378-386.
[http://dx.doi.org/10.4103/1008-682X.122876] [PMID: 24759575]
[87]
Vaddi, P.K.; Stamnes, M.A.; Cao, H.; Chen, S. Elimination of SOX2/OCT4-associated prostate cancer stem cells blocks tumor development and enhances therapeutic response. Cancers, 2019, 11(9), 1331.
[http://dx.doi.org/10.3390/cancers11091331] [PMID: 31500347]
[88]
Dubrovska, A.; Kim, S.; Salamone, R.J.; Walker, J.R.; Maira, S.M.; García-Echeverría, C.; Schultz, P.G.; Reddy, V.A. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc. Natl. Acad. Sci., 2009, 106(1), 268-273.
[http://dx.doi.org/10.1073/pnas.0810956106] [PMID: 19116269]
[89]
Rybak, A.P.; He, L.; Kapoor, A.; Cutz, J.C.; Tang, D. Characterization of sphere-propagating cells with stem-like properties from DU145 prostate cancer cells. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(5), 683-694.
[http://dx.doi.org/10.1016/j.bbamcr.2011.01.018] [PMID: 21277911]
[90]
Dubrovska, A.; Elliott, J.; Salamone, R.J.; Kim, S.; Aimone, L.J.; Walker, J.R.; Watson, J.; Sauveur-Michel, M.; Garcia-Echeverria, C.; Cho, C.Y.; Reddy, V.A.; Schultz, P.G. Combination therapy targeting both tumor-initiating and differentiated cell populations in prostate carcinoma. Clin. Cancer Res., 2010, 16(23), 5692-5702.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1601] [PMID: 21138868]
[91]
Hurt, E.M.; Kawasaki, B.T.; Klarmann, G.J.; Thomas, S.B.; Farrar, W.L. CD44+CD24 prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br. J. Cancer, 2008, 98(4), 756-765.
[http://dx.doi.org/10.1038/sj.bjc.6604242] [PMID: 18268494]
[92]
Klarmann, G.J.; Hurt, E.M.; Mathews, L.A.; Zhang, X.; Duhagon, M.A.; Mistree, T.; Thomas, S.B.; Farrar, W.L. Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin. Exp. Metastasis, 2009, 26(5), 433-446.
[http://dx.doi.org/10.1007/s10585-009-9242-2] [PMID: 19221883]
[93]
Nanta, R.; Kumar, D.; Meeker, D.; Rodova, M.; Van Veldhuizen, P.J.; Shankar, S.; Srivastava, R.K. NVP-LDE-225 (Erismodegib) inhibits epithelial–mesenchymal transition and human prostate cancer stem cell growth in NOD/SCID IL2Rγ null mice by regulating Bmi-1 and microRNA-128. Oncogenesis, 2013, 2(4), e42.
[http://dx.doi.org/10.1038/oncsis.2013.5] [PMID: 23567619]
[94]
Acikgoz, E.; Mukhtarova, G.; Alpay, A.; Avci, C.B.; Bagca, B.G.; Oktem, G. Sonic hedgehog signaling is associated with resistance to zoledronic acid in CD133high/CD44high prostate cancer stem cells. Mol. Biol. Rep., 2021, 48(4), 3567-3578.
[http://dx.doi.org/10.1007/s11033-021-06387-w] [PMID: 33948856]
[95]
Bansal, N.; Farley, N.J.; Wu, L.; Lewis, J.; Youssoufian, H.; Bertino, J.R. Darinaparsin inhibits prostate tumor-initiating cells and Du145 xenografts and is an inhibitor of hedgehog signaling. Mol. Cancer Ther., 2015, 14(1), 23-30.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-1040] [PMID: 25381261]
[96]
Zhang, L.; Li, L.; Jiao, M.; Wu, D.; Wu, K.; Li, X.; Zhu, G.; Yang, L.; Wang, X.; Hsieh, J.T.; He, D. Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog–Gli1 pathway. Cancer Lett., 2012, 323(1), 48-57.
[http://dx.doi.org/10.1016/j.canlet.2012.03.037] [PMID: 22484470]
[97]
Leong, K.G.; Gao, W.Q. The Notch pathway in prostate development and cancer. Differentiation, 2008, 76(6), 699-716.
[http://dx.doi.org/10.1111/j.1432-0436.2008.00288.x] [PMID: 18565101]
[98]
Zhang, L.; Sha, J.; Yang, G.; Huang, X.; Bo, J.; Huang, Y. Activation of Notch pathway is linked with epithelial-mesenchymal transition in prostate cancer cells. Cell Cycle, 2017, 16(10), 999-1007.
[http://dx.doi.org/10.1080/15384101.2017.1312237] [PMID: 28388267]
[99]
Liu, C.; Li, Z.; Bi, L.; Li, K.; Zhou, B.; Xu, C.; Huang, J.; Xu, K. NOTCH1 signaling promotes chemoresistance via regulating ABCC1 expression in prostate cancer stem cells. Mol. Cell. Biochem., 2014, 393(1-2), 265-270.
[http://dx.doi.org/10.1007/s11010-014-2069-4] [PMID: 24782036]
[100]
Qiu, S.; Deng, L.; Bao, Y.; Jin, K.; Tu, X.; Li, J.; Liao, X.; Liu, Z.; Yang, L.; Wei, Q. Reversal of docetaxel resistance in prostate cancer by Notch signaling inhibition. Anticancer Drugs, 2018, 29(9), 871-879.
[http://dx.doi.org/10.1097/CAD.0000000000000659] [PMID: 29944470]
[101]
Kroon, P.; Berry, P.A.; Stower, M.J.; Rodrigues, G.; Mann, V.M.; Simms, M.; Bhasin, D.; Chettiar, S.; Li, C.; Li, P.K.; Maitland, N.J.; Collins, A.T. JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res., 2013, 73(16), 5288-5298.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0874] [PMID: 23824741]
[102]
Rybak, A.P.; Bristow, R.G.; Kapoor, A. Prostate cancer stem cells: Deciphering the origins and pathways involved in prostate tumorigenesis and aggression. Oncotarget, 2015, 6(4), 1900-1919.
[http://dx.doi.org/10.18632/oncotarget.2953] [PMID: 25595909]
[103]
Iliopoulos, D.; Hirsch, H.A.; Wang, G.; Struhl, K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc. Natl. Acad. Sci., 2011, 108(4), 1397-1402.
[http://dx.doi.org/10.1073/pnas.1018898108] [PMID: 21220315]
[104]
Schroeder, A.; Herrmann, A.; Cherryholmes, G.; Kowolik, C.; Buettner, R.; Pal, S.; Yu, H.; Müller-Newen, G.; Jove, R. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res., 2014, 74(4), 1227-1237.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0594] [PMID: 24177177]
[105]
Talukdar, S.; Das, S.K.; Pradhan, A.K.; Emdad, L.; Windle, J.J.; Sarkar, D.; Fisher, P.B. MDA-9/Syntenin (SDCBP) is a critical regulator of chemoresistance, survival and stemness in prostate cancer stem cells. Cancers, 2019, 12(1), 53.
[http://dx.doi.org/10.3390/cancers12010053] [PMID: 31878027]
[106]
Liu, X.; Grogan, T.R.; Hieronymus, H.; Hashimoto, T.; Mottahedeh, J.; Cheng, D.; Zhang, L.; Huang, K.; Stoyanova, T.; Park, J.W.; Shkhyan, R.O.; Nowroozizadeh, B.; Rettig, M.B.; Sawyers, C.L.; Elashoff, D.; Horvath, S.; Huang, J.; Witte, O.N.; Goldstein, A.S. Low CD38 identifies progenitor-like inflammation-associated luminal cells that can initiate human prostate cancer and predict poor outcome. Cell Rep., 2016, 17(10), 2596-2606.
[http://dx.doi.org/10.1016/j.celrep.2016.11.010] [PMID: 27926864]
[107]
Moreira, D.; Zhang, Q.; Hossain, D.M.S.; Nechaev, S.; Li, H.; Kowolik, C.M.; D’Apuzzo, M.; Forman, S.; Jones, J.; Pal, S.K.; Kortylewski, M. TLR9 signaling through NF-κB/RELA and STAT3 promotes tumor-propagating potential of prostate cancer cells. Oncotarget, 2015, 6(19), 17302-17313.
[http://dx.doi.org/10.18632/oncotarget.4029] [PMID: 26046794]
[108]
Hossain, D.M.S.; Moreira, D.; Jones, J.; Pal, S.K.; Kortylewski, M. 216. TLR9-Targeted STAT3 silencing abrogates immunosuppressive activity of myeloid-derived suppressor cells from prostate cancer patients. Mol. Ther., 2015, 23, S85.
[http://dx.doi.org/10.1016/S1525-0016(16)33821-7]
[109]
Won, H.; Moreira, D.; Gao, C.; Duttagupta, P.; Zhao, X.; Manuel, E.; Diamond, D.; Yuan, Y.C.; Liu, Z.; Jones, J.; D’Apuzzo, M.; Pal, S.; Kortylewski, M. TLR9 expression and secretion of LIF by prostate cancer cells stimulates accumulation and activity of polymorphonuclear MDSCs. J. Leukoc. Biol., 2017, 102(2), 423-436.
[http://dx.doi.org/10.1189/jlb.3MA1016-451RR] [PMID: 28533357]
[110]
Chen, Q.; Cai, Z.; Chen, Y.; Gu, M.; Zheng, D.; Zhou, J.; Wang, Z. Poly r(C) binding protein-1 is central to maintenance of cancer stem cells in prostate cancer cells. Cell. Physiol. Biochem., 2015, 35(3), 1052-1061.
[http://dx.doi.org/10.1159/000373931] [PMID: 25661993]
[111]
Rybak, A.P.; Ingram, A.J.; Tang, D. Propagation of human prostate cancer stem-like cells occurs through EGFR-mediated ERK activation. PLoS One, 2013, 8(4), e61716.
[http://dx.doi.org/10.1371/journal.pone.0061716] [PMID: 23620784]
[112]
Mulholland, D.J.; Kobayashi, N.; Ruscetti, M.; Zhi, A.; Tran, L.M.; Huang, J.; Gleave, M.; Wu, H. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res., 2012, 72(7), 1878-1889.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3132] [PMID: 22350410]
[113]
Goel, H.L.; Pursell, B.; Shultz, L.D.; Greiner, D.L.; Brekken, R.A.; Vander Kooi, C.W.; Mercurio, A.M. P-Rex1 promotes resistance to VEGF/VEGFR-targeted therapy in prostate cancer. Cell Rep., 2016, 14(9), 2193-2208.
[http://dx.doi.org/10.1016/j.celrep.2016.02.016] [PMID: 26923603]
[114]
Mirzaei, S.; Paskeh, M.D.A.; Okina, E.; Gholami, M.H.; Hushmandi, K.; Hashemi, M.; Kalu, A.; Zarrabi, A.; Nabavi, N.; Rabiee, N.; Sharifi, E.; Karimi-Maleh, H.; Ashrafizadeh, M.; Kumar, A.P.; Wang, Y. Molecular landscape of lncrnas in prostate cancer: A focus on pathways and therapeutic targets for intervention. J. Exp. Clin. Cancer Res., 2022, 41(1), 214.
[http://dx.doi.org/10.1186/s13046-022-02406-1] [PMID: 35773731]
[115]
Dhanoa, J.K.; Sethi, R.S.; Verma, R.; Arora, J.S.; Mukhopadhyay, C.S. Long non-coding RNA: Its evolutionary relics and biological implications in mammals: A review. J. Anim. Sci. Technol., 2018, 60(1), 25.
[http://dx.doi.org/10.1186/s40781-018-0183-7] [PMID: 30386629]
[116]
Azizidoost, S.; Farzaneh, M. MicroRNAs as a novel player for differentiation of mesenchymal stem cells into cardiomyocytes. Curr. Stem Cell Res. Ther., 2022.
[PMID: 35466882]
[117]
Wu, L.; Farzaneh, M.; Xu, H.; Yuan, G.; Liang, X.; Liu, X.; Li, Z.; Chen, N. MicroRNAs: Crucial players in the differentiation of human pluripotent and multipotent stem cells into functional hepatocyte-like cells. Curr. Stem Cell Res. Ther., 2022, 17(8), 734-740.
[http://dx.doi.org/10.2174/1574888X16666211006102039] [PMID: 34615452]
[118]
Xu, W.W.; Jin, J.; Wu, X.; Ren, Q.L.; Farzaneh, M. MALAT1-related signaling pathways in colorectal cancer. Cancer Cell Int., 2022, 22(1), 126.
[http://dx.doi.org/10.1186/s12935-022-02540-y] [PMID: 35305641]
[119]
Zhang, D; Xiong, M; Xu, C; Xiang, P; Zhong, X Long noncoding RNAs: An overview. Methods Mol Biol, 2016, 1402, 287-295.
[http://dx.doi.org/10.1007/978-1-4939-3378-5_22]
[120]
Prensner, J.R.; Chinnaiyan, A.M. The emergence of lncRNAs in cancer biology. Cancer Discov., 2011, 1(5), 391-407.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0209] [PMID: 22096659]
[121]
Wang, N.; Jiang, Y.; Lv, S.; Wen, H.; Wu, D.; Wei, Q.; Dang, Q. HOTAIR expands the population of prostatic cancer stem-like cells and causes Docetaxel resistance via activating STAT3 signaling. Aging, 2020, 12(13), 12771-12782.
[http://dx.doi.org/10.18632/aging.103188] [PMID: 32657763]
[122]
Li, L.; Dang, Q.; Xie, H.; Yang, Z.; He, D.; Liang, L.; Song, W.; Yeh, S.; Chang, C. Infiltrating mast cells enhance prostate cancer invasion via altering LncRNA-HOTAIR/PRC2-androgen receptor (AR)-MMP9 signals and increased stem/progenitor cell population. Oncotarget, 2015, 6(16), 14179-14190.
[http://dx.doi.org/10.18632/oncotarget.3651] [PMID: 25895025]
[123]
Liu, T.; Chi, H.; Chen, J.; Chen, C.; Huang, Y.; Xi, H.; Xue, J.; Si, Y. Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR. Gene, 2017, 631, 29-38.
[http://dx.doi.org/10.1016/j.gene.2017.08.008] [PMID: 28843521]
[124]
Singh, N.; Padi, S.K.R.; Bearss, J.J.; Pandey, R.; Okumura, K.; Beltran, H.; Song, J.H.; Kraft, A.S.; Olive, V. PIM protein kinases regulate the level of the long noncoding RNA H19 to control stem cell gene transcription and modulate tumor growth. Mol. Oncol., 2020, 14(5), 974-990.
[http://dx.doi.org/10.1002/1878-0261.12662] [PMID: 32146726]
[125]
Bauderlique-Le Roy, H.; Vennin, C.; Brocqueville, G.; Spruyt, N.; Adriaenssens, E.; Bourette, R.P. Enrichment of human stem-like prostate cells with s-SHIP promoter activity uncovers a role in stemness for the long noncoding RNA H19. Stem Cells Dev., 2015, 24(10), 1252-1262.
[http://dx.doi.org/10.1089/scd.2014.0386] [PMID: 25567531]
[126]
Singh, N.; Ramnarine, V.R.; Song, J.H.; Pandey, R.; Padi, S.K.R.; Nouri, M.; Olive, V.; Kobelev, M.; Okumura, K.; McCarthy, D.; Hanna, M.M.; Mukherjee, P.; Sun, B.; Lee, B.R.; Parker, J.B.; Chakravarti, D.; Warfel, N.A.; Zhou, M.; Bearss, J.J.; Gibb, E.A.; Alshalalfa, M.; Karnes, R.J.; Small, E.J.; Aggarwal, R.; Feng, F.; Wang, Y.; Buttyan, R.; Zoubeidi, A.; Rubin, M.; Gleave, M.; Slack, F.J.; Davicioni, E.; Beltran, H.; Collins, C.; Kraft, A.S. The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer. Nat. Commun., 2021, 12(1), 7349.
[http://dx.doi.org/10.1038/s41467-021-26901-9] [PMID: 34934057]
[127]
Li, F.; Lu, T-T.; Tao, X.; Li, H-L.; Gai, L.; Huang, H. LncRNA GAS5 enhances tumor stem cell-like medicated sensitivity of paclitaxel and inhibits epithelial-to-mesenchymal transition by targeting the miR-18a-5p/STK4 pathway in prostate cancer. Asian J. Androl., 2022, 24(6), 643-652.
[http://dx.doi.org/10.4103/aja2021117] [PMID: 35295003]
[128]
Bi, D.; Ning, H.; Liu, S.; Que, X.; Ding, K. MiR-1301 promotes prostate cancer proliferation through directly targeting PPP2R2C. Biomed. Pharmacother., 2016, 81, 25-30.
[http://dx.doi.org/10.1016/j.biopha.2016.03.043] [PMID: 27261573]
[129]
Li, B.; Thrasher, J.B.; Terranova, P. Glycogen synthase kinase-3: A potential preventive target for prostate cancer management.Urologic oncology: Seminars and original investigations; Elsevier, 2015, pp. 456-463.
[130]
Koushyar, S.; Meniel, V.S.; Phesse, T.J.; Pearson, H.B. Exploring the Wnt pathway as a therapeutic target for prostate cancer. Biomolecules, 2022, 12(2), 309.
[http://dx.doi.org/10.3390/biom12020309] [PMID: 35204808]
[131]
Qiu, Z.Q.; Wang, X.; Ji, X.W.; Jiang, F.J.; Han, X.Y.; Zhang, W.L.; An, Y.H. The clinical relevance of epithelial-mesenchymal transition and its correlations with tumorigenic immune infiltrates in hepatocellular carcinoma. Immunology, 2022, 166(2), 185-196.
[http://dx.doi.org/10.1111/imm.13465] [PMID: 35274290]
[132]
Wang, Y.; Wang, X.; Jin, M.; Lu, J. Activation of the hedgehog signaling pathway is associated with the promotion of cell proliferation and epithelial–mesenchymal transition in chronic rhinosinusitis with nasal polyps. Eur. Arch. Otorhinolaryngol., 2022, 1-11.
[PMID: 36190554]
[133]
Zhang, J.; Liu, Z.; Jia, J. Mechanisms of smoothened regulation in hedgehog signaling. Cells, 2021, 10(8), 2138.
[http://dx.doi.org/10.3390/cells10082138] [PMID: 34440907]
[134]
Xu, J.; Li, L.; Shi, P.; Cui, H.; Yang, L. The crucial roles of Bmi-1 in Cancer: Implications in pathogenesis, metastasis, drug resistance, and targeted therapies. Int. J. Mol. Sci., 2022, 23(15), 8231.
[http://dx.doi.org/10.3390/ijms23158231] [PMID: 35897796]
[135]
Chang, Y.L.; Zhou, P.J.; Wei, L.; Li, W.; Ji, Z.; Fang, Y.X.; Gao, W.Q. MicroRNA-7 inhibits the stemness of prostate cancer stem-like cells and tumorigenesis by repressing KLF4/PI3K/Akt/p21 pathway. Oncotarget, 2015, 6(27), 24017-24031.
[http://dx.doi.org/10.18632/oncotarget.4447] [PMID: 26172296]
[136]
Taracha-Wisniewska, A.; Kotarba, G.; Dworkin, S.; Wilanowski, T. Recent discoveries on the involvement of Krüppel-like factor 4 in the most common cancer types. Int. J. Mol. Sci., 2020, 21(22), 8843.
[http://dx.doi.org/10.3390/ijms21228843] [PMID: 33266506]
[137]
Yang, H.; Hu, L.; Liu, Z.; Qin, Y.; Li, R.; Zhang, G.; Zhao, B.; Bi, C.; Lei, Y.; Bai, Y. Inhibition of Gli1-mediated prostate cancer cell proliferation by inhibiting the mTOR/S6K1 signaling pathway. Oncol. Lett., 2017, 14(6), 7970-7976.
[http://dx.doi.org/10.3892/ol.2017.7254] [PMID: 29250185]
[138]
Guan, B.; Mu, L.; Zhang, L.; Wang, K.; Tian, J.; Xu, S.; Wang, X.; He, D.; Du, Y. MicroRNA-218 inhibits the migration, epithelial-mesenchymal transition and cancer stem cell properties of prostate cancer cells. Oncol. Lett., 2018, 16(2), 1821-1826.
[http://dx.doi.org/10.3892/ol.2018.8877] [PMID: 30008871]
[139]
Han, B.; Wang, H.; Zhang, J.; Tian, J. FNDC3B is associated with ER stress and poor prognosis in cervical cancer. Oncol. Lett., 2020, 19(1), 406-414.
[PMID: 31897153]
[140]
Fan, X.; Chen, X.; Deng, W.; Zhong, G.; Cai, Q.; Lin, T. Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostate cancer cells metastasis by modulating FNDC3B expression. BMC Cancer, 2013, 13(1), 61.
[http://dx.doi.org/10.1186/1471-2407-13-61] [PMID: 23383988]
[141]
Wang, J.; Wang, H.; Zhu, R.; Liu, Q.; Fei, J.; Wang, S. Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials, 2015, 53, 475-483.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.116] [PMID: 25890744]
[142]
Devassy, J.G.; Nwachukwu, I.D.; Jones, P.J.H. Curcumin and cancer: Barriers to obtaining a health claim. Nutr. Rev., 2015, 73(3), 155-165.
[http://dx.doi.org/10.1093/nutrit/nuu064] [PMID: 26024538]
[143]
Kang, D.; Park, W.; Lee, S.; Kim, J.H.; Song, J.J. Crosstalk from survival to necrotic death coexists in DU-145 cells by curcumin treatment. Cell. Signal., 2013, 25(5), 1288-1300.
[http://dx.doi.org/10.1016/j.cellsig.2013.01.014] [PMID: 23353183]
[144]
Chen, Y; Rao, Q; Zhang, H; Xu, H; Zhang, C; Zhuang, Q MiR-34C disrupts the stemness of purified CD133+ prostatic cancer stem cells. Urology, 2016, 177, e171-177-e179.
[145]
Yan, X.; Tang, B.; Chen, B.; Shan, Y.; Yang, H.; Iorns, E.; Tsui, R.; Denis, A.; Perfito, N.; Errington, T.M. Replication Study: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. eLife, 2019, 8, e43511.
[http://dx.doi.org/10.7554/eLife.43511] [PMID: 30860027]
[146]
Liu, C.; Kelnar, K.; Liu, B.; Chen, X.; Calhoun-Davis, T.; Li, H.; Patrawala, L.; Yan, H.; Jeter, C.; Honorio, S.; Wiggins, J.F.; Bader, A.G.; Fagin, R.; Brown, D.; Tang, D.G. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med., 2011, 17(2), 211-215.
[http://dx.doi.org/10.1038/nm.2284] [PMID: 21240262]
[147]
Liu, R.; Liu, C.; Zhang, D.; Liu, B.; Chen, X.; Rycaj, K.; Jeter, C.; Calhoun-Davis, T.; Li, Y.; Yang, T.; Wang, J.; Tang, D.G. miR-199a-3p targets stemness-related and mitogenic signaling pathways to suppress the expansion and tumorigenic capabilities of prostate cancer stem cells. Oncotarget, 2016, 7(35), 56628-56642.
[http://dx.doi.org/10.18632/oncotarget.10652] [PMID: 27447749]
[148]
Wang, C.; Feng, W.; Zhang, C. The expression and function of NUMB in endometrial cancer and the interaction with HDM2 and P53. J. Cancer, 2015, 6(10), 1030-1040.
[http://dx.doi.org/10.7150/jca.11970] [PMID: 26366217]
[149]
Zeng, Y-L.; Shao, X-M.; Li, H-S. Numb expression in colon cancer and its significance. Sichuan Da Xue Xue Bao Yi Xue Ban, 2012, 43(1), 6-8, 14.
[PMID: 22455121]
[150]
Sun, J.; Wang, K.; Teng, J.; Yu, Y.; Hua, R.; Zhou, H.; Zhong, D.; Fan, Y. Numb had anti-tumor effects in prostatic cancer. Biomed. Pharmacother., 2017, 92, 108-115.
[http://dx.doi.org/10.1016/j.biopha.2017.04.134] [PMID: 28531799]
[151]
Pequerul, R.; Vera, J.; Giménez-Dejoz, J.; Crespo, I.; Coines, J.; Porté, S.; Rovira, C.; Parés, X.; Farrés, J. Structural and kinetic features of aldehyde dehydrogenase 1A (ALDH1A) subfamily members, cancer stem cell markers active in retinoic acid biosynthesis. Arch. Biochem. Biophys., 2020, 681, 108256.
[http://dx.doi.org/10.1016/j.abb.2020.108256] [PMID: 31923393]
[152]
Patrawala, L.; Calhoun, T.; Schneider-Broussard, R.; Li, H.; Bhatia, B.; Tang, S.; Reilly, J.G.; Chandra, D.; Zhou, J.; Claypool, K.; Coghlan, L.; Tang, D.G. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 2006, 25(12), 1696-1708.
[http://dx.doi.org/10.1038/sj.onc.1209327] [PMID: 16449977]
[153]
Wang, X.; Cai, J.; Zhao, L.; Zhang, D.; Xu, G.; Hu, J.; Zhang, T.; Jin, M. NUMB suppression by miR-9-5P enhances CD44+ prostate cancer stem cell growth and metastasis. Sci. Rep., 2021, 11(1), 11210.
[http://dx.doi.org/10.1038/s41598-021-90700-x] [PMID: 34045601]
[154]
Kabacaoglu, D.; Ruess, D.A.; Ai, J.; Algül, H. NF-κB/Rel transcription factors in pancreatic cancer: focusing on RelA, c-Rel, and RelB. Cancers, 2019, 11(7), 937.
[http://dx.doi.org/10.3390/cancers11070937] [PMID: 31277415]
[155]
Rane, J.K.; Scaravilli, M.; Ylipää, A.; Pellacani, D.; Mann, V.M.; Simms, M.S.; Nykter, M.; Collins, A.T.; Visakorpi, T.; Maitland, N.J. MicroRNA expression profile of primary prostate cancer stem cells as a source of biomarkers and therapeutic targets. Eur. Urol., 2015, 67(1), 7-10.
[http://dx.doi.org/10.1016/j.eururo.2014.09.005] [PMID: 25234358]
[156]
Lessard, L.; Bégin, L.R.; Gleave, M.E.; Mes-Masson, A-M.; Saad, F. Nuclear localisation of nuclear factor-kappaB transcription factors in prostate cancer: An immunohistochemical study. Br. J. Cancer, 2005, 93(9), 1019-1023.
[http://dx.doi.org/10.1038/sj.bjc.6602796] [PMID: 16205698]
[157]
Lai, X.; Guo, Y.; Guo, Z.; Liu, R.; Wang, X.; Wang, F. Downregulation of microRNA-574 in cancer stem cells causes recurrence of prostate cancer via targeting REL. Oncol. Rep., 2016, 36(6), 3651-3656.
[http://dx.doi.org/10.3892/or.2016.5196] [PMID: 27779701]
[158]
Huang, S.; Guo, W.; Tang, Y.; Ren, D.; Zou, X.; Peng, X. miR-143 and miR-145 inhibit stem cell characteristics of PC-3 prostate cancer cells. Oncol. Rep., 2012, 28(5), 1831-1837.
[http://dx.doi.org/10.3892/or.2012.2015] [PMID: 22948942]
[159]
Liu, C.; Liu, R.; Zhang, D.; Deng, Q.; Liu, B.; Chao, H.P.; Rycaj, K.; Takata, Y.; Lin, K.; Lu, Y.; Zhong, Y.; Krolewski, J.; Shen, J.; Tang, D.G. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat. Commun., 2017, 8(1), 14270.
[http://dx.doi.org/10.1038/ncomms14270] [PMID: 28112170]
[160]
Srivastava, S.; Alam, H.; Patil, S.; Shrinivasan, R.; Raikundalia, S.; Chaudhari, P.; Vaidya, M. Keratin 5/14-mediated cell differentiation and transformation are regulated by TAp63 and Notch-1 in oral squamous cell carcinoma-derived cells. Oncol. Rep., 2018, 39(5), 2393-2401.
[http://dx.doi.org/10.3892/or.2018.6298] [PMID: 29512781]
[161]
Breyer, J.; Wirtz, R.M.; Otto, W.; Erben, P.; Kriegmair, M.C.; Stoehr, R.; Eckstein, M.; Eidt, S.; Denzinger, S.; Burger, M.; Hartmann, A. In stage pT1 non-muscle-invasive bladder cancer (NMIBC), high KRT20 and low KRT5 mRNA expression identify the luminal subtype and predict recurrence and survival. Virchows Arch., 2017, 470(3), 267-274.
[http://dx.doi.org/10.1007/s00428-017-2064-8] [PMID: 28074276]
[162]
Vasca, V.; Vasca, E.; Freiman, P.; Marian, D.; Luce, A.; Mesolella, M.; Caraglia, M.; Ricciardiello, F.; Duminica, T. Keratin 5 expression in squamocellular carcinoma of the head and neck. Oncol. Lett., 2014, 8(6), 2501-2504.
[http://dx.doi.org/10.3892/ol.2014.2591] [PMID: 25364416]
[163]
Du, H.; Wang, X.; Dong, R.; Hu, D.; Xiong, Y. miR-601 inhibits proliferation, migration and invasion of prostate cancer stem cells by targeting KRT5 to inactivate the Wnt signaling pathway. Int. J. Clin. Exp. Pathol., 2019, 12(12), 4361-4379.
[PMID: 31933840]
[164]
Liu, C.; Kelnar, K.; Vlassov, A.V.; Brown, D.; Wang, J.; Tang, D.G. Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res., 2012, 72(13), 3393-3404.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3864] [PMID: 22719071]
[165]
Kong, D.; Heath, E.; Chen, W.; Cher, M.L.; Powell, I.; Heilbrun, L.; Li, Y.; Ali, S.; Sethi, S.; Hassan, O.; Hwang, C.; Gupta, N.; Chitale, D.; Sakr, W.A.; Menon, M.; Sarkar, F.H. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One, 2012, 7(3), e33729.
[http://dx.doi.org/10.1371/journal.pone.0033729] [PMID: 22442719]
[166]
Leão, R.; Domingos, C.; Figueiredo, A.; Hamilton, R.; Tabori, U.; Castelo-Branco, P. Cancer stem cells in prostate cancer: Implications for targeted therapy. Urol. Int., 2017, 99(2), 125-136.
[http://dx.doi.org/10.1159/000455160] [PMID: 28142149]
[167]
Wang, W.T.; Han, C.; Sun, Y.M.; Chen, T.Q.; Chen, Y.Q. Noncoding RNAs in cancer therapy resistance and targeted drug development. J. Hematol. Oncol., 2019, 12(1), 55.
[http://dx.doi.org/10.1186/s13045-019-0748-z] [PMID: 31174564]
[168]
Gambari, R.; Brognara, E.; Spandidos, D.A.; Fabbri, E. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review). Int. J. Oncol., 2016, 49(1), 5-32.
[http://dx.doi.org/10.3892/ijo.2016.3503] [PMID: 27175518]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy