Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Core-Shell Nanoparticles for Pulmonary Drug Delivery

Author(s): Mukesh P. Ratnaparkhi*, Shailendra S. Salvankar, Avinash R. Tekade and Gajanan M. Kulkarni

Volume 13, Issue 1, 2025

Published on: 23 January, 2024

Page: [90 - 116] Pages: 27

DOI: 10.2174/0122117385277725231120043600

Price: $65

Abstract

Nanoscale drug delivery systems have provoked interest for application in various therapies on account of their ability to elevate the intracellular concentration of drugs inside target cells, which leads to an increase in efficacy, a decrease in dose, and dose-associated adverse effects. There are several types of nanoparticles available; however, core-shell nanoparticles outperform bare nanoparticles in terms of their reduced cytotoxicity, high dispersibility and biocompatibility, and improved conjugation with drugs and biomolecules because of better surface characteristics. These nanoparticulate drug delivery systems are used for targeting a number of organs, such as the colon, brain, lung, etc. Pulmonary administration of medicines is a more appealing method as it is a noninvasive route for systemic and locally acting drugs as the pulmonary region has a wide surface area, delicate blood-alveolar barrier, and significant vascularization. A core-shell nano-particulate drug delivery system is more effective in the treatment of various pulmonary disorders. Thus, this review has discussed the potential of several types of core-shell nanoparticles in treating various diseases and synthesis methods of core-shell nanoparticles. The methods for synthesis of core-shell nanoparticles include solid phase reaction, liquid phase reaction, gas phase reaction, mechanical mixing, microwave- assisted synthesis, sono-synthesis, and non-thermal plasma technology. The basic types of core-shell nanoparticles are metallic, magnetic, polymeric, silica, upconversion, and carbon nanomaterial- based core-shell nanoparticles. With this special platform, it is possible to integrate the benefits of both core and shell materials, such as strong serum stability, effective drug loading, adjustable particle size, and immunocompatibility.

Keywords: Nanoparticles, core-shell nanoparticles, pulmonary delivery, non-invasive therapy, lung cancer, respiratory diseases.

Graphical Abstract
[1]
Skupin-Mrugalska P. Liposome-based drug delivery for lung cancer. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer 2019; 123-60.
[http://dx.doi.org/10.1016/B978-0-12-815720-6.00006-X]
[2]
Beck-Broichsitter M, Merkel OM, Kissel T. Controlled pulmonary drug and gene delivery using polymeric nano-carriers. J Control Release 2012; 161(2): 214-24.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.004] [PMID: 22192571]
[3]
Mehta P, Bothiraja C, Kadam S, Pawar A. Potential of dry powder inhalers for tuberculosis therapy: facts, fidelity and future. Artif Cells Nanomed Biotechnol 2018; 46(sup3): S791-806.
[http://dx.doi.org/10.1080/21691401.2018.1513938] [PMID: 30307321]
[4]
Rangaraj N, Pailla SR, Sampathi S. Insight into pulmonary drug delivery: Mechanism of drug deposition to device characterization and regulatory requirements. Pulm Pharmacol Ther 2019; 54: 1-21.
[http://dx.doi.org/10.1016/j.pupt.2018.11.004] [PMID: 30447295]
[5]
Liang Z, Ni R, Zhou J, Mao S. Recent advances in controlled pulmonary drug delivery. Drug Discov Today 2015; 20(3): 380-9.
[http://dx.doi.org/10.1016/j.drudis.2014.09.020] [PMID: 25281854]
[6]
Liu Q, Guan J, Qin L, Zhang X, Mao S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov Today 2020; 25(1): 150-9.
[http://dx.doi.org/10.1016/j.drudis.2019.09.023] [PMID: 31600580]
[7]
Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7(9): 771-82.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[8]
Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010; 9(8): 615-27.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
[9]
Hu CMJ, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 2012; 83(8): 1104-11.
[http://dx.doi.org/10.1016/j.bcp.2012.01.008] [PMID: 22285912]
[10]
Rogueda PGA, Traini D. The nanoscale in pulmonary delivery. Part 2: Formulation platforms. Expert Opin Drug Deliv 2007; 4(6): 607-20.
[http://dx.doi.org/10.1517/17425247.4.6.607] [PMID: 17970664]
[11]
Lung specific drug delivery systems for tuberculosis treatment NIH guide 1995; 24(1): 95-112.
[12]
Ugwoke MI, Vereyken IJ, Luessen H. Microparticles and liposomes as pulmonary drug delivery systems. What are the recent trends? Chapter VI 308-77.
[13]
Saleem I, Smyth H. Carriers in pulmonary dry powder drug delivery. A Report
[14]
APV Focus Group Drug Delivery. Combining science & technology to create advanced drug delivery systems. Int Assoc Pharma Technol Newsletter 2009; p. 3.
[15]
Jeffrey W, Michael T. Pulmonary drug delivery system. US Patent 5451569, 1995.
[16]
Bian B, He J, Du J, et al. Growth mechanism and magnetic properties of monodisperse L1 0 -Co(Fe)Pt@C core–shell nanoparticles by one-step solid-phase synthesis. Nanoscale 2015; 7(3): 975-80.
[http://dx.doi.org/10.1039/C4NR04986A] [PMID: 25462862]
[17]
Chen H, Zhang L, Li M, Xie G. Synthesis of core–shell micro/nanoparticles and their tribological application: A Review. Materials (Basel) 2020; 13(20): 4590-3.
[http://dx.doi.org/10.3390/ma13204590] [PMID: 33076415]
[18]
Chaudhuri TK, Tiwari D. Earth-abundant non-toxic Cu2ZnSnS4 thin films by direct liquid coating from metal–thiourea precursor solution. Sol Energy Mater Sol Cells 2012; 101: 46-50.
[http://dx.doi.org/10.1016/j.solmat.2012.02.012]
[19]
Marini M, Toselli M, Borsacchi S, Mollica G, Geppi M, Pilati F. Facile synthesis of core-shell organic–inorganic hybrid nanoparticles with amphiphilic polymer shell by one-step sol–gel reactions. J Polym Sci A Polym Chem 2008; 46(5): 1699-709.
[http://dx.doi.org/10.1002/pola.22511]
[20]
Sun L, Shi Y, Chu L, Wang Y, Zhang L, Liu J. Preparation and characterization of silica/polypyrrole core-shell colloidal particles in the presence of ethanol as the cosolvent. J Appl Polym Sci 2012; 123(6): 3270-4.
[http://dx.doi.org/10.1002/app.35000]
[21]
Poovarodom S, Bass JD, Hwang SJ, Katz A. Investigation of the core-shell interface in gold@silica nanoparticles: A silica imprinting approach. Langmuir 2005; 21(26): 12348-56.
[http://dx.doi.org/10.1021/la052006d] [PMID: 16343013]
[22]
Ung T, Liz-Marzán LM, Mulvaney P. Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions. Langmuir 1998; 14(14): 3740-8.
[http://dx.doi.org/10.1021/la980047m]
[23]
Zhai J, Tao X, Pu Y, Zeng XF, Chen JF. Core/shell structured ZnO/SiO2 nanoparticles: Preparation, characterization and photocatalytic property. Appl Surf Sci 2010; 257(2): 393-7.
[http://dx.doi.org/10.1016/j.apsusc.2010.06.091]
[24]
Rogach AL, Nagesha D, Ostrander JW, Giersig M, Kotov NA. “Raisin Bun”-type composite spheres of silica and semiconductor nanocrystals. Chem Mater 2000; 12(9): 2676-85.
[http://dx.doi.org/10.1021/cm000244i]
[25]
Sun J, Zhuang J, Guan S, Yang W. Synthesis of robust water-soluble ZnS:Mn/SiO2 core/shell nanoparticles. J Nanopart Res 2008; 10(4): 653-8.
[http://dx.doi.org/10.1007/s11051-007-9296-5]
[26]
Kumar S, Zou S. Electrooxidation of carbon monoxide and methanol on platinum-overlayer-coated gold nanoparticles: Effects of film thickness. Langmuir 2007; 23(13): 7365-71.
[http://dx.doi.org/10.1021/la0637216] [PMID: 17521203]
[27]
Óvári L, Berkó A, Balázs N, Majzik Z, Kiss J. Formation of Rh-Au core-shell nanoparticles on TiO2(110) surface studied by STM and LEIS. Langmuir 2010; 26(3): 2167-75.
[http://dx.doi.org/10.1021/la902674u] [PMID: 19891450]
[28]
Berkó A, Klivényi G, Solymosi F. Fabrication of Ir/TiO2(110) planar catalysts with tailored particle size and distribution. J Catal 1999; 182(2): 511-4.
[http://dx.doi.org/10.1006/jcat.1998.2345]
[29]
Langlois C, Benzo P, Arenal R, et al. Fully crystalline faceted Fe–Au core–shell nanoparticles. Nano Lett 2015; 15(8): 5075-80.
[http://dx.doi.org/10.1021/acs.nanolett.5b02273] [PMID: 26146846]
[30]
Mero O, Sougrati MT, Jumas JC, Margel S. Engineered magnetic core-shell SiO2/Fe microspheres and “medusa-like” microspheres of SiO2/iron oxide/carbon nanofibers or nanotubes. Langmuir 2014; 30(32): 9850-8.
[http://dx.doi.org/10.1021/la502142m] [PMID: 25089849]
[31]
Cui P, Li FS, Yang Y, Jiang W, Liu HY. Design of typical device for powder surface modification of micron and nano-sized powder by mechano-mixed method. China Powder Sci Technol 2006; 1: 17-9.
[32]
Jang HJ, Jung EY, Parsons T, Tae HS, Park CS. A Review of plasma synthesis methods for polymer films and nanoparticles under atmospheric pressure conditions. Polymers (Basel) 2021; 13(14): 2267.
[http://dx.doi.org/10.3390/polym13142267] [PMID: 34301024]
[33]
Hegemann D, Lorusso E, Butron-Garcia MI, et al. Suppression of hydrophobic recovery by plasma polymer films with vertical chemical gradients. Langmuir 2016; 32(3): 651-4.
[http://dx.doi.org/10.1021/acs.langmuir.5b03913] [PMID: 26716609]
[34]
Rao J, Bao L, Wang B, Fan M, Feo L. Plasma surface modification and bonding enhancement for bamboo composites. Compos, Part B Eng 2018; 138: 157-67.
[http://dx.doi.org/10.1016/j.compositesb.2017.11.025]
[35]
Seo HJ, Gil YE, Hwang KH, Ananth A, Boo JH. Synthesis and characterization of plasma-polymer gate dielectric films for graphene field effect transistor devices. Electron Mater Lett 2019; 15(4): 396-401.
[http://dx.doi.org/10.1007/s13391-019-00139-6]
[36]
Vasilev K. Nano engineered plasma polymer films for biomaterial applications. Plasma Chem Plasma Process 2014; 34(3): 545-58.
[http://dx.doi.org/10.1007/s11090-013-9506-0]
[37]
Vasani RB, Szili EJ, Rajeev G, Voelcker NH. On-demand anti-microbial treatment with antibiotic-loaded porous silicon capped with a pH-responsive dual plasma polymer barrier. Chem Asian J 2017; 12(13): 1605-14.
[http://dx.doi.org/10.1002/asia.201700427] [PMID: 28508517]
[38]
Bruggeman PJ, Kushner MJ, Locke BR, et al. Plasma–liquid interactions: A review and roadmap. Plasma Sources Sci Technol 2016; 25(5): 053002.
[http://dx.doi.org/10.1088/0963-0252/25/5/053002]
[39]
Mohammed RS, Aadim KA, Ahmed KA. Estimation of in vivo toxicity of MgO/ZnO core/shell nanoparticles synthesized by eco-friendly non-thermal plasma technology. Appl Nanosci 2022; 12(12): 3783-95.
[http://dx.doi.org/10.1007/s13204-022-02608-1] [PMID: 36120604]
[40]
Woodard A, Xu L, Barragan AA, Nava G, Wong BM, Mangolini L. On the non‐thermal plasma synthesis of nickel nanoparticles. Plasma Process Polym 2018; 15(1): 1700104.
[http://dx.doi.org/10.1002/ppap.201700104]
[41]
Hebbalalu D, Lalley J, Nadagouda MN, Varma RS. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustain Chem& Eng 2013; 1(7): 703-12.
[http://dx.doi.org/10.1021/sc4000362]
[42]
Nadagouda MN, Speth TF, Varma RS. Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res 2011; 44(7): 469-78.
[http://dx.doi.org/10.1021/ar1001457] [PMID: 21526846]
[43]
Komarneni S, Pidugu R, Li QH, Roy R. Microwave-hydrothermal processing of metal powders. J Mater Res 1995; 10(7): 1687-92.
[http://dx.doi.org/10.1557/JMR.1995.1687]
[44]
Harpeness R, Gedanken A. Microwave synthesis of core-shell gold/palladium bimetallic nanoparticles. Langmuir 2004; 20(8): 3431-4.
[http://dx.doi.org/10.1021/la035978z] [PMID: 15875878]
[45]
Abdel-Fattah WI, Eid MM, Abd El-Moez SI, Mohamed E, Ali GW. Synthesis of biogenic Ag@Pd Core-shell nanoparticles having anti-cancer/anti-microbial functions. Life Sci 2017; 183: 28-36.
[http://dx.doi.org/10.1016/j.lfs.2017.06.017] [PMID: 28642073]
[46]
Lu CY, Puig T, Obradors X, Ricart S, Ros J. Ultra-fast microwave-assisted reverse microemulsion synthesis of Fe 3 O 4 @SiO 2 core–shell nanoparticles as a highly recyclable silver nanoparticle catalytic platform in the reduction of 4-nitroaniline. RSC Advances 2016; 6(91): 88762-9.
[http://dx.doi.org/10.1039/C6RA19435D]
[47]
Al-Radadi NS. Microwave assisted green synthesis of Fe@Au core–shell NPs magnetic to enhance olive oil efficiency on eradication of helicobacter pylori (life preserver). Arab J Chem 2022; 15(5): 103685.
[http://dx.doi.org/10.1016/j.arabjc.2022.103685]
[48]
Izadiyan Z, Shameli K, Teow SY, et al. Anticancer activity of 5-fluorouracil-loaded Nanoemulsions containing Fe3O4/Au core-shell nanoparticles. J Mol Struct 2021; 1245131075.
[http://dx.doi.org/10.1016/j.molstruc.2021.131075]
[49]
Ali Ghasemzadeh M, Mirhosseini-Eshkevari B, Hossein Abdollahi-Basir M. Rapid and efficient one-pot synthesis of 3,4-dihydroquinoxalin-2-amine derivatives catalyzed by CO3O4@SiO2 Core-shell nanoparticles under ultrasound irradiation. Comb Chem High Throughput Screen 2016; 19(7): 592-601.
[http://dx.doi.org/10.2174/1386207319666160524141831] [PMID: 27216448]
[50]
Devkar TB, Tekade AR, Khandelwal KR. Surface engineered nanostructured lipid carriers for efficient nose to brain delivery of ondansetron HCl using Delonix regia gum as a natural mucoadhesive polymer. Colloids Surf B Biointerfaces 2014; 122: 143-50.
[http://dx.doi.org/10.1016/j.colsurfb.2014.06.037] [PMID: 25033434]
[51]
Mohammed SAJ, Al-Rawi BK, Al-Haddad RMS. Fe 3 O 4 @SiO 2 Core–Shell Nanoparticles: Synthesis, Characterization Prepared by Green Method for Iraqi Aloe Vera Extract. Int J Nanosci 2023; 22(2): 2350009.
[http://dx.doi.org/10.1142/S0219581X23500096]
[52]
Yu J, Liu W, Yu H. A one-pot approach to hierarchically nanoporous Titania Hollow microspheres with high photocatalytic activity. Cryst Growth Des 2008; 8(3): 930-4.
[http://dx.doi.org/10.1021/cg700794y]
[53]
Lambert K, Geyter BD, Moreels I, Hens Z. PbTe|CdTe core|shell particles by cation exchange, a HR-TEM study. Chem Mater 2009; 21(5): 778-80.
[http://dx.doi.org/10.1021/cm8029399]
[54]
Song C, Yu W, Zhao B, et al. Efficient fabrication and photocatalytic properties of TiO2 hollow spheres. Catal Commun 2009; 10(5): 650-4.
[http://dx.doi.org/10.1016/j.catcom.2008.11.010]
[55]
Qian L, Sha Y, Yang X. Simple and convenient preparation of Au–Pt core-shell nanoparticles on surface via a seed growth method. Thin Solid Films 2006; 515(4): 1349-53.
[http://dx.doi.org/10.1016/j.tsf.2006.03.036]
[56]
Chávez JL, Wong JL, Duran RS. Core-shell nanoparticles: Characterization and study of their use for the encapsulation of hydrophobic fluorescent dyes. Langmuir 2008; 24(5): 2064-71.
[http://dx.doi.org/10.1021/la702227d] [PMID: 18220429]
[57]
Wang L, Chen D. A facile method for the preparation of hollow silver spheres. Mater Lett 2007; 61(10): 2113-6.
[http://dx.doi.org/10.1016/j.matlet.2006.08.022]
[58]
Guchhait A, Rath AK, Pal AJ. Hybrid core−shell nanoparticles: Photoinduced electron-transfer for charge separation and solar cell applications. Chem Mater 2009; 21(21): 5292-9.
[http://dx.doi.org/10.1021/cm902404s]
[59]
Cui X, Zhong S, Yan J, Wang C, Zhang H, Wang H. Synthesis and characterization of core–shell SiO2-fluorinated polyacrylate nanocomposite latex particles containing fluorine in the shell. Colloids Surf A Physicochem Eng Asp 2010; 360(1-3): 41-6.
[http://dx.doi.org/10.1016/j.colsurfa.2010.02.006]
[60]
Kuo KT, Chen SY, Cheng BM, Lin CC. Synthesis and characterization of highly luminescent CuInS2 and CuInS2/ZnS (core/shell) nanocrystals. Thin Solid Films 2008; 517(3): 1257-61.
[http://dx.doi.org/10.1016/j.tsf.2008.06.023]
[61]
Wang L, Luo J, Fan Q, et al. Monodispersed core-shell Fe3O4@Au nanoparticles. J Phys Chem B 2005; 109(46): 21593-601.
[http://dx.doi.org/10.1021/jp0543429] [PMID: 16853803]
[62]
Jiang D, Cao L, Liu W, et al. Synthesis and luminescence properties of core/shell ZnS:Mn/ZnO nanoparticles. Nanoscale Res Lett 2009; 4(1): 78-83.
[http://dx.doi.org/10.1007/s11671-008-9205-6] [PMID: 20596404]
[63]
Song C, Wang D, Gu G, et al. Preparation and characterization of silver/TiO2 composite hollow spheres. J Colloid Interface Sci 2004; 272(2): 340-4.
[http://dx.doi.org/10.1016/j.jcis.2003.08.062] [PMID: 15028496]
[64]
Hellweg T, Dewhurst CD, Eimer W, Kratz K. PNIPAM-co-polystyrene core-shell microgels: structure, swelling behavior, and crystallization. Langmuir 2004; 20(11): 4330-5.
[http://dx.doi.org/10.1021/la0354786] [PMID: 15969135]
[65]
Riley T, Heald CR, Stolnik S, et al. Core−shell structure of PLA-PEG nanoparticles used for drug delivery. Langmuir 2003; 19(20): 8428-35.
[http://dx.doi.org/10.1021/la020911h]
[66]
Crowther HM, Saunders BR, Mears SJ, et al. Poly(NIPAM) microgel particle de-swelling: A light scattering and small-angle neutron scattering study. Colloids Surf A Physicochem Eng Asp 1999; 152(3): 327-33.
[http://dx.doi.org/10.1016/S0927-7757(98)00875-9]
[67]
Kawahashi N, Shiho H. Copper and copper compounds as coatings on polystyrene particles and as hollow spheres. J Mater Chem 2000; 10(10): 2294-7.
[http://dx.doi.org/10.1039/b000788i]
[68]
Shiho H, Kawahashi N. Iron compounds as coatings on polystyrene latex and as hollow spheres. J Colloid Interface Sci 2000; 226(1): 91-7.
[http://dx.doi.org/10.1006/jcis.2000.6789] [PMID: 11401351]
[69]
Sgraja M, Bertling J, Kümmel R, Jansens PJ. Inorganic and hybrid hollow spheres by coating of microcapsules as templates. J Mater Sci 2006; 41(17): 5490-4.
[http://dx.doi.org/10.1007/s10853-006-0272-8]
[70]
Attarilar S, Yang J, Ebrahimi M, et al. The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: A brief review from the Biomedical Perspective. Front Bioeng Biotechnol 2020; 8: 822.
[http://dx.doi.org/10.3389/fbioe.2020.00822] [PMID: 32766232]
[71]
Ray PC, Yu H, Fu PP. Toxicity and environmental risks of nanomaterials: Challenges and future needs. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 2009; 27(1): 1-35.
[http://dx.doi.org/10.1080/10590500802708267] [PMID: 19204862]
[72]
Cho NH, Cheong TC, Min JH, et al. A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 2011; 6(10): 675-82.
[http://dx.doi.org/10.1038/nnano.2011.149] [PMID: 21909083]
[73]
Xiong L, Yang T, Yang Y, Xu C, Li F. Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 2010; 31(27): 7078-85.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.065] [PMID: 20619791]
[74]
Muhammed RPE, Junise V, Saraswathi R, Krishnan PN, Dilip C. Development and characterization of chitosan nanoparticles loaded with isoniazid for the treatment of tuberculosis. Res J Pharm Biol Chem Sci 2010; 1(4): 383-90.
[75]
Fratoddi I. Hydrophobic and hydrophilic Au and Ag nanoparticles. Breakthroughs and perspectives. Nanomaterials 2017; 8(1): 11.
[http://dx.doi.org/10.3390/nano8010011] [PMID: 29280980]
[76]
Kumar R, Aadil KR, Ranjan S, Kumar VB. Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. J Drug Deliv Sci Technol 2020; 57101617. a
[http://dx.doi.org/10.1016/j.jddst.2020.101617]
[77]
Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 2012; 112(4): 2373-433.
[http://dx.doi.org/10.1021/cr100449n] [PMID: 22204603]
[78]
Kumar VB, Kumar R, Gedanken A, Shefi O. Fluorescent metal-doped carbon dots for neuronal manipulations. Ultrason Sonochem 2019; 52: 205-13. b
[http://dx.doi.org/10.1016/j.ultsonch.2018.11.017] [PMID: 30522849]
[79]
Sanvicens N, Marco MP. Multifunctional nanoparticles – properties and prospects for their use in human medicine. Trends Biotechnol 2008; 26(8): 425-33.
[http://dx.doi.org/10.1016/j.tibtech.2008.04.005] [PMID: 18514941]
[80]
Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today 2007; 2(3): 22-32.
[http://dx.doi.org/10.1016/S1748-0132(07)70084-1]
[81]
Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci 2014; 4(4): 385-92.
[http://dx.doi.org/10.1007/s13204-013-0216-y]
[82]
Abd Elrahman AA, Mansour FR. Targeted magnetic iron oxide nanoparticles: Preparation, functionalization and biomedical application. J Drug Deliv Sci Technol 2019; 52: 702-12.
[http://dx.doi.org/10.1016/j.jddst.2019.05.030]
[83]
Häfeli UO, Riffle JS, Harris-Shekhawat L, et al. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 2009; 6(5): 1417-28.
[http://dx.doi.org/10.1021/mp900083m] [PMID: 19445482]
[84]
Yu MK, Jeong YY, Park J, et al. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed 2008; 47(29): 5362-5.
[http://dx.doi.org/10.1002/anie.200800857] [PMID: 18551493]
[85]
Kayal S, Ramanujan RV. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting. J Nanosci Nanotechnol 2010; 10(9): 5527-39.
[http://dx.doi.org/10.1166/jnn.2010.2461] [PMID: 21133071]
[86]
Likhitkar S, Bajpai AK. Magnetically controlled release of cisplatin from superparamagnetic starch nanoparticles. Carbohydr Polym 2012; 87(1): 300-8.
[http://dx.doi.org/10.1016/j.carbpol.2011.07.053] [PMID: 34662965]
[87]
Tiwari A, Verma NC, Singh A, Nandi CK, Randhawa JK. Carbon coated core–shell multifunctional fluorescent SPIONs. Nanoscale 2018; 10(22): 10389-94.
[http://dx.doi.org/10.1039/C8NR01941J] [PMID: 29845158]
[88]
Samiei Foroushani M, Karimi Shervedani R, Kefayat A, Torabi M, Ghahremani F, Yaghoobi F. Folate-graphene chelate manganese nanoparticles as a theranostic system for colon cancer MR imaging and drug delivery: In-vivo examinations. J Drug Deliv Sci Technol 2019; 54101223.
[http://dx.doi.org/10.1016/j.jddst.2019.101223]
[89]
Balcells L, Fornaguera C, Brugada-Vilà P, et al. SPIONs’ enhancer effect on cell transfection: An unexpected advantage for an improved gene delivery system. ACS Omega 2019; 4(2): 2728-40.
[http://dx.doi.org/10.1021/acsomega.8b02905]
[90]
Pezzi HM, Niles DJ, Schehr JL, Beebe DJ, Lang JM. Integration of magnetic bead-based cell selection into complex isolations. ACS Omega 2018; 3(4): 3908-17.
[http://dx.doi.org/10.1021/acsomega.7b01427] [PMID: 29732449]
[91]
Sameer Kumar R, Shakambari G, Ashokkumar B, Nelson DJ, John SA, Varalakshmi P. Nitrogen-doped graphene quantum dot-combined sodium 10-amino-2-methoxyundecanoate: Studies of proinflammatory gene expression and live cell imaging. ACS Omega 2018; 3(9): 11982-92.
[http://dx.doi.org/10.1021/acsomega.8b02085] [PMID: 30320283]
[92]
Rahman MA, Matsumura Y, Yano S, Ochiai B. PH-responsive charge-conversional and hemolytic activities of magnetic nanocomposite particles for cell-targeted hyperthermia. ACS Omega 2018; 3(1): 961-72.
[http://dx.doi.org/10.1021/acsomega.7b01918] [PMID: 30023794]
[93]
Jain N, Singh RK, Singh BP, Srivastava A, Singh RA, Singh J. Enhanced temperature-sensing behavior of Ho3+–Yb3+-codoped CaTiO3 and its hybrid formation with Fe3O4 nanoparticles for hyperthermia. ACS Omega 2019; 4(4): 7482-91.
[http://dx.doi.org/10.1021/acsomega.9b00184]
[94]
Tiwari A, Singh A, Debnath A, et al. Multifunctional magneto-fluorescent nanocarriers for dual mode imaging and targeted drug delivery. ACS Appl Nano Mater 2019; 2(5): 3060-72.
[http://dx.doi.org/10.1021/acsanm.9b00421]
[95]
Ding H, Zhang Y, Li G. Recent research progress on magnetic nanocomposites with silica shell structures: Preparation and nanotheranostic applications. Recent Pat Nanotechnol 2014; 8(2): 117-28.
[http://dx.doi.org/10.2174/187221050802140618144321] [PMID: 24962378]
[96]
Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv 2014; 11(9): 1449-70.
[http://dx.doi.org/10.1517/17425247.2014.924501] [PMID: 24870351]
[97]
Felton C, Karmakar A, Gartia Y, Ramidi P, Biris AS, Ghosh A. Magnetic nanoparticles as contrast agents in biomedical imaging: Recent advances in iron- and manganese-based magnetic nanoparticles. Drug Metab Rev 2014; 46(2): 142-54.
[http://dx.doi.org/10.3109/03602532.2013.876429] [PMID: 24754519]
[98]
Key J, Leary JF. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomedicine 2014; 9: 711-26.
[PMID: 24511229]
[99]
Issa B, Obaidat I, Albiss B, Haik Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int J Mol Sci 2013; 14(11): 21266-305.
[http://dx.doi.org/10.3390/ijms141121266] [PMID: 24232575]
[100]
Marcus M, Skaat H, Alon N, Margel S, Shefi O. NGF-conjugated iron oxide nanoparticles promote differentiation and outgrowth of PC12 cells. Nanoscale 2015; 7(3): 1058-66.
[http://dx.doi.org/10.1039/C4NR05193A] [PMID: 25473934]
[101]
Marcus M, Smith A, Maswadeh A, et al. Magnetic targeting of growth factors using iron oxide nanoparticles. Nanomaterials 2018; 8(9): 707.
[http://dx.doi.org/10.3390/nano8090707] [PMID: 30201889]
[102]
Itoh H, Sugimoto T. Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J Colloid Interface Sci 2003; 265(2): 283-95.
[http://dx.doi.org/10.1016/S0021-9797(03)00511-3] [PMID: 12962662]
[103]
Molineux G. Pegylation: Engineering improved pharmaceuticals for enhanced therapy. Cancer Treat Rev 2002; 28 (Suppl. A): 13-6.
[http://dx.doi.org/10.1016/S0305-7372(02)80004-4] [PMID: 12173407]
[104]
Ditsch A, Laibinis PE, Wang DIC, Hatton TA. Controlled clustering and enhanced stability of polymer-coated magnetic nanoparticles. Langmuir 2005; 21(13): 6006-18.
[http://dx.doi.org/10.1021/la047057+] [PMID: 15952854]
[105]
Kumar R, Soni P, Siril PF. Engineering the morphology and particle size of high energetic compounds using drop-by-drop and drop-to-drop solvent–antisolvent interaction methods. ACS Omega 2019; 4(3): 5424-33. a
[http://dx.doi.org/10.1021/acsomega.8b03214] [PMID: 31459707]
[106]
Giri S, Trewyn BG, Stellmaker MP, Lin VSY. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem Int Ed 2005; 44(32): 5038-44.
[http://dx.doi.org/10.1002/anie.200501819] [PMID: 16038000]
[107]
Yuan Q, Venkatasubramanian R, Hein S, Misra RDK. A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer. Acta Biomater 2008; 4(4): 1024-37.
[http://dx.doi.org/10.1016/j.actbio.2008.02.002] [PMID: 18329348]
[108]
Huang J, Shu Q, Wang L, Wu H, Wang AY, Mao H. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials 2015; 39: 105-13. a
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.059] [PMID: 25477177]
[109]
Donolato M, Vavassori P, Gobbi M, et al. On-chip manipulation of protein-coated magnetic beads via domain-wall conduits. Adv Mater 2010; 22(24): 2706-10.
[http://dx.doi.org/10.1002/adma.201000146] [PMID: 20586046]
[110]
Verma NK, Crosbie-Staunton K, Satti A, et al. Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnology 2013; 11(1): 1.
[http://dx.doi.org/10.1186/1477-3155-11-1] [PMID: 23343139]
[111]
Farmanbar N, Mohseni S, Darroudi M. Green synthesis of chitosan-coated magnetic nanoparticles for drug delivery of oxaliplatin and irinotecan against colorectal cancer cells. Polym Bull 2022; 79(12): 10595-613.
[http://dx.doi.org/10.1007/s00289-021-04066-1]
[112]
Newman AD, Brown DR, Siril P, Lee AF, Wilson K. Structural studies of high dispersion H3PW12O40/SiO2 solid acid catalysts. Phys Chem Chem Phys 2006; 8(24): 2893-902.
[http://dx.doi.org/10.1039/b603979k] [PMID: 16775645]
[113]
Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Acc Chem Res 2013; 46(3): 792-801.
[http://dx.doi.org/10.1021/ar3000986] [PMID: 23387478]
[114]
Lee JE, Lee N, Kim T, Kim J, Hyeon T. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 2011; 44(10): 893-902.
[http://dx.doi.org/10.1021/ar2000259] [PMID: 21848274]
[115]
Kim B, Kim H, Yu IJ. Assessment of nanoparticle exposure in nanosilica handling process: including characteristics of nanoparticles leaking from a vacuum cleaner. Ind Health 2014; 52(2): 152-62.
[http://dx.doi.org/10.2486/indhealth.2013-0087] [PMID: 24366536]
[116]
Oh S, Kim B, Kim H. Comparison of nanoparticle exposures between fumed and sol-gel nano-silica manufacturing facilities. Ind Health 2014; 52(3): 190-8.
[http://dx.doi.org/10.2486/indhealth.2013-0117] [PMID: 24583511]
[117]
Leung CC, Yu ITS, Chen W. Silicosis. Lancet 2012; 379(9830): 2008-18.
[http://dx.doi.org/10.1016/S0140-6736(12)60235-9] [PMID: 22534002]
[118]
Turci F, Pavan C, Leinardi R, et al. Revisiting the paradigm of silica pathogenicity with synthetic quartz crystals: the role of crystallinity and surface disorder. Part Fibre Toxicol 2015; 13(1): 32.
[http://dx.doi.org/10.1186/s12989-016-0136-6] [PMID: 27286702]
[119]
Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. Yao Wu Shi Pin Fen Xi 2014; 22(1): 64-75.
[PMID: 24673904]
[120]
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv Mater 2012; 24(12): 1504-34.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[121]
Ahmadi E, Dehghannejad N, Hashemikia S, Ghasemnejad M, Tabebordbar H. Synthesis and surface modification of mesoporous silica nanoparticles and its application as carriers for sustained drug delivery. Drug Deliv 2014; 21(3): 164-72.
[http://dx.doi.org/10.3109/10717544.2013.838715] [PMID: 24116869]
[122]
Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J. A new property of MCM-41: Drug delivery system. Chem Mater 2001; 13(2): 308-11.
[http://dx.doi.org/10.1021/cm0011559]
[123]
Chen AM, Zhang M, Wei D, et al. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 2009; 5(23): 2673-7.
[http://dx.doi.org/10.1002/smll.200900621] [PMID: 19780069]
[124]
Lu J, Liong M, Zink JI, Tamanoi F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 2007; 3(8): 1341-6.
[http://dx.doi.org/10.1002/smll.200700005] [PMID: 17566138]
[125]
Gu J, Su S, Li Y, He Q, Zhong J, Shi J. Surface modification−complexation strategy for Cisplatin loading in mesoporous nanoparticles. J Phys Chem Lett 2010; 1(24): 3446-50.
[http://dx.doi.org/10.1021/jz101483u]
[126]
Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 2012; 41(7): 2590-605.
[http://dx.doi.org/10.1039/c1cs15246g] [PMID: 22216418]
[127]
Argyo C, Weiss V, Bräuchle C, Bein T. Multifunctional mesoporous silica nanoparticles as a universal platform for Drug Delivery. Chem Mater 2014; 26(1): 435-51.
[http://dx.doi.org/10.1021/cm402592t]
[128]
Zhang Q, Liu F, Nguyen KT, et al. Multifunctional mesoporous silica nanoparticles for cancer-targeted and controlled drug delivery. Adv Funct Mater 2012; 22(24): 5144-56. b
[http://dx.doi.org/10.1002/adfm.201201316]
[129]
Wang T, Liu Y, Wu C. Retracted article: Effect of paclitaxel-mesoporous silica nanoparticles with a core-shell structure on the human lung cancer cell line A549. Nanoscale Res Lett 2017; 12(1)
[http://dx.doi.org/10.1186/s11671-022-03695-3]
[130]
Sanchez-Salcedo S, Vallet-Regí M, Shahin SA, Glackin CA, Zink JI. Mesoporous core-shell silica nanoparticles with anti-fouling properties for ovarian cancer therapy. Chem Eng J 2018; 340: 114-24.
[http://dx.doi.org/10.1016/j.cej.2017.12.116]
[131]
Juthani R, Madajewski B, Yoo B, et al. Ultrasmall Core-shell silica nanoparticles for precision drug delivery in a high-grade malignant brain tumor model. Clin Cancer Res 2020; 26(1): 147-58.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1834] [PMID: 31515460]
[132]
Lingeshwar Reddy K, Balaji R, Kumar A, Krishnan V. Lanthanide doped near infrared active upconversion nanophosphors: Fundamental concepts, synthesis strategies, and Technological Applications. Small 2018; 14(37): 1801304. a
[http://dx.doi.org/10.1002/smll.201801304] [PMID: 30066489]
[133]
Reddy KL, Venkateswarulu M, Shankar KR, Ghosh S, Krishnan V. Upconversion luminescent material-based inorganic-organic hybrid sensing system for the selective detection of hydrazine in environmental samples. ChemistrySelect 2018; 3(6): 1793-800.
[http://dx.doi.org/10.1002/slct.201702666]
[134]
Reddy KL, Rai M, Prabhakar N, et al. Controlled synthesis, bioimaging and toxicity assessments in strong red emitting Mn 2+ doped NaYF 4:Yb 3+/Ho 3+ nanophosphors. RSC Advances 2016; 6(59): 53698-704.
[http://dx.doi.org/10.1039/C6RA07106F]
[135]
Reddy KL, Prabhakar N, Arppe R, Rosenholm JM, Krishnan V. Microwave-assisted one-step synthesis of acetate-capped NaYF4:Yb/Er upconversion nanocrystals and their application in bioimaging. J Mater Sci 2017; 52(10): 5738-50.
[http://dx.doi.org/10.1007/s10853-017-0809-z]
[136]
Reddy KL, Sharma PK, Singh A, et al. Amine-functionalized, porous silica-coated NaYF4:Yb/Er upconversion nanophosphors for efficient delivery of doxorubicin and curcumin. Mater Sci Eng C 2019; 96: 86-95.
[http://dx.doi.org/10.1016/j.msec.2018.11.007] [PMID: 30606601]
[137]
Kumar R, Kumar VB, Gedanken A. Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrason Sonochem 2020; 64105009. c
[http://dx.doi.org/10.1016/j.ultsonch.2020.105009] [PMID: 32106066]
[138]
Lingeshwar Reddy K, Srinivas V, Shankar KR, et al. Enhancement of luminescence intensity in Red Emitting NaYF4:Yb/HO/Mn upconversion nanophosphors by variation of reaction parameters. J Phys Chem C 2017; 121(21): 11783-93.
[http://dx.doi.org/10.1021/acs.jpcc.7b01334]
[139]
Lingeshwar Reddy K, Prabhakar N, Rosenholm J, Krishnan V. Core-shell structures of upconversion nanocrystals coated with silica for near infrared light enabled optical imaging of cancer cells. Micromachines (Basel) 2018; 9(8): 400. b
[http://dx.doi.org/10.3390/mi9080400] [PMID: 30424333]
[140]
Balaji R, Kumar S, Reddy KL, Sharma V, Bhattacharyya K, Krishnan V. Near-infrared driven photocatalytic performance of lanthanide-doped NaYF4@CdS core-shell nanostructures with enhanced upconversion properties. J Alloys Compd 2017; 724: 481-91.
[http://dx.doi.org/10.1016/j.jallcom.2017.07.050]
[141]
Kumar A, Reddy KL, Kumar S, Kumar A, Sharma V, Krishnan V. Rational design and development of lanthanide-doped NaYF4@CdS–Au–RGO as quaternary plasmonic photocatalysts for harnessing visible–near-infrared broadband spectrum. ACS Appl Mater Interfaces 2018; 10(18): 15565-81.
[http://dx.doi.org/10.1021/acsami.7b17822] [PMID: 29701950]
[142]
Jiang W, Huang L, Mo F, Zhong Y, Xu L, Fu F. Persistent luminescent multifunctional drug delivery nano-platform based on nanomaterial ZnGa 2 O 4:Cr 3+, Sn 4+ for imaging-guided cancer chemotherapy. J Mater Chem B Mater Biol Med 2019; 7(18): 3019-26.
[http://dx.doi.org/10.1039/C9TB00109C]
[143]
Cao J, Zhang L, Ding X, Liu D, Su B, Shi J. Dual‐targeting peptides rgd10‐ngr9‐conjugated lanthanide nanoparticle@polydopamine as upconversion nanoprobes for in vivo imaging of lung cancer. Small Methods 2020; 4(12): 2000648.
[http://dx.doi.org/10.1002/smtd.202000648]
[144]
Chen S, Gao Y, Cao Z, et al. Nanocomposites of spiropyran-functionalized polymers and upconversion nanoparticles for controlled release stimulated by near-infrared light and pH. Macromolecules 2016; 49(19): 7490-6.
[http://dx.doi.org/10.1021/acs.macromol.6b01760]
[145]
Wang X, Liu C, Li Z, et al. Thermal and photo dual-responsive core–shell polymeric nanocarriers with encapsulation of upconversion nanoparticles for controlled anticancer drug release. J Phys Chem C 2019; 123(16): 10658-65.
[http://dx.doi.org/10.1021/acs.jpcc.9b00454]
[146]
Ranjan R, Singh N, Misra M, Gupta RK. Metal and metal-semiconductor core–shell nanostructures for Plasmonic Solar Cell Applications. Metal Semiconductor Core-Shell Nanostructures for Energy and Environmental Applications 2017; pp. 159-77.
[http://dx.doi.org/10.1016/B978-0-323-44922-9.00007-7]
[147]
Mondal K, Sharma A. Recent advances in the synthesis and application of photocatalytic metal–metal oxide core–shell nanoparticles for environmental remediation and their recycling process. RSC Advances 2016; 6(87): 83589-612.
[http://dx.doi.org/10.1039/C6RA18102C]
[148]
Zhang Q, Lee I, Joo JB, Zaera F, Yin Y. Core-shell nanostructured catalysts. Acc Chem Res 2013; 46(8): 1816-24.
[http://dx.doi.org/10.1021/ar300230s] [PMID: 23268644]
[149]
AlOtaibi B, Nguyen HPT, Zhao S, Kibria MG, Fan S, Mi Z. Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode. Nano Lett 2013; 13(9): 4356-61.
[http://dx.doi.org/10.1021/nl402156e] [PMID: 23927558]
[150]
Vattikuti SVP, Police AKR, Shim J, Byon C. Sacrificial-template-free synthesis of core-shell C@Bi2S3 heterostructures for efficient supercapacitor and H2 production applications. Sci Rep 2018; 8(1): 4194.
[http://dx.doi.org/10.1038/s41598-018-22622-0] [PMID: 29520107]
[151]
Su L, Jing Y, Zhou Z. Li ion battery materials with core–shell nanostructures. Nanoscale 2011; 3(10): 3967-83.
[http://dx.doi.org/10.1039/c1nr10550g] [PMID: 21879116]
[152]
Ho KC, Lin LY. A review of electrode materials based on core–shell nanostructures for electrochemical supercapacitors. J Mater Chem A Mater Energy Sustain 2019; 7(8): 3516-30.
[http://dx.doi.org/10.1039/C8TA11599K]
[153]
Xu L, Yin ML, Liu S. Agx@WO3 core-shell nanostructure for LSP enhanced chemical sensors. Sci Rep 2014; 4(1): 6745.
[http://dx.doi.org/10.1038/srep06745] [PMID: 25339285]
[154]
Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S. Core/shell nanoparticles in biomedical applications. Adv Colloid Interface Sci 2014; 209: 8-39.
[http://dx.doi.org/10.1016/j.cis.2013.12.008] [PMID: 24491963]
[155]
Dzudzevic Cancar H, Soylemez S, Akpinar Y, et al. A novel acetylcholinesterase biosensor: Core–shell magnetic nanoparticles incorporating a conjugated polymer for the detection of Organophosphorus Pesticides. ACS Appl Mater Interfaces 2016; 8(12): 8058-67.
[http://dx.doi.org/10.1021/acsami.5b12383] [PMID: 26956086]
[156]
Cao Y, Wang B, Wang Y, Lou D. Polymer-controlled core–shell nanoparticles: A novel strategy for sequential drug release. RSC Advances 2014; 4(57): 30430-9.
[http://dx.doi.org/10.1039/C4RA03610G]
[157]
Katiyar S, Mondal K, Sharma A. One-step sol–gel synthesis of hierarchically porous, flow-through carbon/silica monoliths. RSC Advances 2016; 6(15): 12298-310.
[http://dx.doi.org/10.1039/C5RA26503G]
[158]
Titirici MM, White RJ, Brun N, et al. Sustainable carbon materials. Chem Soc Rev 2015; 44(1): 250-90.
[http://dx.doi.org/10.1039/C4CS00232F] [PMID: 25301517]
[159]
Mondal K, Ali MA, Singh C, Sumana G, Malhotra BD, Sharma A. Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection. Sens Actuators B Chem 2017; 246: 202-14.
[http://dx.doi.org/10.1016/j.snb.2017.02.050]
[160]
Mondal K, Pawar G, McMurtrey MD, Sharma A. Finetuning hierarchical energy material microstructure via high temperature material synthesis route. Mater Today Chem 2020; 16100269.
[http://dx.doi.org/10.1016/j.mtchem.2020.100269]
[161]
Feng H, Tang L, Zeng G, et al. Carbon-based core–shell nanostructured materials for electrochemical energy storage. J Mater Chem A Mater Energy Sustain 2018; 6(17): 7310-37.
[http://dx.doi.org/10.1039/C8TA01257A]
[162]
Taale M, Krüger D, Ossei-Wusu E, et al. Systematically designed periodic electrophoretic deposition for decorating 3D carbon-based scaffolds with bioactive nanoparticles. ACS Biomater Sci Eng 2019; 5(9): 4393-404. a
[http://dx.doi.org/10.1021/acsbiomaterials.9b00102] [PMID: 33438405]
[163]
Taale M, Schütt F, Carey T, et al. Biomimetic carbon fiber systems engineering: A modular design strategy to generate biofunctional composites from graphene and carbon nanofibers. ACS Appl Mater Interfaces 2019; 11(5): 5325-35. b
[http://dx.doi.org/10.1021/acsami.8b17627] [PMID: 30600988]
[164]
Rasch F, Schütt F, Saure LM, et al. Wet-chemical assembly of 2D nanomaterials into lightweight, microtube-shaped, and macroscopic 3D Networks. ACS Appl Mater Interfaces 2019; 11(47): 44652-63.
[http://dx.doi.org/10.1021/acsami.9b16565] [PMID: 31686498]
[165]
Muhulet A, Miculescu F, Voicu SI, Schütt F, Thakur VK, Mishra YK. Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Mater Today Energy 2018; 9: 154-86.
[http://dx.doi.org/10.1016/j.mtener.2018.05.002]
[166]
Schütt F, Signetti S, Krüger H, et al. Hierarchical self-entangled carbon nanotube tube networks. Nat Commun 2017; 8(1): 1215.
[http://dx.doi.org/10.1038/s41467-017-01324-7] [PMID: 29084950]
[167]
Kumar R, Mondal K, Panda PK, et al. Core–shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B Mater Biol Med 2020; 8(39): 8992-9027. d
[http://dx.doi.org/10.1039/D0TB01559H] [PMID: 32902559]
[168]
Sun X, Li Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed 2004; 43(5): 597-601.
[http://dx.doi.org/10.1002/anie.200352386] [PMID: 14743414]
[169]
Peng Y, Chen S. Electrocatalysts based on metal@carbon core@shell nanocomposites: An overview. Green Energy & Environment 2018; 3(4): 335-51.
[http://dx.doi.org/10.1016/j.gee.2018.07.006]
[170]
Wang H, Mu Q, Revia R, et al. Iron oxide-carbon core-shell nanoparticles for dual-modal imaging-guided photothermal therapy. J Control Release 2018; 289: 70-8.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.022] [PMID: 30266634]
[171]
Sun G, Jia S, Zhang X, et al. Anchoring core–shell Cu@Cu2O nanoparticles to two-dimensional carbon nanosheets for bacterial disinfection. ACS Appl Nano Mater 2021; 4(9): 9831-41.
[http://dx.doi.org/10.1021/acsanm.1c02233]
[172]
Yang D, Yao X, Dong J, et al. Design and investigation of core/shell GQDs/hMSN nanoparticles as an enhanced drug delivery platform in triple-negative breast cancer. Bioconjug Chem 2018; 29(8): 2776-85.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00399] [PMID: 30011184]
[173]
Kumar R. Lipid-based nanoparticles for drug-delivery systems. Nanocarriers for Drug Deliv 2019; pp. 249-84.
[174]
Tiwari A, Kumar R, Shefi O, Randhawa JK. Fluorescent mantle carbon coated core–Shell Spions for Neuroengineering Applications. ACS Appl Bio Mater 2020; 3(7): 4665-73.
[http://dx.doi.org/10.1021/acsabm.0c00582] [PMID: 35025465]
[175]
Chan JM, Zhang L, Yuet KP, et al. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials 2009; 30(8): 1627-34.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.013] [PMID: 19111339]
[176]
Kumar R, Dalvi SV, Siril PF. Nanoparticle-based drugs and formulations: Current status and emerging applications. ACS Appl Nano Mater 2020; 3(6): 4944-61. b
[http://dx.doi.org/10.1021/acsanm.0c00606]
[177]
Qin Z, Sun H, Jiang Z, Jiao X, Chen D. Synthesis of metal sulfide nanoboxes based on Kirkendall effect and Pearson hardness. CrystEngComm 2013; 15(5): 897-902.
[http://dx.doi.org/10.1039/C2CE26495A]
[178]
Kang Y, Taton TA. Controlling shell thickness in core−shell gold nanoparticles via surface-templated adsorption of block copolymer surfactants. Macromolecules 2005; 38(14): 6115-21.
[http://dx.doi.org/10.1021/ma050400c]
[179]
Bronstein LM, Sidorov SN, Valetsky PM, Hartmann J, Cölfen H, Antonietti M. Induced micellization by interaction of poly(2-vinylpyridine)-block-poly(ethylene oxide) with metal compounds. Micelle characteristics and Metal Nanoparticle Formation. Langmuir 1999; 15(19): 6256-62.
[http://dx.doi.org/10.1021/la990146f]
[180]
Zopes D, Stein B, Mathur S, Graf C. Improved stability of “naked” gold nanoparticles enabled by in situ coating with mono and multivalent thiol PEG ligands. Langmuir 2013; 29(36): 11217-26.
[http://dx.doi.org/10.1021/la4012058] [PMID: 23906521]
[181]
Nagasaki Y. Engineering of poly(ethylene glycol) chain-tethered surfaces to obtain high-performance bionanoparticles. Sci Technol Adv Mater 2010; 11(5): 054505.
[http://dx.doi.org/10.1088/1468-6996/11/5/054505] [PMID: 27877362]
[182]
Otsuka H, Nagasaki Y, Kataoka K. Self-assembly of poly(ethylene glycol)-based block copolymers for biomedical applications. Curr Opin Colloid Interface Sci 2001; 6(1): 3-10.
[http://dx.doi.org/10.1016/S1359-0294(00)00082-0]
[183]
Mattes A, Seitz O. Mass-spectrometric monitoring of a PNA-based ligation reaction for the multiplex detection of DNA single-nucleotide polymorphisms. Angew Chem Int Ed 2001; 40(17): 3178-81.
[http://dx.doi.org/10.1002/1521-3773(20010903)40:17<3178::AID-ANIE3178>3.0.CO;2-M] [PMID: 29712064]
[184]
Cabral H, Matsumoto Y, Mizuno K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 2011; 6(12): 815-23.
[http://dx.doi.org/10.1038/nnano.2011.166] [PMID: 22020122]
[185]
Huo Q, Liu J, Wang LQ, Jiang Y, Lambert TN, Fang E. A new class of silica cross-linked micellar core-shell nanoparticles. J Am Chem Soc 2006; 128(19): 6447-53.
[http://dx.doi.org/10.1021/ja060367p] [PMID: 16683810]
[186]
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9. a
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[187]
Talapin DV, Mekis I, Götzinger S, Kornowski A, Benson O, Weller H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals. J Phys Chem B 2004; 108(49): 18826-31.
[http://dx.doi.org/10.1021/jp046481g]
[188]
Xie R, Kolb U, Li J, Basché T, Mews A. Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J Am Chem Soc 2005; 127(20): 7480-8.
[http://dx.doi.org/10.1021/ja042939g] [PMID: 15898798]
[189]
Shanavas A, Jain NK, Kaur N, et al. Polymeric core–shell combinatorial nanomedicine for synergistic anticancer therapy. ACS Omega 2019; 4(22): 19614-22.
[http://dx.doi.org/10.1021/acsomega.9b02167] [PMID: 31788591]
[190]
Szczęch M, Szczepanowicz K. Polymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer method. Nanomaterials 2020; 10(3): 496.
[http://dx.doi.org/10.3390/nano10030496] [PMID: 32164194]
[191]
Lian T, Ho RJY. Trends and developments in liposome drug delivery systems. J Pharm Sci 2001; 90(6): 667-80.
[http://dx.doi.org/10.1002/jps.1023] [PMID: 11357170]
[192]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[193]
Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S. Preparation and characteristics of monostearin nanostructured lipid carriers. Int J Pharm 2006; 314(1): 83-9.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.040] [PMID: 16563671]
[194]
Gessner A, Olbrich C, Schröder W, Kayser O, Müller RH. The role of plasma proteins in brain targeting: Species dependent protein adsorption patterns on brain-specific lipid drug conjugate (LDC) nanoparticles. Int J Pharm 2001; 214(1-2): 87-91.
[http://dx.doi.org/10.1016/S0378-5173(00)00639-6] [PMID: 11282243]
[195]
Gregoriadis G. Engineering liposomes for drug delivery: Progress and problems. Trends Biotechnol 1995; 13(12): 527-37.
[http://dx.doi.org/10.1016/S0167-7799(00)89017-4] [PMID: 8595139]
[196]
Lee SM, Ahn RW, Chen F, et al. Biological evaluation of pH-responsive polymer-caged nanobins for breast cancer therapy. ACS Nano 2010; 4(9): 4971-8.
[http://dx.doi.org/10.1021/nn100560p] [PMID: 20738118]
[197]
Lee SM, Chen H, Dettmer CM, O’Halloran TV, Nguyen ST. Polymer-caged lipsomes: A pH-responsive delivery system with high stability. J Am Chem Soc 2007; 129(49): 15096-7. a
[http://dx.doi.org/10.1021/ja070748i] [PMID: 17999499]
[198]
Sharma A. Liposomes in drug delivery: Progress and limitations. Int J Pharm 1997; 154(2): 123-40.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[199]
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3): 329-47.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[200]
Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F, Nanoencapsulation I. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006; 2(1): 8-21.
[http://dx.doi.org/10.1016/j.nano.2005.12.003] [PMID: 17292111]
[201]
Allemann E, Gurny R, Doelker E. Drug-loaded nanoparticles preparation methods and drug targeting issues. Eur J Pharm Biopharm 1993; 39: 173-91.
[202]
Wong HL, Rauth AM, Bendayan R, et al. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 2006; 23(7): 1574-85. b
[http://dx.doi.org/10.1007/s11095-006-0282-x] [PMID: 16786442]
[203]
Zhang L, Chan JM, Gu FX, et al. Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2008; 2(8): 1696-702.
[http://dx.doi.org/10.1021/nn800275r] [PMID: 19206374]
[204]
Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 2006; 116(2): 255-64.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.024] [PMID: 16914222]
[205]
Thevenot J, Troutier AL, David L, Delair T, Ladavière C. Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids. Biomacromolecules 2007; 8(11): 3651-60.
[http://dx.doi.org/10.1021/bm700753q] [PMID: 17958441]
[206]
Thevenot J, Troutier AL, Putaux JL, Delair T, Ladavière C. Effect of the polymer nature on the structural organization of lipid/polymer particle assemblies. J Phys Chem B 2008; 112(44): 13812-22.
[http://dx.doi.org/10.1021/jp805865r] [PMID: 18844402]
[207]
Troutier AL, Delair T, Pichot C, Ladavière C. Physicochemical and interfacial investigation of lipid/polymer particle assemblies. Langmuir 2005; 21(4): 1305-13.
[http://dx.doi.org/10.1021/la047659t] [PMID: 15697275]
[208]
Troutier AL, Véron L, Delair T, Pichot C, Ladavière C. New insights into self-organization of a model lipid mixture and quantification of its adsorption on spherical polymer particles. Langmuir 2005; 21(22): 9901-10.
[http://dx.doi.org/10.1021/la050796l] [PMID: 16229507]
[209]
Ruysschaert T, Sonnen AFP, Haefele T, Meier W, Winterhalter M, Fournier D. Hybrid nanocapsules: interactions of ABA block copolymers with liposomes. J Am Chem Soc 2005; 127(17): 6242-7.
[http://dx.doi.org/10.1021/ja043600x] [PMID: 15853329]
[210]
Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennink WE. Functional aliphatic polyesters for biomedical and pharmaceutical applications. J Control Release 2011; 152(1): 168-76.
[http://dx.doi.org/10.1016/j.jconrel.2010.12.016] [PMID: 21223989]
[211]
Gao HY, Schwarz J, Weisspapir M. Hybrid lipid–polymer nanoparticulate delivery composition. US Patent 20080102127, 2007.
[212]
Mandal B, Bhattacharjee H, Mittal N, et al. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 2013; 9(4): 474-91.
[http://dx.doi.org/10.1016/j.nano.2012.11.010] [PMID: 23261500]
[213]
Ranson M, Shaw H, Wolf J, et al. A phase I dose-escalation and bioavailability study of oral and intravenous formulations of erlotinib (Tarceva®, OSI-774) in patients with advanced solid tumors of epithelial origin. Cancer Chemother Pharmacol 2010; 66(1): 53-8.
[http://dx.doi.org/10.1007/s00280-009-1133-3] [PMID: 19956953]
[214]
Pal SK, Figlin RA, Reckamp K. Targeted therapies for non-small cell lung cancer: An evolving landscape. Mol Cancer Ther 2010; 9(7): 1931-44.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0239] [PMID: 20571071]
[215]
Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene 2000; 19(56): 6550-65.
[http://dx.doi.org/10.1038/sj.onc.1204082] [PMID: 11426640]
[216]
Cataldo VD, Gibbons DL, Pérez-Soler R, Quintás-Cardama A. Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N Engl J Med 2011; 364(10): 947-55.
[http://dx.doi.org/10.1056/NEJMct0807960] [PMID: 21388312]
[217]
Mandal B, Mittal NK, Balabathula P, Thoma LA, Wood GC. Development and in vitro evaluation of core–shell type lipid–polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur J Pharm Sci 2016; 81: 162-71.
[http://dx.doi.org/10.1016/j.ejps.2015.10.021] [PMID: 26517962]
[218]
Tseng C, Wang T, Dong G, et al. Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials 2007; 28(27): 3996-4005.
[http://dx.doi.org/10.1016/j.biomaterials.2007.05.006] [PMID: 17570484]
[219]
Huang WT, Larsson M, Wang YJ, Chiou SH, Lin HY, Liu DM. Demethoxycurcumin-carrying chitosan-antibody core-shell nanoparticles with multitherapeutic efficacy toward malignant A549 lung tumor: from in vitro characterization to in vivo evaluation. Mol Pharm 2015; 12(4): 1242-9.
[http://dx.doi.org/10.1021/mp500747w] [PMID: 25760774]
[220]
Lee KS, Chung HC, Im SA, et al. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 2008; 108(2): 241-50.
[http://dx.doi.org/10.1007/s10549-007-9591-y] [PMID: 17476588]
[221]
Kim TY, Kim DW, Chung JY, et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 2004; 10(11): 3708-16.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0655] [PMID: 15173077]
[222]
Kim DW, Kim SY, Kim HK, et al. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 2007; 18(12): 2009-14.
[http://dx.doi.org/10.1093/annonc/mdm374] [PMID: 17785767]
[223]
Gu F, Zhang L, Teply BA, et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci 2008; 105(7): 2586-91.
[http://dx.doi.org/10.1073/pnas.0711714105] [PMID: 18272481]
[224]
Zhang L, Radovic-Moreno AF, Alexis F, et al. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2007; 2(9): 1268-71. b
[http://dx.doi.org/10.1002/cmdc.200700121] [PMID: 17600796]
[225]
Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci 2006; 103(16): 6315-20.
[http://dx.doi.org/10.1073/pnas.0601755103] [PMID: 16606824]
[226]
Cheng J, Teply B, Sherifi I, et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007; 28(5): 869-76.
[http://dx.doi.org/10.1016/j.biomaterials.2006.09.047] [PMID: 17055572]
[227]
Rijcken CJF, Soga O, Hennink WE, Nostrum CF. Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: An attractive tool for drug delivery. J Control Release 2007; 120(3): 131-48.
[http://dx.doi.org/10.1016/j.jconrel.2007.03.023] [PMID: 17582642]
[228]
Hatziantonioy S, Demetzos C. Lipids of membranes: Chemistry, biological role and applications as drug carriers. Studies in Natural Products Chemistry 2008; 34: 173-202. [Part N].
[http://dx.doi.org/10.1016/S1572-5995(08)80027-0]
[229]
Hitzman CJ, Elmquist WF, Wattenberg LW, Wiedmann TS. Development of a respirable, sustained release microcarrier for 5-fluorouracil I: In vitro assessment of liposomes, microspheres, and lipid coated nanoparticles. J Pharm Sci 2006; 95(5): 1114-26.
[http://dx.doi.org/10.1002/jps.20591] [PMID: 16570302]
[230]
Hitzman CJ, Elmquist WF, Wiedmann TS. Development of a respirable, sustained release microcarrier for 5-fluorouracil II: In vitro and in vivo optimization of lipid coated nanoparticles. J Pharm Sci 2006; 95(5): 1127-43.
[http://dx.doi.org/10.1002/jps.20590] [PMID: 16570303]
[231]
Hitzman CJ, Wattenberg LW, Wiedmann TS. Pharmacokinetics of 5-fluorouracil in the hamster following inhalation delivery of lipid-coated nanoparticles. J Pharm Sci 2006; 95(6): 1196-211.
[http://dx.doi.org/10.1002/jps.20607] [PMID: 16639722]
[232]
Wong HL, Bendayan R, Rauth AM, Wu XY. Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new Polymer-Lipid Hybrid Nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J Control Release 2006; 116(3): 275-84.
[http://dx.doi.org/10.1016/j.jconrel.2006.09.007] [PMID: 17097178]
[233]
Sengupta S, Eavarone D, Capila I, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 2005; 436(7050): 568-72.
[http://dx.doi.org/10.1038/nature03794] [PMID: 16049491]
[234]
Beija M, Salvayre R, Lauth-de Viguerie N, Marty JD. Colloidal systems for drug delivery: From design to therapy. Trends Biotechnol 2012; 30(9): 485-96.
[http://dx.doi.org/10.1016/j.tibtech.2012.04.008] [PMID: 22673692]
[235]
Ahlin Grabnar P, Kristl J. The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers. J Microencapsul 2011; 28(4): 323-35.
[http://dx.doi.org/10.3109/02652048.2011.569763] [PMID: 21545323]
[236]
Gupta VK, Karar P, Ramesh S, Misra S, Gupta A. Nanoparticle formulation for hydrophilic & hydrophobic drugs. Int J Res Pharm Sci 2010; 1: 163-9.
[237]
Li Y, Wong HL, Shuhendler AJ, Rauth AM, Wu XY. Molecular interactions, internal structure and drug release kinetics of rationally developed polymer–lipid hybrid nanoparticles. J Control Release 2008; 128(1): 60-70.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.014] [PMID: 18406489]
[238]
Wang AZ, Yuet K, Zhang L, et al. ChemoRad nanoparticles: A novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine 2010; 5(3): 361-8.
[http://dx.doi.org/10.2217/nnm.10.6] [PMID: 20394530]
[239]
Chang WK, Tai YJ, Chiang CH, Hu CS, Hong PD, Yeh MK. The comparison of protein-entrapped liposomes and lipoparticles: preparation, characterization, and efficacy of cellular uptake. Int J Nanomedicine 2011; 6: 2403-17.
[PMID: 22072876]
[240]
Hu CMJ, Kaushal S, Cao HST, et al. Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol Pharm 2010; 7(3): 914-20.
[http://dx.doi.org/10.1021/mp900316a] [PMID: 20394436]
[241]
Liu Y, Li K, Pan J, Liu B, Feng SS. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials 2010; 31(2): 330-8.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.036] [PMID: 19783040]
[242]
Zhao P, Wang H, Yu M, et al. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: In vitro and in vivo evaluation. Eur J Pharm Biopharm 2012; 81(2): 248-56.
[http://dx.doi.org/10.1016/j.ejpb.2012.03.004] [PMID: 22446630]
[243]
Zheng Y, Yu B, Weecharangsan W, et al. Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7α-APTADD to breast cancer cells. Int J Pharm 2010; 390(2): 234-41.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.008] [PMID: 20156537]
[244]
Messerschmidt SKE, Musyanovych A, Altvater M, et al. Targeted lipid-coated nanoparticles: Delivery of tumor necrosis factor-functionalized particles to tumor cells. J Control Release 2009; 137(1): 69-77.
[http://dx.doi.org/10.1016/j.jconrel.2009.03.010] [PMID: 19306900]
[245]
Bershteyn A, Chaparro J, Riley E, Yao R, Zachariah R, Irvine D. Lipid-coated biodegradable particles as “synthetic pathogens” for vaccine engineering. IEEE 35th Annual Northeast Bioengineering Conference 2009; 61: 1-2.
[246]
Li B, Xu H, Li Z, et al. Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies. Int J Nanomedicine 2012; 7: 187-97.
[PMID: 22275834]
[247]
Hetzer M, Heinz S, Grage S, Bayerl TM. Asymmetric molecular friction in supported phospholipid bilayers revealed by NMR measurements of lipid diffusion. Langmuir 1998; 14(5): 982-4.
[http://dx.doi.org/10.1021/la9712810]
[248]
Bathfield M, Daviot D, D’Agosto F, et al. Synthesis of lipid-α-end-functionalized chains by raft polymerization. Stabilization of lipid/polymer particle assemblies. Macromolecules 2008; 41(22): 8346-53.
[http://dx.doi.org/10.1021/ma801567c]
[249]
Troutier AL, Ladavière C. An overview of lipid membrane supported by colloidal particles. Adv Colloid Interface Sci 2007; 133(1): 1-21.
[http://dx.doi.org/10.1016/j.cis.2007.02.003] [PMID: 17397791]
[250]
Heiati H, Phillips NC, Tawashi R. Evidence for phospholipid bilayer formation in solid lipid nanoparticles formulated with phospholipid and triglyceride. Pharm Res 1996; 13(9): 1406-10.
[http://dx.doi.org/10.1023/A:1016090420759] [PMID: 8893283]
[251]
Tardieu A, Luzzati V, Reman FC. Structure and polymorphism of the hydrocarbon chains of lipids: A study of lecithin-water phases. J Mol Biol 1973; 75(4): 711-33.
[http://dx.doi.org/10.1016/0022-2836(73)90303-3] [PMID: 4738730]
[252]
Cheow WS, Hadinoto K. Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids Surf B Biointerfaces 2011; 85(2): 214-20.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.033] [PMID: 21439797]
[253]
Gurny R, Peppas NA, Harrington DD, Banker GS. Development of biodegradable and injectable latices for controlled release of potent drugs. Drug Dev Ind Pharm 1981; 7(1): 1-25.
[http://dx.doi.org/10.3109/03639048109055684]
[254]
Liu Y, Pan J, Feng SS. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: Effects of surfactants on particles size, characteristics and in vitro performance. Int J Pharm 2010; 395(1-2): 243-50. b
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.008] [PMID: 20472049]
[255]
Shi J, Xiao Z, Votruba AR, Vilos C, Farokhzad OC. Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem Int Ed 2011; 50(31): 7027-31.
[http://dx.doi.org/10.1002/anie.201101554] [PMID: 21698724]
[256]
Valencia PM, Basto PA, Zhang L, et al. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano 2010; 4(3): 1671-9.
[http://dx.doi.org/10.1021/nn901433u] [PMID: 20166699]
[257]
Fang RH, Aryal S, Hu CMJ, Zhang L. Quick synthesis of lipid-polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir 2010; 26(22): 16958-62.
[http://dx.doi.org/10.1021/la103576a] [PMID: 20961057]
[258]
Zhang Z, Liu Y, Yao G, Zu G, Zhang X, Ma J. Solid-state reaction synthesis of NiFe2O4 nanoparticles by optimizing the synthetic conditions. Physica E 2012; 45: 122-9.
[http://dx.doi.org/10.1016/j.physe.2012.07.019]
[259]
Bonrath W, Medlock J, Muller M-A. Schutz J 5 Gas-phase reactions Catalysis for Fine Chemicals. Berlin, Boston: De Gruyter 2021; pp. 170-83.
[http://dx.doi.org/10.1515/9783110571189-005]
[260]
Balasubramanian B, Kraemer KL, Reding NA, Skomski R, Ducharme S, Sellmyer DJ. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties. ACS Nano 2010; 4(4): 1893-900.
[http://dx.doi.org/10.1021/nn9016422] [PMID: 20359188]
[261]
Kumar KS, Kumar VB, Paik P. Recent advancement in functional core-shell nanoparticles of polymers: Synthesis, physical properties, and applications in medical biotechnology. J Nanopart Res 2013; 1-24.
[262]
Chiang WH, Mariotti D, Sankaran RM, Eden JG, Ostrikov KK. Microplasmas for advanced materials and devices. Adv Mater 2020; 32(18): 1905508.
[http://dx.doi.org/10.1002/adma.201905508] [PMID: 31854023]
[263]
Kaushik N, Kaushik N, Linh N, et al. Plasma and nanomaterials: Fabrication and biomedical applications. Nanomaterials 2019; 9(1): 98.
[http://dx.doi.org/10.3390/nano9010098] [PMID: 30646530]
[264]
Bagre AP, Jain K, Jain NK. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: In vitro and in vivo assessment. Int J Pharm 2013; 456(1): 31-40.
[http://dx.doi.org/10.1016/j.ijpharm.2013.08.037] [PMID: 23994363]
[265]
McDaniel DK, Jo A, Ringel-Scaia VM, et al. TIPS pentacene loaded PEO-PDLLA core-shell nanoparticles have similar cellular uptake dynamics in M1 and M2 macrophages and in corresponding in vivo microenvironments. Nanomedicine 2017; 13(3): 1255-66.
[http://dx.doi.org/10.1016/j.nano.2016.12.015] [PMID: 28040495]
[266]
Shi J, Ren Y, Ma J, et al. Novel CD44-targeting and pH/redox-dual-stimuli-responsive core–shell nanoparticles loading triptolide combats breast cancer growth and lung metastasis. J Nanobiotechnology 2021; 19(1): 188.
[http://dx.doi.org/10.1186/s12951-021-00934-0] [PMID: 34162396]
[267]
Iyer R, Ramachandramoorthy H, Nguyen T, et al. Lung cancer targeted chemoradiotherapy via dual-stimuli responsive biodegradable core-shell nanoparticles. Pharmaceutics 2022; 14(8): 1525.
[http://dx.doi.org/10.3390/pharmaceutics14081525] [PMID: 35893781]
[268]
Scolari IR, Páez PL, Musri MM, Petiti JP, Torres A, Granero GE. Rifampicin loaded in alginate/chitosan nanoparticles as a promising pulmonary carrier against Staphylococcus aureus. Drug Deliv Transl Res 2020; 10(5): 1403-17.
[http://dx.doi.org/10.1007/s13346-019-00705-3] [PMID: 32363536]
[269]
Khare V, Singh A, Mahajan G, et al. Long-circulatory nanoparticles for gemcitabine delivery: Development and investigation of pharmacokinetics and in-vivo anticancer efficacy. Eur J Pharm Sci 2016; 92: 183-93.
[http://dx.doi.org/10.1016/j.ejps.2016.07.007] [PMID: 27404580]
[270]
Kim K, Oh KS, Park DY, et al. Doxorubicin/gold-loaded core/shell nanoparticles for combination therapy to treat cancer through the enhanced tumor targeting. J Control Release 2016; 228: 141-9.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.009] [PMID: 26970205]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy