Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Insights into the Therapeutic uses of Plant Derive Phytocompounds on Diabetic Nephropathy

Author(s): Palash Mitra, Sahadeb Jana and Suchismita Roy*

Volume 20, Issue 9, 2024

Published on: 23 January, 2024

Article ID: e230124225973 Pages: 15

DOI: 10.2174/0115733998273395231117114600

Price: $65

conference banner
Abstract

Diabetic nephropathy (DN) is one of the primary consequences of diabetes mellitus, affecting many people worldwide and is the main cause of death under the age of sixty. Reactive oxygen species (ROS) production rises during hyperglycemia and is crucial to the development of diabetic complications. Advanced glycation end products (AGEs) are produced excessively in a diabetic state and are accumulated in the kidney, where they change renal architecture and impair renal function. Another important targeted pathway for the formation of DN includes nuclear factor kappa-B (NF-kB), Nuclear factor E2–related factor 2 (Nrf2), NLR family pyrin domain containing 3 (NLRP3), protein kinase B/mammalian target of rapamycin (Akt/mTOR), and autophagy. About 40% of individuals with diabetes eventually acquire diabetic kidney disease and end-stage renal disease that needs hemodialysis, peritoneal dialysis, or kidney transplantation to survive. The current state of acceptable therapy for this kidney ailment is limited. The studies revealed that some naturally occurring bioactive substances might shield the kidney by controlling oxidative stress, renal fibrosis, inflammation, and autophagy. In order to provide new potential therapeutic lead bioactive compounds for contemporary drug discovery and clinical management of DN, this review was designed to examine the various mechanistic pathways by which conventional plants derive phytocompounds that are effective for the control and treatment of DN

Keywords: Diabetic nephropathy, hyperglycemia, phytocompounds, end-stage renal disease, oxidative stress, inflammation.

[1]
Lee WJ, Sobrin L, Lee MJ, Kang MH, Seong M, Cho H. The relationship between diabetic retinopathy and DN in a population-based study in Korea (KNHANES V-2, 3). Invest Ophthalmol Vis Sci 2014; 55(10): 6547-53.
[http://dx.doi.org/10.1167/iovs.14-15001] [PMID: 25205863]
[2]
Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014; 124(2): 188-95.
[http://dx.doi.org/10.1182/blood-2014-05-552729] [PMID: 24876563]
[3]
de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 2011; 305(24): 2532-9.
[http://dx.doi.org/10.1001/jama.2011.861] [PMID: 21693741]
[4]
Cianciolo G, De Pascalis A, Gasperoni L, et al. The off-target effects, electrolyte and mineral disorders of SGLT2i. Molecules 2020; 25(12): 2757.
[http://dx.doi.org/10.3390/molecules25122757] [PMID: 32549243]
[5]
Tuttle KR. Back to the future: Glomerular hyperfiltration and the diabetic kidney. Diabetes 2017; 66(1): 14-6.
[http://dx.doi.org/10.2337/dbi16-0056] [PMID: 27999101]
[6]
Toma I, Kang JJ, Sipos A, et al. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest 2008; 118(7): 2526-34.
[http://dx.doi.org/10.1172/JCI33293] [PMID: 18535668]
[7]
Rahimi Z, Moradi M, Nasri H. A systematic review of the role of renin angiotensin aldosterone system genes in diabetes mellitus, diabetic retinopathy and diabetic neuropathy. J Res Med Sci 2014; 19(11): 1090-8.
[PMID: 25657757]
[8]
Sun HJ, Wu ZY, Cao L, et al. Hydrogen Sulfide: Recent progression and perspectives for the treatment of DN. Molecules 2019; 24(15): 2857.
[http://dx.doi.org/10.3390/molecules24152857] [PMID: 31390847]
[9]
Yasuda-Yamahara M, Kume S, Maegawa H. Roles of mTOR in diabetic kidney disease. Antioxidants 2021; 10(2): 321.
[http://dx.doi.org/10.3390/antiox10020321] [PMID: 33671526]
[10]
Parveen A, Jin M, Kim SY. Bioactive phytochemicals that regulate the cellular processes involved in DN. Phytomedicine 2018; 39: 146-59.
[http://dx.doi.org/10.1016/j.phymed.2017.12.018] [PMID: 29433676]
[11]
Samsu NDN. Challenges in pathogenesis, diagnosis, and treatment. BioMed Res Int 2021; 2021: 1-17.
[http://dx.doi.org/10.1155/2021/1497449] [PMID: 34307650]
[12]
Khuntia A, Martorell M, Ilango K, et al. Theoretical evaluation of Cleome species’ bioactive compounds and therapeutic potential: A literature review. Biomed Pharmacother 2022; 151: 113161.
[http://dx.doi.org/10.1016/j.biopha.2022.113161] [PMID: 35644118]
[13]
Zuckerman Levin N, Cohen M, Phillip M, et al. Youth‐onset type 2 diabetes in Israel: A national cohort. Pediatr Diabetes 2022; 23(6): 649-59.
[http://dx.doi.org/10.1111/pedi.13351] [PMID: 35521999]
[14]
Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet 2017; 389(10075): 1238-52.
[http://dx.doi.org/10.1016/S0140-6736(16)32064-5] [PMID: 27887750]
[15]
Kocak MZ, Aktas G, Duman TT, Atak BM, Savli H. Is Uric Acid elevation a random finding or a causative agent of DN? Rev Assoc Med Bras 2019; 65(9): 1155-60.
[http://dx.doi.org/10.1590/1806-9282.65.9.1156] [PMID: 31618330]
[16]
Sethuram L, Thomas J, Mukherjee A, Chandrasekaran N. A review on contemporary nanomaterial-based therapeutics for the treatment of diabetic foot ulcers (DFUs) with special reference to the Indian scenario. Nanoscale Adv 2022; 4(11): 2367-98.
[http://dx.doi.org/10.1039/D1NA00859E] [PMID: 36134136]
[17]
Hussain S, Habib A, Najmi AK. Limited knowledge of chronic kidney disease among type 2 diabetes mellitus patients in India. Int J Environ Res Public Health 2019; 16(8): 1443.
[http://dx.doi.org/10.3390/ijerph16081443] [PMID: 31018581]
[18]
Bansal C, Kaushik R, Mohan Kaushik R. Awareness of DN in patients with type 2 diabetes mellitus: The Indian scenario. J Nephropharmacol 2018; 7(2): 90-7.
[http://dx.doi.org/10.15171/npj.2018.20]
[19]
Khan A, Siddiqui S, Husain SA, Mazurek S, Iqbal MA. Phytocompounds targeting metabolic reprogramming in cancer: An assessment of role, mechanisms, pathways, and therapeutic relevance. J Agric Food Chem 2021; 69(25): 6897-928.
[http://dx.doi.org/10.1021/acs.jafc.1c01173] [PMID: 34133161]
[20]
Kadir A, Singh J, Rahi V, Kumar P. Berberine ameliorate haloperidol and 3-Nitropropionic acid-induced neurotoxicity in rats. Neurochem Res 2022; 47(11): 3285-97.
[http://dx.doi.org/10.1007/s11064-022-03677-y] [PMID: 35876936]
[21]
Han Q, Tang H, Zou M, et al. Anti-inflammatory efficacy of combined natural alkaloid berberine and s1pr modulator fingolimod at low doses in ulcerative colitis preclinical models. J Nat Prod 2020; 83(6): 1939-49.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00175] [PMID: 32432470]
[22]
Zhu L, Han J, Yuan R, Xue L, Pang W. Berberine ameliorates DN by inhibiting TLR4/NF-κB pathway. Biol Res 2018; 51(1): 9.
[http://dx.doi.org/10.1186/s40659-018-0157-8]
[23]
Cui H M, Zhang Q Y, Wang J L, Chen J L, Zhang Y L, Tong X L. In vitro studies of berberine metabolism and its effect of enzyme induction on HepG2 cells. Journal of ethnopharmacology 2014; 158: 388-96.
[http://dx.doi.org/10.1016/j.jep.2014.10.018]
[24]
Chen Y, Wang Y, Zhang J, Sun C, Lopez A. Berberine improves glucose homeostasis in streptozotocin-induced diabetic rats in association with multiple factors of insulin resistance. ISRN Endocrinol 2011; 2011: 1-8.
[http://dx.doi.org/10.5402/2011/519371] [PMID: 22363882]
[25]
Chueh WH, Lin JY. Protective effect of isoquinoline alkaloid berberine on spontaneous inflammation in the spleen, liver and kidney of non-obese diabetic mice through downregulating gene expression ratios of pro-/anti-inflammatory and Th1/Th2 cytokines. Food Chem 2012; 131(4): 1263-71.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.116]
[26]
Sun J, Chen X, Liu T, et al. Berberine protects against palmitate-induced apoptosis in tubular epithelial cells by promoting fatty acid oxidation. Med Sci Monit 2018; 24: 1484-92.
[http://dx.doi.org/10.12659/MSM.908927] [PMID: 29528039]
[27]
Ni WJ, Ding HH, Tang LQ. Berberine as a promising anti-DN drug: An analysis of its effects and mechanisms. Eur J Pharmacol 2015; 760: 103-12.
[http://dx.doi.org/10.1016/j.ejphar.2015.04.017] [PMID: 25912800]
[28]
Ding B, Geng S, Hou X, et al. Berberine reduces renal cell pyroptosis in golden hamsters with DN through the Nrf2-NLRP3-Caspase-1-GSDMD pathway. Evid Based Complement Alternat Med 2021; 2021: 1-13.
[http://dx.doi.org/10.1155/2021/5545193] [PMID: 35971382]
[29]
Wen L, Yang H, Ma L, Fu P. The roles of NLRP3 inflammasome-mediated signaling pathways in hyperuricemic nephropathy. Mol Cell Biochem 2021; 476(3): 1377-86.
[http://dx.doi.org/10.1007/s11010-020-03997-z] [PMID: 33389490]
[30]
Ma Z, Zhu L, Wang S, et al. Berberine protects DN by suppressing epithelial-to-mesenchymal transition involving the inactivation of the NLRP3 inflammasome. Ren Fail 2022; 44(1): 923-32.
[http://dx.doi.org/10.1080/0886022X.2022.2079525] [PMID: 35618411]
[31]
Yu J, Zong G, Wu H, Zhang K. Podoplanin mediates the renoprotective effect of berberine on diabetic kidney disease in mice. Acta Pharmacol Sin 2019; 40(12): 1544-54.
[http://dx.doi.org/10.1038/s41401-019-0263-3] [PMID: 31270434]
[32]
Frombaum M, Le Clanche S, Bonnefont-Rousselot D, Borderie D. Antioxidant effects of resveratrol and other stilbene derivatives on oxidative stress and NO bioavailability: Potential benefits to cardiovascular diseases. Biochimie 2012; 94(2): 269-76.
[http://dx.doi.org/10.1016/j.biochi.2011.11.001] [PMID: 22133615]
[33]
Singh CK, Ndiaye MA, Ahmad N. Resveratrol and cancer: Challenges for clinical translation. Biochim Biophys Acta Mol Basis Dis 2015; 1852(6): 1178-85.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.004] [PMID: 25446990]
[34]
Bastianetto S, Ménard C, Quirion R. Neuroprotective action of resveratrol. Biochim Biophys Acta Mol Basis Dis 2015; 1852(6): 1195-201.
[http://dx.doi.org/10.1016/j.bbadis.2014.09.011] [PMID: 25281824]
[35]
Poulsen MM, Fjeldborg K, Ornstrup MJ, Kjær TN, Nøhr MK, Pedersen SB. Resveratrol and inflammation: Challenges in translating pre-clinical findings to improved patient outcomes. Biochim Biophys Acta Mol Basis Dis 2015; 1852(6): 1124-36.
[http://dx.doi.org/10.1016/j.bbadis.2014.12.024] [PMID: 25583116]
[36]
de Ligt M, Timmers S, Schrauwen P. Resveratrol and obesity: Can resveratrol relieve metabolic disturbances? Biochim Biophys Acta Mol Basis Dis 2015; 1852(6): 1137-44.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.012] [PMID: 25446988]
[37]
Thapa SB, Pandey RP, Park YI, Kyung Sohng J. Biotechnological advances in resveratrol production and its chemical diversity. Molecules 2019; 24(14): 2571.
[http://dx.doi.org/10.3390/molecules24142571] [PMID: 31311182]
[38]
Hussein MMA, Mahfouz MK. Effect of resveratrol and rosuvastatin on experimental DN in rats. Biomed Pharmacother 2016; 82: 685-92.
[http://dx.doi.org/10.1016/j.biopha.2016.06.004] [PMID: 27470412]
[39]
Salami M, Salami R, Mafi A, Aarabi MH, Vakili O, Asemi Z. Therapeutic potential of resveratrol in DN according to molecular signaling. Curr Mol Pharmacol 2022; 15(5): 716-35.
[http://dx.doi.org/10.2174/1874467215666211217122523] [PMID: 34923951]
[40]
Ji J, Tao P, Wang Q, Li L, Xu Y. SIRT1: Mechanism and protective effect in DN. Endocr Metab Immune Disord Drug Targets 2021; 21(5): 835-42.
[http://dx.doi.org/10.2174/22123873MTExvMDIg1] [PMID: 33121427]
[41]
Wang X, Meng L, Zhao L, et al. Resveratrol ameliorates hyperglycemia-induced renal tubular oxidative stress damage via modulating the SIRT1/FOXO3a pathway. Diabetes Res Clin Pract 2017; 126: 172-81.
[http://dx.doi.org/10.1016/j.diabres.2016.12.005] [PMID: 28258028]
[42]
Gowd V, Kang Q, Wang Q, Wang Q, Chen F, Cheng KW. Resveratrol: Evidence for its nephroprotective effect in DN. Adv Nutr 2020; 11(6): 1555-68.
[http://dx.doi.org/10.1093/advances/nmaa075] [PMID: 32577714]
[43]
Zhao Y, Fan YJ. Resveratrol improves lipid metabolism in DN rats. Front Biosci 2020; 25(10): 1913-24.
[http://dx.doi.org/10.2741/4885] [PMID: 32472765]
[44]
Ahmed T, Setzer WN, Nabavi SF, et al. Insights into effects of ellagic acid on the nervous system: A mini review. Curr Pharm Des 2016; 22(10): 1350-60.
[http://dx.doi.org/10.2174/1381612822666160125114503] [PMID: 26806345]
[45]
Zhao M, Tang SN, Marsh JL, Shankar S, Srivastava RK. Ellagic acid inhibits human pancreatic cancer growth in Balb c nude mice. Cancer Lett 2013; 337(2): 210-7.
[http://dx.doi.org/10.1016/j.canlet.2013.05.009] [PMID: 23684930]
[46]
Ríos JL, Giner R, Marín M, Recio M. A pharmacological update of ellagic acid. Planta Med 2018; 84(15): 1068-93.
[http://dx.doi.org/10.1055/a-0633-9492] [PMID: 29847844]
[47]
Hosseini B, Saedisomeolia A, Wood LG, Yaseri M, Tavasoli S. Effects of pomegranate extract supplementation on inflammation in overweight and obese individuals: A randomized controlled clinical trial. Complement Ther Clin Pract 2016; 22: 44-50.
[http://dx.doi.org/10.1016/j.ctcp.2015.12.003] [PMID: 26850805]
[48]
Liu Y, Yin H, Zhao M, Lu Q. TLR2 and TLR4 in autoimmune diseases: A comprehensive review. Clin Rev Allergy Immunol 2014; 47(2): 136-47.
[http://dx.doi.org/10.1007/s12016-013-8402-y] [PMID: 24352680]
[49]
Zhou B, Li Q, Wang J, Chen P, Jiang S. Ellagic acid attenuates streptozocin induced DN via the regulation of oxidative stress and inflammatory signaling. Food Chem Toxicol 2019; 123: 16-27.
[http://dx.doi.org/10.1016/j.fct.2018.10.036] [PMID: 30342113]
[50]
Zhang M, Zhang X. The role of PI3K/AKT/FOXO signaling in psoriasis. Arch Dermatol Res 2019; 311(2): 83-91.
[http://dx.doi.org/10.1007/s00403-018-1879-8] [PMID: 30483877]
[51]
Lin W, Liu G, Kang X, et al. Ellagic acid inhibits high glucose-induced injury in rat mesangial cells via the PI3K/Akt/FOXO3a signaling pathway. Exp Ther Med 2021; 22(3): 1017.
[http://dx.doi.org/10.3892/etm.2021.10449] [PMID: 34373703]
[52]
Chao C, Mong M, Chan K, Yin M. Anti-glycative and anti-inflammatory effects of caffeic acid and ellagic acid in kidney of diabetic mice. Mol Nutr Food Res 2010; 54(3): 388-95.
[http://dx.doi.org/10.1002/mnfr.200900087] [PMID: 19885845]
[53]
Ahad A, Ganai AA, Mujeeb M, Siddiqui WA. Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental DN. Chem Biol Interact 2014; 219: 64-75.
[http://dx.doi.org/10.1016/j.cbi.2014.05.011] [PMID: 24877639]
[54]
Al-Waili N, Al-Waili H, Al-Waili T, Salom K. Natural antioxidants in the treatment and prevention of DN; A potential approach that warrants clinical trials. Redox Rep 2017; 22(3): 99-118.
[http://dx.doi.org/10.1080/13510002.2017.1297885] [PMID: 28276289]
[55]
Eng QY, Thanikachalam PV, Ramamurthy S. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol 2018; 210: 296-310.
[http://dx.doi.org/10.1016/j.jep.2017.08.035] [PMID: 28864169]
[56]
Adelusi TI, Du L, Hao M, et al. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and DN. Biomed Pharmacother 2020; 123: 109732.
[http://dx.doi.org/10.1016/j.biopha.2019.109732] [PMID: 31945695]
[57]
Han SG, Han SS, Toborek M, Hennig B. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes. Toxicol Appl Pharmacol 2012; 261(2): 181-8.
[http://dx.doi.org/10.1016/j.taap.2012.03.024] [PMID: 22521609]
[58]
Wu H, Kong L, Cheng Y, et al. Metallothionein plays a prominent role in the prevention of DN by sulforaphane via up-regulation of Nrf2. Free Radic Biol Med 2015; 89: 431-42.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.08.009] [PMID: 26415026]
[59]
Suzuki T, Takahashi J, Yamamoto M. Molecular basis of the KEAP1-NRF2 signaling pathway. Mol Cells 2023; 46(3): 133-41.
[http://dx.doi.org/10.14348/molcells.2023.0028] [PMID: 36994473]
[60]
Mohan T, Narasimhan KKS, Ravi DB, et al. Role of Nrf2 dysfunction in the pathogenesis of DN: Therapeutic prospect of epigallocatechin-3-gallate. Free Radic Biol Med 2020; 160: 227-38.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.07.037] [PMID: 32768570]
[61]
Sun W, Liu X, Zhang H, et al. Epigallocatechin gallate upregulates NRF2 to prevent DN via disabling KEAP1. Free Radic Biol Med 2017; 108: 840-57.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.365] [PMID: 28457936]
[62]
Huang YW, Zhu QQ, Yang XY, et al. Wound healing can be improved by (—)‐epigallocatechin gallate through targeting Notch in streptozotocin‐induced diabetic mice. FASEB J 2019; 33(1): 953-64.
[http://dx.doi.org/10.1096/fj.201800337R] [PMID: 30070931]
[63]
Wang T, Xiang Z, Wang Y, et al. (−)-Epigallocatechin gallate targets notch to attenuate the inflammatory response in the immediate early stage in human macrophages. Front Immunol 2017; 8: 433.
[http://dx.doi.org/10.3389/fimmu.2017.00433] [PMID: 28443100]
[64]
Zhu QQ, Yang XY, Zhang XJ, et al. EGCG targeting Notch to attenuate renal fibrosis via inhibition of TGFβ/Smad3 signaling pathway activation in streptozotocin-induced diabetic mice. Food Funct 2020; 11(11): 9686-95.
[http://dx.doi.org/10.1039/D0FO01542C] [PMID: 33057539]
[65]
Kato H, Gruenwald A, Suh JH, et al. Wnt/β-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J Biol Chem 2011; 286(29): 26003-15.
[http://dx.doi.org/10.1074/jbc.M111.223164] [PMID: 21613219]
[66]
Borges CM, Papadimitriou A, Duarte DA, Lopes de Faria JM, Lopes de Faria JB. The use of green tea polyphenols for treating residual albuminuria in DN: A double-blind randomised clinical trial. Sci Rep 2016; 6(1): 28282.
[http://dx.doi.org/10.1038/srep28282] [PMID: 27320846]
[67]
Wang Y, Li L, Deng S, Liu F, He Z. Ursolic acid ameliorates inflammation in cerebral ischemia and reperfusion injury possibly via high mobility group box 1/Toll-like receptor 4/NFκB pathway. Front Neurol 2018; 9: 253.
[http://dx.doi.org/10.3389/fneur.2018.00253] [PMID: 29867706]
[68]
Baek J, Lee MG. Oxidative stress and antioxidant strategies in dermatology. Redox Rep 2016; 21(4): 164-9.
[http://dx.doi.org/10.1179/1351000215Y.0000000015] [PMID: 26020527]
[69]
Cha SH, Hwang Y, Heo SJ, Jun HS. Diphlorethohydroxycarmalol attenuates methylglyoxal-induced oxidative stress and advanced glycation end product formation in human kidney cells. Oxid Med Cell Longev 2018; 2018: 1-14.
[http://dx.doi.org/10.1155/2018/3654095] [PMID: 29849886]
[70]
López-Hortas L, Pérez-Larrán P, González-Muñoz MJ, Falqué E, Domínguez H. Recent developments on the extraction and application of ursolic acid. A review. Food Res Int 2018; 103: 130-49.
[http://dx.doi.org/10.1016/j.foodres.2017.10.028] [PMID: 29389599]
[71]
Liu Y, Zheng JY, Wei ZT, et al. Therapeutic effect and mechanism of combination therapy with ursolic acid and insulin on DN in a type I diabetic rat model. Front Pharmacol 2022; 13: 969207.
[http://dx.doi.org/10.3389/fphar.2022.969207] [PMID: 36249783]
[72]
Xu H, Wang X, Cheng Y, et al. Ursolic acid improves DN via suppression of oxidative stress and inflammation in streptozotocin-induced rats. Biomed Pharmacother 2018; 105: 915-21.
[http://dx.doi.org/10.1016/j.biopha.2018.06.055] [PMID: 30021385]
[73]
Su L, Cao P, Wang H. Tetrandrine mediates renal function and redox homeostasis in a streptozotocin-induced DN rat model through Nrf2/HO-1 reactivation. Ann Transl Med 2020; 8(16): 990.
[http://dx.doi.org/10.21037/atm-20-5548] [PMID: 32953790]
[74]
Zhu Y, Zhu C, Yang H, Deng J, Fan D. Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol Res 2020; 155: 104746.
[http://dx.doi.org/10.1016/j.phrs.2020.104746] [PMID: 32156650]
[75]
Wu X, Li H, Wan Z, et al. The combination of ursolic acid and empagliflozin relieves DN by reducing inflammation, oxidative stress and renal fibrosis. Biomed Pharmacother 2021; 144: 112267.
[http://dx.doi.org/10.1016/j.biopha.2021.112267] [PMID: 34624679]
[76]
Tang ST, Su H, Zhang Q, et al. Sitagliptin inhibits endothelin-1 expression in the aortic endothelium of rats with streptozotocin-induced diabetes by suppressing the nuclear factor-κB/IκBα system through the activation of AMP-activated protein kinase. Int J Mol Med 2016; 37(6): 1558-66.
[http://dx.doi.org/10.3892/ijmm.2016.2578] [PMID: 27122056]
[77]
Wang X, Li D, Fan L, Xiao Q, Zuo H, Li Z. CAPE- p NO2 ameliorated DN through regulating the Akt/NF-κB/ iNOS pathway in STZ-induced diabetic mice. Oncotarget 2017; 8(70): 114506-25.
[http://dx.doi.org/10.18632/oncotarget.23016] [PMID: 29383098]
[78]
Li J, Li N, Yan S, et al. Ursolic acid alleviates inflammation and against diabetes-induced nephropathy through TLR4-mediated inflammatory pathway. Mol Med Rep 2018; 18(5): 4675-81.
[http://dx.doi.org/10.3892/mmr.2018.9429] [PMID: 30221655]
[79]
Kang H. MicroRNA-mediated health-promoting effects of phytochemicals. Int J Mol Sci 2019; 20(10): 2535.
[http://dx.doi.org/10.3390/ijms20102535] [PMID: 31126043]
[80]
Dey N, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion. PLoS One 2012; 7(8): e42316.
[http://dx.doi.org/10.1371/journal.pone.0042316] [PMID: 22879939]
[81]
Lu X, Fan Q, Xu L, et al. Ursolic acid attenuates diabetic mesangial cell injury through the up-regulation of autophagy via miRNA-21/PTEN/Akt/mTOR suppression. PLoS One 2015; 10(2): e0117400.
[http://dx.doi.org/10.1371/journal.pone.0117400] [PMID: 25689721]
[82]
Li D, Li B, Peng LX, Liu R, Zeng N. Therapeutic efficacy of piperazine ferulate combined with irbesartan in DN: A systematic review and meta-analysis. Clin Ther 2020; 42(11): 2196-212.
[http://dx.doi.org/10.1016/j.clinthera.2020.09.013] [PMID: 33158581]
[83]
Chowdhury S, Ghosh S, Das AK, Sil PC. Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. Front Pharmacol 2019; 10: 27.
[http://dx.doi.org/10.3389/fphar.2019.00027] [PMID: 30804780]
[84]
Yang Y, Klionsky DJ. Autophagy and disease: Unanswered questions. Cell Death Differ 2020; 27(3): 858-71.
[http://dx.doi.org/10.1038/s41418-019-0480-9] [PMID: 31900427]
[85]
Choi R, Kim BH, Naowaboot J, et al. Effects of ferulic acid on DN in a rat model of type 2 diabetes. Exp Mol Med 2011; 43(12): 676-83.
[http://dx.doi.org/10.3858/emm.2011.43.12.078] [PMID: 21975281]
[86]
Ma R, He Y, Fang Q, Xie G, Qi M. Ferulic acid ameliorates renal injury via improving autophagy to inhibit inflammation in DN mice. Biomed Pharmacother 2022; 153: 113424.
[http://dx.doi.org/10.1016/j.biopha.2022.113424] [PMID: 36076545]
[87]
Li X, Wu J, Xu F, et al. Use of ferulic acid in the management of diabetes mellitus and its complications. Molecules 2022; 27(18): 6010.
[http://dx.doi.org/10.3390/molecules27186010] [PMID: 36144745]
[88]
Lei D, Chengcheng L, Xuan Q, et al. Quercetin inhibited mesangial cell proliferation of early DN through the Hippo pathway. Pharmacol Res 2019; 146: 104320.
[http://dx.doi.org/10.1016/j.phrs.2019.104320] [PMID: 31220559]
[89]
Lu Q, Ji XJ, Zhou YX, et al. Quercetin inhibits the mTORC1/p70S6K signaling-mediated renal tubular epithelial–mesenchymal transition and renal fibrosis in DN. Pharmacol Res 2015; 99: 237-47.
[http://dx.doi.org/10.1016/j.phrs.2015.06.006] [PMID: 26151815]
[90]
Shigeoka AA, Mueller JL, Kambo A, et al. An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J Immunol 2010; 185(10): 6277-85.
[http://dx.doi.org/10.4049/jimmunol.1002330] [PMID: 20962258]
[91]
Wang C, Pan Y, Zhang QY, Wang FM, Kong LD. Quercetin and allopurinol ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3 inflammasome activation and lipid accumulation. PLoS One 2012; 7(6): e38285.
[http://dx.doi.org/10.1371/journal.pone.0038285] [PMID: 22701621]
[92]
Zhang J, Wang Y, Gurung P, et al. The relationship between the thickness of glomerular basement membrane and renal outcomes in patients with DN. Acta Diabetol 2018; 55(7): 669-79.
[http://dx.doi.org/10.1007/s00592-018-1128-9] [PMID: 29610978]
[93]
Jiang X, Yu J, Wang X, Ge J, Li N. Quercetin improves lipid metabolism via SCAP-SREBP2-LDLr signaling pathway in early stage DN. Diabetes Metab Syndr Obes 2019; 12: 827-39.
[http://dx.doi.org/10.2147/DMSO.S195456] [PMID: 31239739]
[94]
Lee D, Ko WK, Hwang DS, et al. Use of baicalin-conjugated gold nanoparticles for apoptotic induction of breast cancer cells. Nanoscale Res Lett 2016; 11(1): 381.
[http://dx.doi.org/10.1186/s11671-016-1586-3] [PMID: 27576521]
[95]
Ma L, Wu F, Shao Q, Chen G, Xu L, Lu F. Baicalin alleviates oxidative stress and inflammation in DN via Nrf2 and MAPK signaling pathway. Drug Des Devel Ther 2021; 15: 3207-21.
[http://dx.doi.org/10.2147/DDDT.S319260] [PMID: 34321869]
[96]
Zhang S, Xu L, Liang R, Yang C, Wang P. Baicalin suppresses renal fibrosis through microRNA-124/TLR4/NF-κB axis in streptozotocin-induced DN mice and high glucose-treated human proximal tubule epithelial cells. J Physiol Biochem 2020; 76(3): 407-16.
[http://dx.doi.org/10.1007/s13105-020-00747-z] [PMID: 32500512]
[97]
Ou Y, Zhang W, Chen S, Deng H. Baicalin improves podocyte injury in rats with DN by inhibiting PI3K/Akt/mTOR signaling pathway. Open Med 2021; 16(1): 1286-98.
[http://dx.doi.org/10.1515/med-2021-0335] [PMID: 34541327]
[98]
Nam JE, Jo SY, Ahn CW, Kim YS. Baicalin attenuates fibrogenic process in human renal proximal tubular cells (HK−2) exposed to diabetic milieu. Life Sci 2020; 254: 117742.
[http://dx.doi.org/10.1016/j.lfs.2020.117742] [PMID: 32360619]
[99]
Huang C, Xue LF, Hu B, et al. Calycosin-loaded nanoliposomes as potential nanoplatforms for treatment of DN through regulation of mitochondrial respiratory function. J Nanobiotechnology 2021; 19(1): 178.
[http://dx.doi.org/10.1186/s12951-021-00917-1] [PMID: 34120609]
[100]
Alomari G, Al-Trad B, Hamdan S, et al. Gold nanoparticles attenuate albuminuria by inhibiting podocyte injury in a rat model of DN. Drug Deliv Transl Res 2020; 10(1): 216-26.
[http://dx.doi.org/10.1007/s13346-019-00675-6] [PMID: 31637677]
[101]
Demir E, Aslan A. Protective effect of pristine C60 fullerene nanoparticle in combination with curcumin against hyperglycemia‐induced kidney damage in diabetes caused by streptozotocin. J Food Biochem 2020; 44(11): e13470.
[http://dx.doi.org/10.1111/jfbc.13470] [PMID: 32914898]
[102]
Agarawal K, Anant Kulkarni Y, Wairkar S. Nanoformulations of flavonoids for diabetes and microvascular diabetic complications. Drug Deliv Transl Res 2023; 13(1): 18-36.
[http://dx.doi.org/10.1007/s13346-022-01174-x] [PMID: 35637334]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy