Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Ovothiol-A Mitigates High-Fat Diet-Induced Non-alcoholic Fatty Liver Disease in Rats

Author(s): Nada Hussien Arafa, Mohamed Refaat Shehata and Ayman Saber Mohamed*

Volume 20, Issue 8, 2024

Published on: 22 January, 2024

Article ID: e220124225931 Pages: 10

DOI: 10.2174/0115734072272429231106090645

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Obesity is frequently linked to multiple comorbid and chronic illnesses, including non-alcoholic fatty liver disease, type 2 diabetes, cancer, and heart disease. Ovothiol-A is one of the most powerful natural antioxidants found in marine invertebrates like sea urchins.

Objective: The current study aimed to investigate ovothiol-A's hypolipidemic and hypoglycemic potential in obese rats.

Methods: All groups get a high-fat diet (HFD) for four weeks except for the control group. The control and HFD groups received distilled water, while the Ovothiol-A groups received two doses of Ovothiol-A (200 and 400 mg/kg orally) concurrent with HFD.

Results: Weight gain, glucose, insulin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, alkaline phosphatase, total cholesterol, triglycerides, low-density lipoprotein, malondialdehyde, and nitric oxide were all decreased after oral administration of Ovo at either the 200 or 400 mg/kg dose, while levels of high-density lipoprotein (HDL), glutathionereduced, catalase and glutathione-S-transferase increased. Histopathological alterations were less noticeable in the liver tissue of Ovothiol-A groups, with only a few vacuolated or pyknotic nuclei amongst a few dispersed hepatocytes.

Conclusion: The current findings indicate that ovothiol-A protects against high-fat diet-induced fatty liver in rats. The anti-obesity mechanism of Ovothiol-A is associated with its hypolipidemic, hypoglycemic, and antioxidant properties.

Keywords: Ovothiol A, obesity, oxidative stress, sea urchin, high fat diet, rat.

Graphical Abstract
[1]
Balentine, J.R. Obesity and overweight. In: Stöppler MC, 2021.
[2]
Fahmy, S.R.; Zaki, N.I.; Eid, S.Z.; Mohamed, A.S.; Hassanein, S.S. Effectiveness of echinochrome on HFD-induced hyperlipidemia in rats. Nat. Prod. Bioprospect., 2019, 9(5), 337-344.
[http://dx.doi.org/10.1007/s13659-019-00221-4] [PMID: 31628663]
[3]
WHO. Obesity and Overweight. 2021. Available from: https://wwwwhoint2021
[4]
Caballero, B. Humans against Obesity: Who Will Win. Advances in nutrition, 2019, 10(1), 4-9.
[5]
Obesity, W. World Obesity Atlas 2023, 2023
[6]
Karri, S.; Sharma, S.; Hatware, K.; Patil, K. Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomed. Pharmacother., 2019, 110, 224-238.
[http://dx.doi.org/10.1016/j.biopha.2018.11.076] [PMID: 30481727]
[7]
Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism, 2019, 92, 82-97.
[http://dx.doi.org/10.1016/j.metabol.2018.11.014] [PMID: 30502373]
[8]
Marchesini, G.; Bugianesi, E.; Forlani, G.; Cerrelli, F.; Lenzi, M.; Manini, R.; Natale, S.; Vanni, E.; Villanova, N.; Melchionda, N.; Rizzetto, M. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology, 2003, 37(4), 917-923.
[http://dx.doi.org/10.1053/jhep.2003.50161] [PMID: 12668987]
[9]
Epingeac, M.E.; Gaman, M.A.; Diaconu, C.C.; Gad, M.; Gaman, A.M. The evaluation of oxidative stress levels in obesity. Revista de Chimie, 2019, 70(6), 2241-2244.
[http://dx.doi.org/10.37358/RC.19.6.7314]
[10]
Codoñer-Franch, P.; Valls-Bellés, V.; Arilla-Codoñer, A.; Alonso-Iglesias, E. Oxidant mechanisms in childhood obesity: The link between inflammation and oxidative stress. Transl. Res., 2011, 158(6), 369-384.
[http://dx.doi.org/10.1016/j.trsl.2011.08.004] [PMID: 22061044]
[11]
Vanacore, D.; Messina, G.; Lama, S.; Bitti, G.; Ambrosio, P.; Tenore, G.; Messina, A.; Monda, V.; Zappavigna, S.; Boccellino, M.; Novellino, E.; Monda, M.; Stiuso, P. Effect of restriction vegan diet’s on muscle mass, oxidative status, and myocytes differentiation: A pilot study. J. Cell. Physiol., 2018, 233(12), 9345-9353.
[http://dx.doi.org/10.1002/jcp.26427] [PMID: 29319158]
[12]
Mohamed, A.S.; Ibrahim, W.M.; Zaki, N.I.; Ali, S.B.; Soliman, A.M. Effectiveness of coelatura aegyptiaca extract combination with atorvastatin on experimentally induced hyperlipidemia in rats. Evidence-based complementary and alternative medicine, 2019, 2019, 9726137.
[13]
Silva, M.; Tustumi, F.; Dantas, A.C.B.; Miranda, B.C.J.; Pajecki, D. Obesity and severe steatosis: the importance of biochemical exams and scores. arquivos brasileiros de cirurgia digestiva: abcd =. Arq. Bras. Cir. Dig., 2022, 34(4), e1626.
[http://dx.doi.org/10.1590/0102-672020210002e1626] [PMID: 35107488]
[14]
Shaik Mohamed Sayed, U.F.; Moshawih, S.; Goh, H.P.; Kifli, N.; Gupta, G.; Singh, S.K.; Chellappan, D.K.; Dua, K.; Hermansyah, A.; Ser, H.L.; Ming, L.C.; Goh, B.H. Natural products as novel anti-obesity agents: Insights into mechanisms of action and potential for therapeutic management. Front. Pharmacol., 2023, 14, 1182937.
[http://dx.doi.org/10.3389/fphar.2023.1182937] [PMID: 37408757]
[15]
Abdelfattah, M.A.; Mohamed, A.S.; Ibrahim, S.A.; Fahmy, S.R. Allolobophora caliginosa coelomic fluid and extract alleviate glucocorticoid-induced osteoporosis in mice by suppressing oxidative stress and regulating osteoblastic/osteoclastic-related markers. Sci. Rep., 2023, 13(1), 2090.
[http://dx.doi.org/10.1038/s41598-023-29070-5] [PMID: 36746995]
[16]
Massoud, E.; Daniel, M.S.; El-Kott, A.; Ali, S.B.; Morsy, K.; Mohamed, A.S.; Fahmy, S.R. Therapeutic Effect of Trigonella foenum-graecum l Seeds Extract on Folic Acid-Induced Acute Kidney Injury. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2022, 92(3), 701-707.
[http://dx.doi.org/10.1007/s40011-022-01368-w]
[17]
Abdelmawgood, I.A.; Mahana, N.A.; Badr, A.M.; Mohamed, A.S.; Al Shawoush, A.M.; Atia, T.; Abdelrazak, A.E.; Sakr, H.I. Echinochrome ameliorates physiological, immunological, and histopathological alterations induced by ovalbumin in asthmatic mice by modulating the Keap1/Nrf2 Signaling Pathway. Mar. Drugs, 2023, 21(8), 455.
[http://dx.doi.org/10.3390/md21080455] [PMID: 37623736]
[18]
Mohamed, A.S.; Sadek, S.A.; Hassanein, S.S.; Soliman, A.M. Hepatoprotective effect of echinochrome pigment in septic rats. J. Surg. Res., 2019, 234, 317-324.
[http://dx.doi.org/10.1016/j.jss.2018.10.004] [PMID: 30527491]
[19]
Sadek, S.A.; Hassanein, S.S.; Mohamed, A.S.; Soliman, A.M.; Fahmy, S.R. Echinochrome pigment extracted from sea urchin suppress the bacterial activity, inflammation, nociception, and oxidative stress resulted in the inhibition of renal injury in septic rats. J. Food Biochem., 2022, 46(3), e13729.
[http://dx.doi.org/10.1111/jfbc.13729] [PMID: 33871886]
[20]
Al Shawoush, A.M.; Said, R.S.; Hassan, F.E.; Ali, S.B.; Mohamed, A.S.; Elbatran, M.M. Therapeutic effect of Nigella sativa extract on folic acid-induced acute hepatorenal injury: Influences and underlying mechanisms. Curr. Top. Pharmacol., 2023, 26, 49-55.
[21]
Castellano, I.; Seebeck, F.P. On ovothiol biosynthesis and biological roles: From life in the ocean to therapeutic potential. Nat. Prod. Rep., 2018, 35(12), 1241-1250.
[http://dx.doi.org/10.1039/C8NP00045J] [PMID: 30052250]
[22]
Milito, A.; Cocurullo, M.; Columbro, A.; Nonnis, S.; Tedeschi, G.; Castellano, I.; Arnone, M.I.; Palumbo, A. Ovothiol ensures the correct developmental programme of the sea urchin Paracentrotus lividus embryo. Open Biol., 2022, 12(1), 210262.
[http://dx.doi.org/10.1098/rsob.210262] [PMID: 35042403]
[23]
Salaheldin, A.T.; Shehata, M.R.; Sakr, H.I.; Atia, T.; Mohamed, A.S. Therapeutic potency of ovothiol a on ethanol-induced gastric ulcers in wistar rats. Mar. Drugs, 2022, 21(1), 25.
[http://dx.doi.org/10.3390/md21010025] [PMID: 36662198]
[24]
Mohammed, E.N.; Soliman, A.M.; Mohamed, A.S. Modulatory effect of OVOTHIOL‐A on myocardial infarction induced by epinephrine in rats. J. Food Biochem., 2022, 46(9), e14296.
[http://dx.doi.org/10.1111/jfbc.14296] [PMID: 35791516]
[25]
Castellano, I.; Di Tomo, P.; Di Pietro, N.; Mandatori, D.; Pipino, C.; Formoso, G.; Napolitano, A.; Palumbo, A.; Pandolfi, A. Anti-inflammatory activity of marine ovothiol a in an in vitro model of endothelial dysfunction induced by hyperglycemia. Oxid. Med. Cell. Longev., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/2087373] [PMID: 29849868]
[26]
Mahmoud Kh, N.; Refaat She, M.; Saber Moha, A.; Mohamed El, M. Ovothiol-a ameliorates renal injury induced by bile duct ligation in rats (biological, quantum-chemical and molecular docking study). Int. J. Pharmacol., 2022, 18(6), 1210-1218.
[http://dx.doi.org/10.3923/ijp.2022.1210.1218]
[27]
Madany, N.M.K.; Shehata, M.R.; Mohamed, A.S. Ovothiol-a isolated from sea urchin eggs suppress oxidative stress, inflammation, and dyslipidemia resulted in restoration of liver activity in cholestatic rats. Biointerface Res. Appl. Chem., 2022, 12(6), 8152-8162.
[28]
Ettensohn, C.A.; Gregory, W.; Wessel, G.M. Development of sea urchins, ascidians, and other invertebrate deuterostomes: experimental approaches; Gulf Professional Publishing, 2004.
[29]
Madany, N.M.K.; Shehata, M.R.; Mohamed, A.S.; Elbatran, M.M. Ovothiol-A Ameliorates Renal Injury Induced by Bile Duct Ligation in Rats (Biological, Quantum-Chemical and Molecular Docking Study). Nternational journal of pharmacology., 2022, 18(6), 1210-1218.
[30]
Mohamed, A.S.; Fahmy, S.R.; Soliman, A.M.; Gaafar, K.M. Effects of 3 rodent beddings on biochemical measures in rats and mice. J. Am. Assoc. Lab. Anim. Sci., 2018, 57(5), 443-446.
[http://dx.doi.org/10.30802/AALAS-JAALAS-18-000023] [PMID: 30012240]
[31]
Development C-oOa.Test No. 425: acute oral toxicity: up-and-down procedure; OECD publishing, 2008.
[32]
Fayez, N.; Khalil, W.; Abdel-Sattar, E.; Abdel-Fattah, A.F.M. In vitro and in vivo assessment of the anti-inflammatory activity of olive leaf extract in rats. Inflammopharmacology, 2023, 31(3), 1529-1538.
[http://dx.doi.org/10.1007/s10787-023-01208-x] [PMID: 37029328]
[33]
Reed, M.J.; Meszaros, K.; Entes, L.J.; Claypool, M.D.; Pinkett, J.G.; Gadbois, T.M.; Reaven, G.M. A new rat model of type 2 diabetes: The fat-fed, streptozotocin-treated rat. Metabolism, 2000, 49(11), 1390-1394.
[http://dx.doi.org/10.1053/meta.2000.17721] [PMID: 11092499]
[34]
Mohamed, A.S.; Hosney, M.; Bassiony, H.; Hassanein, S.S.; Soliman, A.M.; Fahmy, S.R.; Gaafar, K. Sodium pentobarbital dosages for exsanguination affect biochemical, molecular and histological measurements in rats. Sci. Rep., 2020, 10(1), 378.
[http://dx.doi.org/10.1038/s41598-019-57252-7] [PMID: 31942001]
[35]
Youssef, F.; Mohamed, G.; Ismail, S.; Elzorba, H.; Galal, A.; Elbanna, H. Synthesis, characterization and in vitro antimicrobial activity of florfenicol-chitosan nanocomposite. J. Egypt. J. Chem., 2021, 64(2), 941-948.
[36]
Mohamed, A.S.; Mahmoud, S.A.; Soliman, A.M.; Fahmy, S.R. Antitumor activity of saponin isolated from the sea cucumber,] Holothuria arenicola against ehrlich ascites carcinoma cells in swiss albino mice. Nat. Prod. Res., 2021, 35(11), 1928-1932.
[http://dx.doi.org/10.1080/14786419.2019.1644633] [PMID: 31343268]
[37]
Abdelaziz, M.H.; El-Dakdoky, M.H.; Ahmed, T.A.; Mohamed, A.S. Biological impacts of the green synthesized silver nanoparticles on the pregnant albino rats and their fetuses. Birth Defects Res., 2023, 115(4), 441-457.
[http://dx.doi.org/10.1002/bdr2.2131] [PMID: 36448314]
[38]
Bahaaeldine, M.A.; Garhy, M.E.; Fahmy, S.R.; Mohamed, A.S. Reproductive and biochemical toxicity of biobased silver nanoparticles against toxocara vitulorum. Curr. Nanomed., 2023, 13(2), 132-146.
[http://dx.doi.org/10.2174/2468187313666230613121100]
[39]
Koura, R.A.A.; Mohamed, H.R.; Ahmed, K.A.; Baiomy, A.A.A.; Bahaaeldine, M.A.; Mohamed, A.S. The therapeutic role of chitosan-saponin-bentonite nanocomposite on acute kidney injury induced by chromium in male wistar rats. Biointerface Res. Appl. Chem., 2023, 13(6), 595.
[40]
Yustisia, I.; Tandiari, D.; Cangara, M.H.; Hamid, F.; Daud, N.A.S. A high-fat, high-fructose diet induced hepatic steatosis, renal lesions, dyslipidemia, and hyperuricemia in non-obese rats. Heliyon, 2022, 8(10), e10896.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10896] [PMID: 36247176]
[41]
Belfort-DeAguiar, R.; Seo, D. Food cues and obesity: overpowering hormones and energy balance regulation. Curr. Obes. Rep., 2018, 7(2), 122-129.
[http://dx.doi.org/10.1007/s13679-018-0303-1] [PMID: 29619632]
[42]
Jiang, S.Z.; Lu, W.; Zong, X.F.; Ruan, H.Y.; Liu, Y. Obesity and hypertension. Exp. Ther. Med., 2016, 12(4), 2395-2399.
[http://dx.doi.org/10.3892/etm.2016.3667] [PMID: 27703502]
[43]
Sabi, E.M.; Bin Dahman, L.S.; Mohammed, A.K.; Sumaily, K.M.; Al-Daghri, N.M. -2548G>A LEP polymorphism is positively associated with increased leptin and glucose levels in obese saudi patients irrespective of blood pressure status. Medicina, 2022, 58(3), 346.
[http://dx.doi.org/10.3390/medicina58030346] [PMID: 35334523]
[44]
Sohn, W.; Lee, H.W.; Lee, S.; Lim, J.H.; Lee, M.W.; Park, C.H.; Yoon, S.K. Obesity and the risk of primary liver cancer: A systematic review and meta-analysis. Clin. Mol. Hepatol., 2021, 27(1), 157-174.
[http://dx.doi.org/10.3350/cmh.2020.0176] [PMID: 33238333]
[45]
Simon-Giavarotti, K.A.; Giavarotti, L.; Gomes, L.F.; Lima, A.F.; Veridiano, A.M.; Garcia, E.A.; Mora, O.A.; Fernández, V.; Videla, L.A.; Junqueira, V.B.C. Enhancement of lindane-induced liver oxidative stress and hepatotoxicity by thyroid hormone is reduced by gadolinium chloride. Free Radic. Res., 2002, 36(10), 1033-1039.
[http://dx.doi.org/10.1080/1071576021000028280] [PMID: 12516873]
[46]
Fernández, V.; Tapia, G.; Videla, L.A. Recent advances in liver preconditioning: Thyroid hormone, n-3 long-chain polyunsaturated fatty acids and iron. World J. Hepatol., 2012, 4(4), 119-128.
[http://dx.doi.org/10.4254/wjh.v4.i4.119] [PMID: 22567184]
[47]
Mamdouh, S.; Mohamed, A.S.; Mohamed, H.A.; Fahmy, W.S. Zn contamination stimulate agonistic behavior and oxidative stress of crayfishes (Procambarus clarkii). J. Trace Elem. Med. Biol., 2022, 69, 126895.
[http://dx.doi.org/10.1016/j.jtemb.2021.126895] [PMID: 34785418]
[48]
Muir, L.A.; Neeley, C.K.; Meyer, K.A.; Baker, N.A.; Brosius, A.M.; Washabaugh, A.R.; Varban, O.A.; Finks, J.F.; Zamarron, B.F.; Flesher, C.G.; Chang, J.S.; DelProposto, J.B.; Geletka, L.; Martinez-Santibanez, G.; Kaciroti, N.; Lumeng, C.N.; O’Rourke, R.W. Adipose tissue fibrosis, hypertrophy, and hyperplasia: Correlations with diabetes in human obesity. Obesity, 2016, 24(3), 597-605.
[http://dx.doi.org/10.1002/oby.21377] [PMID: 26916240]
[49]
Loomba, R.; Friedman, S.L.; Shulman, G.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell, 2021, 184(10), 2537-2564.
[http://dx.doi.org/10.1016/j.cell.2021.04.015] [PMID: 33989548]
[50]
Zhou, Y; Li, H Xia NJFiCM. The interplay between adipose tissue and vasculature: Role of oxidative stress in obesity, 2021, 8, 650214.
[51]
Di Domenico, M; Pinto, F; Quagliuolo, L; Contaldo, M; Settembre, G; Romano, A The role of oxidative stress and hormones in controlling obesity., 2019, 10, 540.
[http://dx.doi.org/10.3389/fendo.2019.00540]
[52]
Mohamed, A.S.; Soliman, A.M.; Marie, M.A.S. The possible hypoglycemic mechanisms of echinochrome. Curr. Diabetes Rev., 2018, 14(4), 334-338.
[http://dx.doi.org/10.2174/1573399813666170505120119] [PMID: 28474557]
[53]
Mohamed, A.S.; Soliman, A.M.; Marie, M.A.S. Mechanisms of echinochrome potency in modulating diabetic complications in liver. Life Sci., 2016, 151, 41-49.
[http://dx.doi.org/10.1016/j.lfs.2016.03.007] [PMID: 26947587]
[54]
Osik, N.A.; Zelentsova, E.A.; Tsentalovich, Y.P. Kinetic Studies of Antioxidant Properties of Ovothiol A In: Antioxidants; Basel, Switzerland, 2021; 10, . (9)
[55]
Madany, N.M.K.; Shehata, M.R.; Mohamed, A.S. Elbatran, MMJIJOP Ovothiol-A ameliorates renal injury induced by bile duct ligation in rats. Biological. Quantum-Chemical and Molecular Docking Study, 2022, 18(6), 1210-1218.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy