Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Crocin-loaded Niosomal Nanoparticles Reversing Cytotoxicity and Oxidative Stress in HEK293 Cell Line Exposed to Paraquat: An In vitro Study

Author(s): Akram Oftadeh Harsin, Sajjad Makhdoomi, Meysam Soleimani, Farzin Firozian, Amir Nili-Ahmadabadi and Akram Ranjbar*

Volume 13, Issue 2, 2025

Published on: 16 January, 2024

Page: [313 - 319] Pages: 7

DOI: 10.2174/0122117385256493231019045141

Price: $65

Abstract

Background: Paraquat (PQ) is an effective herbicide which is widely used around the world to remove weeds in agriculture. As a water-soluble carotenoid, crocin is a pharmacologically active constituent of C. sativus L. (saffron).

Objectives: In the present study, we investigated the effects of crocin-loaded niosomes (Cro-NIO) compared to free crocin on PQ-induced toxicity in the eukaryotic human embryonic kidney (HEK293) cell line.

Methods: The Cro-NIO was synthesized and characterized. Cell viability was determined using the MTT assay in PQ-exposed HEK293 cell lines. The activities of biochemical markers were quantitatively determined to reveal the potential mechanism of PQ-induced oxidative stress in HEK293 cell line.

Results: The particle size, zeta potential, polydispersity index (PDI), DL, and EE of Cro-NIO were 145.4 ± 19.5 nm, -22.3 ± 3.11 mV, 0.3 ± 0.03, 1.74 ± 0.01%, and 55.3 ± 7.1%, respectively. PQtreated HEK293 cell lines decreased cell viability. The results of oxidative status showed that PQ significantly could increase ROS accumulation, accompanied by a decreasing antioxidant defense system. However, treatment with Cro-NIO, compared to crocin, not only did dose-dependently improve the cell viability but also significantly attenuated the ROS accumulation and increased antioxidant markers.

Conclusion: According to these results, Cro-NIO, compared to crocin, was superior to ameliorating PQ-induced cytotoxicity and oxidative damage in HEK293 cells.

Keywords: Paraquat, crocin, niosome, human embryonic kidney (HEK293) cell, oxidative stress, cell lines.

Graphical Abstract
[1]
Yang B, Liu Y, Li Y, et al. Exposure to the herbicide butachlor activates hepatic stress signals and disturbs lipid metabolism in mice. Chemosphere 2021; 283: 131226.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131226] [PMID: 34146870]
[2]
Chen J, Su Y, Lin F, et al. Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: A review of mechanisms and ecological implications. Ecotoxicol Environ Saf 2021; 224: 112711.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112711] [PMID: 34455184]
[3]
Rashidipour M, Maleki A, Kordi S, et al. Pectin/chitosan/tripolyphosphate nanoparticles: Efficient carriers for reducing soil sorption, cytotoxicity, and mutagenicity of paraquat and enhancing its herbicide activity. J Agric Food Chem 2019; 67(20): 5736-45.
[http://dx.doi.org/10.1021/acs.jafc.9b01106] [PMID: 31042035]
[4]
Harchegani AL, Hemmati AA, Nili-Ahmadabadi A, Darabi B, Shabib S. Cromolyn sodium attenuates paraquat-induced lung injury by modulation of proinflammatory cytokines. Drug Res 2017; 67(5): 283-8.
[http://dx.doi.org/10.1055/s-0042-123711] [PMID: 28561222]
[5]
Ge W, Zhang Y, Han X, Ren J. Cardiac-specific overexpression of catalase attenuates paraquat-induced myocardial geometric and contractile alteration: Role of ER stress. Free Radic Biol Med 2010; 49(12): 2068-77.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.686] [PMID: 20937379]
[6]
Kim S, Gil HW, Yang JO, Lee EY, Hong SY. The clinical features of acute kidney injury in patients with acute paraquat intoxication. Nephrol Dial Transplant 2008; 24(4): 1226-32.
[http://dx.doi.org/10.1093/ndt/gfn615] [PMID: 18987262]
[7]
Anderson T, Merrill AK, Eckard ML, et al. Paraquat inhalation, a translationally relevant route of exposure: Disposition to the brain and male-specific olfactory impairment in mice. Toxicol Sci 2021; 180(1): 175-85.
[http://dx.doi.org/10.1093/toxsci/kfaa183] [PMID: 33372994]
[8]
Liu Y, Luo X, Li G, Wei L, Yu X, Li Y. Increased 90-day mortality in spontaneously breathing patients with paraquat poisoning: In addition to disease severity, lung strain may play a role. Crit Care Med 2019; 47(2): 219-28.
[http://dx.doi.org/10.1097/CCM.0000000000003518] [PMID: 30371520]
[9]
Hu X, Chen L, Li T, Zhao M. TLR3 is involved in paraquat-induced acute renal injury. Life Sci 2019; 223: 102-9.
[http://dx.doi.org/10.1016/j.lfs.2019.03.029] [PMID: 30876938]
[10]
Ma J, Li Y, Li W, Li X. Hepatotoxicity of paraquat on common carp (Cyprinus carpio L.). Sci Total Environ 2018; 616-617: 889-98.
[http://dx.doi.org/10.1016/j.scitotenv.2017.10.231] [PMID: 29107372]
[11]
Makhdoomi S, Ariafar S, Mirzaei F, Mohammadi M. Aluminum neurotoxicity and autophagy: A mechanistic view. Neurol Res 2023; 45(3): 216-25.
[http://dx.doi.org/10.1080/01616412.2022.2132727] [PMID: 36208459]
[12]
Kalantar M, Kalantari H, Goudarzi M, Khorsandi L, Bakhit S, Kalantar H. Crocin ameliorates methotrexate-induced liver injury via inhibition of oxidative stress and inflammation in rats. Pharmacol Rep 2019; 71(4): 746-52.
[http://dx.doi.org/10.1016/j.pharep.2019.04.004] [PMID: 31220735]
[13]
Jahanbakhsh Z, Rasoulian B, Jafari M, et al. Protective effect of crocin against reperfusion-induced cardiac arrhythmias in anaesthetized rats. EXCLI J 2012; 11: 20-9.
[PMID: 27366133]
[14]
Hatziagapiou K, Kakouri E, Lambrou GI, Bethanis K, Tarantilis PA. Antioxidant properties of Crocus sativus L. and its constituents and relevance to neurodegenerative diseases; focus on Alzheimer’s and Parkinson’s disease. Curr Neuropharmacol 2019; 17(4): 377-402.
[http://dx.doi.org/10.2174/1570159X16666180321095705] [PMID: 29564976]
[15]
Zheng YQ, Liu JX, Wang JN, Xu L. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res 2007; 1138: 86-94.
[http://dx.doi.org/10.1016/j.brainres.2006.12.064] [PMID: 17274961]
[16]
EL-Maraghy SA, Rizk SM, El-Sawalhi MM. Hepatoprotective potential of crocin and curcumin against iron overload-induced biochemical alterations in rat. Afr J Biochem Res 2009; 3(5): 215-21.
[17]
Gunasekaran T, Haile T, Nigusse T, Dhanaraju MD. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac J Trop Biomed 2014; 4 (1): S1-7.
[http://dx.doi.org/10.12980/APJTB.4.2014C980] [PMID: 25183064]
[18]
Ag Seleci D, Seleci M, Walter J-G, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J nanomat 2016; 2016
[http://dx.doi.org/10.1155/2016/7372306]
[19]
Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J Control Release 2014; 185: 22-36.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.015] [PMID: 24747765]
[20]
Gorjian H, Raftani Amiri Z, Mohammadzadeh Milani J, Ghaffari Khaligh N. Preparation and characterization of the encapsulated myrtle extract nanoliposome and nanoniosome without using cholesterol and toxic organic solvents: A comparative study. Food Chem 2021; 342: 128342.
[http://dx.doi.org/10.1016/j.foodchem.2020.128342] [PMID: 33092927]
[21]
Firozian F, Karami S, Ranjbar A, Azandaryani MT, Nili-Ahmadabadi A. Improvement of therapeutic potential N-acetylcysteine in acetaminophen hepatotoxicity by encapsulation in PEGylated nano-niosomes. Life Sci 2020; 255: 117832.
[http://dx.doi.org/10.1016/j.lfs.2020.117832] [PMID: 32450164]
[22]
Harsin AO, Firozian F, Ahmadabadi AN, Soleimani M, Ranjbar A. Nanocrocin protective effects on paraquat-induced oxidative stress in the MRC-5 cell line. Indian J Clin Biochem 2022; 1-8.
[http://dx.doi.org/10.1007/s12291-022-01096-y]
[23]
D’Apolito M, Du X, Pisanelli D, et al. Urea-induced ROS cause endothelial dysfunction in chronic renal failure. Atherosclerosis 2015; 239(2): 393-400.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.01.034] [PMID: 25682038]
[24]
El-Kharrag R, Amin A, Hisaindee S, Greish Y, Karam SM. Development of a therapeutic model of precancerous liver using crocin-coated magnetite nanoparticles. Int J Oncol 2017; 50(1): 212-22.
[http://dx.doi.org/10.3892/ijo.2016.3769] [PMID: 27878253]
[25]
Javani R, Hashemi FS, Ghanbarzadeh B, Hamishehkar H. Quercetin-loaded niosomal nanoparticles prepared by the thin-layer hydration method: Formulation development, colloidal stability, and structural properties. Lebensm Wiss Technol 2021; 141: 110865.
[http://dx.doi.org/10.1016/j.lwt.2021.110865]
[26]
Wen X, Gibson CJ, Yang I, et al. MDR1 transporter protects against paraquat-induced toxicity in human and mouse proximal tubule cells. Toxicol Sci 2014; 141(2): 475-83.
[http://dx.doi.org/10.1093/toxsci/kfu141] [PMID: 25015657]
[27]
Göcgeldi E, Uysal B, Korkmaz A, et al. Establishing the use of melatonin as an adjuvant therapeutic against paraquat-induced lung toxicity in rats. Exp Biol Med 2008; 233(9): 1133-41.
[http://dx.doi.org/10.3181/0802-RM-65] [PMID: 18535163]
[28]
Kim JH, Gil HW, Yang JO, Lee EY, Hong SY. Serum uric acid level as a marker for mortality and acute kidney injury in patients with acute paraquat intoxication. Nephrol Dial Transplant 2011; 26(6): 1846-52.
[http://dx.doi.org/10.1093/ndt/gfq632] [PMID: 20966188]
[29]
Yamamoto H, Mohanan PV. Effects of melatonin on paraquat or ultraviolet light exposure-induced DNA damage. J Pineal Res 2001; 31(4): 308-13.
[http://dx.doi.org/10.1034/j.1600-079X.2001.310404.x] [PMID: 11703559]
[30]
Chen Q, Zhang X, Zhao JY, Lu XN, Zheng PS, Xue X. Oxidative damage of the male reproductive system induced by paraquat. J Biochem Mol Toxicol 2017; 31(3): e21870.
[http://dx.doi.org/10.1002/jbt.21870] [PMID: 27762473]
[31]
Zeinvand-Lorestani H, Nili-Ahmadabadi A, Balak F, Hasanzadeh G, Sabzevari O. Protective role of thymoquinone against paraquat-induced hepatotoxicity in mice. Pestic Biochem Physiol 2018; 148: 16-21.
[http://dx.doi.org/10.1016/j.pestbp.2018.03.006] [PMID: 29891368]
[32]
Makhdoomi S, Mahboobian MM, Haddadi R, Komaki A, Mohammadi M. Silibinin-loaded nanostructured lipid carriers (NLCs) ameliorated cognitive deficits and oxidative damages in aluminum chloride-induced neurotoxicity in male mice. Toxicology 2022; 477: 153260.
[http://dx.doi.org/10.1016/j.tox.2022.153260] [PMID: 35850386]
[33]
Parthasarathi G, Udupa N, Umadevi P, Pillai G. Niosome encapsulated of vincristine sulfate: Improved anticancer activity with reduced toxicity in mice. J Drug Target 1994; 2(2): 173-82.
[http://dx.doi.org/10.3109/10611869409015907] [PMID: 8069596]
[34]
Akbarzadeh I, Tavakkoli YM, Bourbour M, et al. Optimized doxycycline-loaded niosomal formulation for treatment of infection-associated prostate cancer: An in-vitro investigation. J Drug Deliv Sci Technol 2020; 57: 101715.
[http://dx.doi.org/10.1016/j.jddst.2020.101715]
[35]
Akbarzadeh I, Tavakkoli Yaraki M, Ahmadi S, Chiani M, Nourouzian D. Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: An in-vitro investigation. Adv Powder Technol 2020; 31(9): 4064-71.
[http://dx.doi.org/10.1016/j.apt.2020.08.011]
[36]
Akbari G, ali Mard S, Veisi A. A comprehensive review on regulatory effects of crocin on ischemia/reperfusion injury in multiple organs. Biomed Pharmacother 2018; 99: 664-70.
[http://dx.doi.org/10.1016/j.biopha.2018.01.113] [PMID: 29710463]
[37]
Naderi R, Pardakhty A, Abbasi MF, Ranjbar M, Iranpour M. Preparation and evaluation of crocin loaded in nanoniosomes and their effects on ischemia–reperfusion injuries in rat kidney. Sci Rep 2021; 11(1): 23525.
[http://dx.doi.org/10.1038/s41598-021-02073-w] [PMID: 34876613]
[38]
Hosseinzadeh H, Sadeghnia HR, Ziaee T, Danaee A. Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. J Pharm Pharm Sci 2005; 8(3): 387-93.
[PMID: 16401388]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy