Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Characterizing Nanoparticle Isolated by Yam Bean (Pachyrhizus erosus) as a Potential Agent for Nanocosmetics: An in vitro and in vivo Approaches

Author(s): Maesa Ranggawati Kusnandar, Indra Wibowo and Anggraini Barlian*

Volume 13, Issue 2, 2025

Published on: 15 January, 2024

Page: [341 - 357] Pages: 17

DOI: 10.2174/0122117385279809231221050226

Price: $65

Abstract

Background: This study investigated the potential of Plant-Derived Exosome-Like Nanoparticles (PDENs) as cosmeceutical nanocarriers for treating skin problems, such as scar removal, face rejuvenation, anti-aging, and anti-pigmentation.

Objectives: Researchers isolated PDENs from Yam Bean ((Pachyrhizus erosus) using PEG-based precipitation, gradual filtration, and various centrifugations at low temperatures. Followed by in vitro and in vivo studies using HDF cells and Zebrafish.

Methods: The morphology of the YB-PDENs was determined using TEM analysis, they had a spherical shape with diameters of 236,83 ± 9,27 nm according to PSA. The study found that YB-PDENs were stable in aquabidest at 4°C for one month of storage and had ~-26,5 mV of Zeta Potential. The concentration of YB-PDENs was measured using the BCA Assay, and internalization of YB-PDENs to HDF cells was observed using a Confocal Laser Scanning Microscope labelled with PKH67.

Results: As for cytotoxicity, after 24 and 72 hours of incubation with YB-PDENs, the viability of HDF cells remained more than 80%. The study also examined cell migration using the Scratch Assay and found that at 2,5 μg/mL, YB-PDENs had better migration results than other concentrations. Immunocytochemistry showed that collagen expression was higher after 14 days of incubation with YBPDENs, and melanocytes in zebrafish decreased at each concentration compared with controls.

Conclusion: In conclusion, this study is the first to extract and describe PDEN s from Yam Bean ((Pachyrhizus erosus), with YB-PDENs having a promising anti-melanogenic effect in skin treatment. This study highlights the potential of YB-PDENs as a promising alternative to depigmentation and skin whitening treatments.

Keywords: Exosome, plant-derived exosome-like nanoparticle, Pachyrhizus erosus, anti-melanogenic activity, YB-PDENs, analysis.

Graphical Abstract
[1]
Sugiura K, Sugiura M. Are women with fairskin (whitened skin) beautiful? Perspectives in Asia. Int J Clin Dermatol Res 2021; 09(03): 275-6.
[http://dx.doi.org/10.19070/2332-2977-210006e]
[2]
Nordin FNM, Aziz A, Zakaria Z, Wan Mohamed Radzi CWJ. A systematic review on the skin whitening products and their ingredients for safety, health risk, and the halal status. J Cosmet Dermatol 2021; 20(4): 1050-60.
[http://dx.doi.org/10.1111/jocd.13691] [PMID: 32854162]
[3]
Mubarok F. BPOM Temukan Lebih dari Seribu Kosmetik Ilegal, Kanker Kulit Menginta. 2023. Available From: https://health.detik.com/berita-detikhealth/d-6801475/bpom-temukan-lebih-dari-seribu-kosmetik-ilegal-kanker-kulit-mengintai
[4]
Sende IF, Pramudita AW, Salaffudin MG, Yunianto EP. Peredaran kosmetik pemutih ilegal di indonesia dan upaya penanggulangannya. Indonesia J Food and Drug Safety 2020; 1(1)
[http://dx.doi.org/10.54384/eruditio.v1i1.30]
[5]
Cheng AD, De La Garza H, Maymone MBC, Johansen VM, Vashi NA. Skin-lightening products: Consumer Preferences and Costs. Cureus 2021; 13(8): e17245.
[http://dx.doi.org/10.7759/cureus.17245] [PMID: 34540471]
[6]
Bhattar P, Zawar V, Godse K, Patil S, Nadkarni N, Gautam M. Exogenous ochronosis. Indian J Dermatol 2015; 60(6): 537-43.
[http://dx.doi.org/10.4103/0019-5154.169122] [PMID: 26677264]
[7]
Gillbro JM, Olsson MJ. The melanogenesis and mechanisms of skin‐lightening agents – existing and new approaches. Int J Cosmet Sci 2011; 33(3): 210-21.
[http://dx.doi.org/10.1111/j.1468-2494.2010.00616.x] [PMID: 21265866]
[8]
Sarkar R, Arora P, Garg KV. Cosmeceuticals for hyperpigmentation: What is available? J Cutan Aesthet Surg 2013; 6(1): 4-11.
[http://dx.doi.org/10.4103/0974-2077.110089] [PMID: 23723597]
[9]
Juliano CCA. Spreading of dangerous skin-lightening products as a result of colourism: A review. Appl Sci (Basel) 2022; 12(6): 3177.
[http://dx.doi.org/10.3390/app12063177]
[10]
Chan TYK. Inorganic mercury poisoning associated with skin-lightening cosmetic products. Clin Toxicol (Phila) 2011; 49(10): 886-91.
[http://dx.doi.org/10.3109/15563650.2011.626425] [PMID: 22070559]
[11]
Chen J, Ye Y, Ran M, Li Q, Ruan Z, Jin N. Inhibition of tyrosinase by mercury chloride: Spectroscopic and docking studies. Front Pharmacol 2020; 11: 81.
[http://dx.doi.org/10.3389/fphar.2020.00081] [PMID: 32210794]
[12]
Dadzie OE, Petit A. Skin bleaching: Highlighting the misuse of cutaneous depigmenting agents. J Eur Acad Dermatol Venereol 2009; 23(7): 741-50.
[http://dx.doi.org/10.1111/j.1468-3083.2009.03150.x] [PMID: 19470077]
[13]
Arung ET, Kusuma IW, Christy EO, Shimizu K, Kondo R. Evaluation of medicinal plants from Central Kalimantan for antimelanogenesis. J Nat Med 2009; 63(4): 473-80.
[http://dx.doi.org/10.1007/s11418-009-0351-7] [PMID: 19618251]
[14]
Prance GT. The Cultural History of Plants. England, UK: Routledge 2005.
[15]
Fadillah H. Pupur dingin sebagai perawatan wajah khas masyarakat banjar. OsfPreprints 2021.
[16]
Lukitaningsih E, Bahi M, Holzgrabe U. Tyrosinase inhibition type of isolated compounds obtained from pachyrhizus erosus. Aceh Int J Sci Technol (Banda Aceh) 2013; 2(3): 98-102.
[http://dx.doi.org/10.13170/AIJST.0203.05]
[17]
Lukitaningsih E, Holzgrabe U. Bioactive compounds in bengkoang (Pachyrhizus erosus) as antioxidant and tyrosinase inhibiting agents. Indones J Pharm 2014; 25(2): 68-75.
[http://dx.doi.org/10.14499/indonesianjpharm25iss2pp68]
[18]
Putra NR, Yustisia Y, Heryanto RB, et al. Advancements and challenges in green extraction techniques for Indonesian natural products: A review. S Afr J Chem Eng 2023; 46: 88-98.
[http://dx.doi.org/10.1016/j.sajce.2023.08.002]
[19]
Alotaibi G, Alharthi S, Basu B, et al. Nano-gels: Recent advancement in fabrication methods for mitigation of skin cancer. Gels 2023; 9(4): 331.
[http://dx.doi.org/10.3390/gels9040331] [PMID: 37102943]
[20]
Prajapati B. “Nanoemulgel” innovative approach for topical gel based formulation. Research and reviews on healthcare: Open Access Journal 2018; 1(2)
[http://dx.doi.org/10.32474/RRHOAJ.2018.01.000107]
[21]
Zhang Z, Yu Y, Zhu G, et al. The emerging role of plant-derived exosomes-like nanoparticles in immune regulation and periodontitis treatment. Front Immunol 2022; 13: 896745.
[http://dx.doi.org/10.3389/fimmu.2022.896745] [PMID: 35757759]
[22]
Cho JH, Hong YD, Kim D, et al. Confirmation of plant-derived exosomes as bioactive substances for skin application through comparative analysis of keratinocyte transcriptome. J Appl Biol Chem 2022; 65(1): 8.
[http://dx.doi.org/10.1186/s13765-022-00676-z]
[23]
Urzì O, Cafora M, Ganji NR, et al. Lemon-derived nanovesicles achieve antioxidant and anti-inflammatory effects activating the AhR/Nrf2 signaling pathway. iScience 2023; 26(7): 107041.
[http://dx.doi.org/10.1016/j.isci.2023.107041] [PMID: 37426343]
[24]
Syamsul Hadi R, Kusumah I, Sandra Y. Pengaruh platelet-rich plasma (PRP) terhadap proliferasi dan viabilitas human dermal fibroblast (HDF) dalam Konsentrasi Glukosa Tinggi. J Biol Indonesia 2019; 15(2): 213-7.
[25]
Moravej H. Establishment of a primary cell culture of human fibroblast in Iran. 2009. Available From: www.SID.ir
[26]
Kalarikkal SP, Prasad D, Kasiappan R, Chaudhari SR, Sundaram GM. A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes. Sci Rep 2020; 10(1): 4456.
[http://dx.doi.org/10.1038/s41598-020-61358-8] [PMID: 32157137]
[27]
Mu J, Zhuang X, Wang Q, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome‐like nanoparticles. Mol Nutr Food Res 2014; 58(7): 1561-73.
[http://dx.doi.org/10.1002/mnfr.201300729] [PMID: 24842810]
[28]
Rider MA, Hurwitz SN, Meckes DG Jr. ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles. Sci Rep 2016; 6(1): 23978.
[http://dx.doi.org/10.1038/srep23978] [PMID: 27068479]
[29]
Stanly C, Fiume I, Capasso G, Pocsfalvi G. Isolation of exosome-like vesicles from plants by ultracentrifugation on sucrose/deuterium oxide (D2O) density cushions.Methods in Molecular Biology. Humana Press Inc. 2016; 1459: pp. 259-69.
[http://dx.doi.org/10.1007/978-1-4939-3804-9_18]
[30]
Cao M, Diao N, Cai X, et al. Plant exosome nanovesicles (PENs): Green delivery platforms. Mater Horiz 2023; 10(10): 3879-94.
[http://dx.doi.org/10.1039/D3MH01030A] [PMID: 37671650]
[31]
Hallett FR. Particle size analysis by dynamic light scattering. Food Res Int 1994; 27(2): 195-8.
[32]
Raval N, Maheshwari R, Kalyane D, Youngren-Ortiz SR, Chougule MB, Tekade RK. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development.Basic Fundamentals of Drug Delivery. Elsevier 2018; pp. 369-400.
[http://dx.doi.org/10.1016/B978-0-12-817909-3.00010-8]
[33]
Lee R, Ko HJ, Kim K, et al. Anti‐melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin. J Extracell Vesicles 2020; 9(1): 1703480.
[http://dx.doi.org/10.1080/20013078.2019.1703480] [PMID: 32002169]
[34]
Wu J, Ma X, Lu Y, et al. Edible Pueraria lobata-derived exosomes promote M2 macrophage polarization. Molecules 2022; 27(23): 8184.
[http://dx.doi.org/10.3390/molecules27238184] [PMID: 36500277]
[35]
Kim MK, Choi YC, Cho SH, Choi JS, Cho YW. The antioxidant effect of small extracellular vesicles derived from aloe vera peels for wound healing. Tissue Eng Regen Med 2021; 18(4): 561-71.
[http://dx.doi.org/10.1007/s13770-021-00367-8] [PMID: 34313971]
[36]
Lyu SY, Park WB. Photoprotective potential of anthocyanins isolated from acanthopanax divaricatus var. albeofructus fruits against uv irradiation in human dermal fibroblast cells. Biomol Ther (Seoul) 2012; 20(2): 201-6.
[http://dx.doi.org/10.4062/biomolther.2012.20.2.201] [PMID: 24116296]
[37]
Abdul Latif M, Ibrahim FW, Arshad SA, Chua KH, Jufri NF, Hamid A. Cytotoxicity, proliferation and migration rate assessments of human dermal fibroblast adult cells using zingiber zerumbet extract. Sains Malays 2019; 48(1): 121-7.
[http://dx.doi.org/10.17576/jsm-2019-4801-14]
[38]
Rodriguez-Menocal L, Salgado M, Ford D, Van Badiavas E. Stimulation of skin and wound fibroblast migration by mesenchymal stem cells derived from normal donors and chronic wound patients. Stem Cells Transl Med 2012; 1(3): 221-9.
[http://dx.doi.org/10.5966/sctm.2011-0029] [PMID: 23197781]
[39]
Lei R, Akins EA, Wong KCY, et al. Multiwell combinatorial hydrogel array for high-throughput analysis of cell–ECM interactions. ACS Biomater Sci Eng 2021; 7(6): 2453-65.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00065] [PMID: 34028263]
[40]
Nethercott HE, Brick DJ, Schwartz PH. Immunocytochemical analysis of human pluripotent stem cells. Methods in molecular biology. Humana Press Inc. 2011; Vol. 767: pp. 201-20.
[http://dx.doi.org/10.1007/978-1-61779-201-4_15]
[41]
Piña R, Santos-Díaz AI, Orta-Salazar E, et al. Ten approaches that improve immunostaining: A review of the latest advances for the optimization of immunofluorescence. Int J Mol Sci 2022; 23(3): 1426.
[http://dx.doi.org/10.3390/ijms23031426] [PMID: 35163349]
[42]
Wang HM, Chen CY, Wen ZH. Identifying melanogenesis inhibitors from Cinnamomum subavenium with iin vitro and in vivo screening systems by targeting the human tyrosinase. Exp Dermatol 2011; 20(3): 242-8.
[http://dx.doi.org/10.1111/j.1600-0625.2010.01161.x] [PMID: 21054558]
[43]
Choi TY, Kim JH, Ko DH, et al. Zebrafish as a new model for phenotype‐based screening of melanogenic regulatory compounds. Pigment Cell Res 2007; 20(2): 120-7.
[http://dx.doi.org/10.1111/j.1600-0749.2007.00365.x] [PMID: 17371438]
[44]
Chen XK, Kwan JSK, Chang RCC, Ma ACH. 1-phenyl 2-thiourea (PTU) activates autophagy in zebrafish embryos. Autophagy 2021; 17(5): 1222-31.
[http://dx.doi.org/10.1080/15548627.2020.1755119] [PMID: 32286915]
[45]
Tu Y, Quan T. Oxidative stress and human skin connective tissue aging. Cosmetics 2016; 3(3): 28.
[http://dx.doi.org/10.3390/cosmetics3030028]
[46]
Rezaie F, Momeni-Moghaddam M, Naderi-Meshkin H. Regeneration and Repair of Skin Wounds: Various Strategies for Treatment. Int J Low Extrem Wounds 2019; 18(3): 247-61.
[http://dx.doi.org/10.1177/1534734619859214] [PMID: 31257948]
[47]
Nemati M, Singh B, Mir RA, et al. Plant-derived extracellular vesicles: A novel nanomedicine approach with advantages and challenges. Cell Commun Signal 2022; 20(1): 69.
[http://dx.doi.org/10.1186/s12964-022-00889-1] [PMID: 35606749]
[48]
Kee LT, Ng CY, Al-Masawa ME, et al. Extracellular vesicles in facial aesthetics: A review. Int J Mol Sci 2022; 23(12): 6742.
[http://dx.doi.org/10.3390/ijms23126742] [PMID: 35743181]
[49]
An J, Zhu Y. Isolation and in vitro stability studies of edible plant-seed derived (Raphani Semen) nanoparticles. Separations 2023; 10(3): 218.
[http://dx.doi.org/10.3390/separations10030218]
[50]
Zhao WF, Bian YP, Wang QH. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress. Acta Pharmacol Sin 2022; 43(3): 645-58.
[http://dx.doi.org/10.1038/s41401-021-00681-w]
[51]
Savcı Y, Kırbaş OK, Bozkurt BT, et al. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing. Food Funct 2021; 12(11): 5144-56.
[http://dx.doi.org/10.1039/D0FO02953J] [PMID: 33977960]
[52]
Özkan İ, Koçak P, Yıldırım M, et al. Garlic (Allium sativum)-derived SEVs inhibit cancer cell proliferation and induce caspase mediated apoptosis. Sci Rep 2021; 11(1): 14773.
[http://dx.doi.org/10.1038/s41598-021-93876-4] [PMID: 34285262]
[53]
You JY, Kang SJ, Rhee WJ. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact Mater 2021; 6(12): 4321-32.
[http://dx.doi.org/10.1016/j.bioactmat.2021.04.023] [PMID: 33997509]
[54]
García-Romero N, Madurga R, Rackov G, et al. Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation. J Transl Med 2019; 17(1): 75.
[http://dx.doi.org/10.1186/s12967-019-1825-3] [PMID: 30871557]
[55]
Yang C, Zhang M, Merlin D. Advances in plant-derived edible nanoparticle-based lipid nano-drug delivery systems as therapeutic nanomedicines. J Mater Chem B Mater Biol Med 2018; 6(9): 1312-21.
[http://dx.doi.org/10.1039/C7TB03207B] [PMID: 30034807]
[56]
Subha D, Harshnii K, Madhikiruba KG, Nandhini M, Tamilselvi KS. Plant derived exosome- like Nanovesicles: An updated overview. Plant Nano Biology 2023; 3: 100022.
[http://dx.doi.org/10.1016/j.plana.2022.100022]
[57]
Di Gioia S, Hossain MN, Conese M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020; 15(1): 1096-122.
[http://dx.doi.org/10.1515/med-2020-0160] [PMID: 33336066]
[58]
Ju S, Mu J, Dokland T, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther 2013; 21(7): 1345-57.
[http://dx.doi.org/10.1038/mt.2013.64] [PMID: 23752315]
[59]
Cao M, Yan H, Han X, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J Immunother Cancer 2019; 7(1): 326.
[http://dx.doi.org/10.1186/s40425-019-0817-4] [PMID: 31775862]
[60]
Deng Z, Rong Y, Teng Y, et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating Dendritic Cell AMP-Activated Protein Kinase. Mol Ther 2017; 25(7): 1641-54.
[http://dx.doi.org/10.1016/j.ymthe.2017.01.025] [PMID: 28274798]
[61]
Shi H, Wang M, Sun Y, Yang D, Xu W, Qian H. Exosomes: emerging cell-free based therapeutics in dermatologic diseases. Front Cell Dev Biol 2021; 9: 736022.
[http://dx.doi.org/10.3389/fcell.2021.736022] [PMID: 34722517]
[62]
Shkryl Y, Tsydeneshieva Z, Degtyarenko A, et al. Plant exosomal vesicles: perspective information nanocarriers in biomedicine. Appl Sci (Basel) 2022; 12(16): 8262.
[http://dx.doi.org/10.3390/app12168262]
[63]
Kim K, Park J, Sohn Y, et al. Stability of plant leaf-derived extracellular vesicles according to preservative and storage temperature. Pharmaceutics 2022; 14(2): 457.
[http://dx.doi.org/10.3390/pharmaceutics14020457] [PMID: 35214189]
[64]
Nemidkanam V, Chaichanawongsaroj N. Characterizing Kaempferia parviflora extracellular vesicles, a nanomedicine candidate. PLoS One 2022; 17(1): e026288.
[http://dx.doi.org/10.1371/journal.pone.0262884]
[65]
Kim J, Lee YH, Wang J, Kim YK, Kwon IK. Isolation and characterization of ginseng-derived exosome-like nanoparticles with sucrose cushioning followed by ultracentrifugation. SN Applied Sciences 2022; 4(2): 63.
[http://dx.doi.org/10.1007/s42452-022-04943-y]
[66]
Franquesa M, Hoogduijn MJ, Ripoll E, et al. Update on controls for isolation and quantification methodology of extracellular vesicles derived from adipose tissue mesenchymal stem cells. Front Immunol 2014; 5(OCT): 525.
[http://dx.doi.org/10.3389/fimmu.2014.00525] [PMID: 25374572]
[67]
De Robertis M, Sarra A, D’Oria V, et al. Blueberry-derived exosome-like nanoparticles counters the response to TNF-α-induced change on gene expression in ea.Hy926 cells. Biomolecules 2020; 10(5): 742.
[http://dx.doi.org/10.3390/biom10050742] [PMID: 32397678]
[68]
Saindane D, Bhattacharya S, Shah R, Prajapati BG. The recent development of topical nanoparticles for annihilating skin cancer. All Life 2022; 15(1): 843-69.
[http://dx.doi.org/10.1080/26895293.2022.2103592]
[69]
Yepes-Molina L, Martínez-Ballesta MC, Carvajal M. Plant plasma membrane vesicles interaction with keratinocytes reveals their potential as carriers. J Adv Res 2020; 23: 101-11.
[http://dx.doi.org/10.1016/j.jare.2020.02.004] [PMID: 32089878]
[70]
Abraham AM, Wiemann S, Ambreen G, et al. Cucumber-derived exosome-like vesicles and PlantCrystals for improved dermal drug delivery. Pharmaceutics 2022; 14(3): 476.
[http://dx.doi.org/10.3390/pharmaceutics14030476] [PMID: 35335851]
[71]
Shabestani Monfared G, Ertl P, Rothbauer M. An on-chip wound healing assay fabricated by xurography for evaluation of dermal fibroblast cell migration and wound closure. Sci Rep 2020; 10(1): 16192.
[http://dx.doi.org/10.1038/s41598-020-73055-7] [PMID: 33004819]
[72]
Szwedowicz U, Łapińska Z, Gajewska-Naryniecka A, Choromańska A. Exosomes and other extracellular vesicles with high therapeutic potential: Their applications in oncology, neurology, and dermatology. Molecules 2022; 27(4): 1303.
[http://dx.doi.org/10.3390/molecules27041303] [PMID: 35209095]
[73]
Thakur A, Shah D, Rai D, et al. Therapeutic values of exosomes in cosmetics, skin care, tissue regeneration, and dermatological diseases. Cosmetics 2023; 10(2): 65.
[http://dx.doi.org/10.3390/cosmetics10020065]
[74]
Narauskaitė D, Vydmantaitė G, Rusteikaitė J, et al. Extracellular vesicles in skin wound healing. Pharmaceuticals (Basel) 2021; 14(8): 811.
[http://dx.doi.org/10.3390/ph14080811] [PMID: 34451909]
[75]
Joshi S, Yu D. Immunofluorescence. In: Basic science methods for clinical researchers. Amsterdam: Elsevier 2017.
[76]
Chen LY, Kao TW, Chen CC, et al. Frontier review of the molecular mechanisms and current approaches of stem cell-derived exosomes. Cells 2023; 12(7): 1018.
[http://dx.doi.org/10.3390/cells12071018] [PMID: 37048091]
[77]
Lajis AFB. A zebrafish embryo as an animal model for the treatment of hyperpigmentation in cosmetic dermatology Medicine. Medicina (Kaunas) 2018; 54(3): 35.
[http://dx.doi.org/10.3390/medicina54030035]
[78]
Luo Y, Wang J, Li S, et al. Discovery and identification of potential anti-melanogenic active constituents of Bletilla striata by zebrafish model and molecular docking. BMC Complement Med Ther 2022; 22(1): 9.
[http://dx.doi.org/10.1186/s12906-021-03492-y] [PMID: 34996448]
[79]
Agalou A, Thrapsianiotis M, Angelis A, et al. Identification of novel melanin synthesis inhibitors from Crataegus pycnoloba using an in vivo zebrafish phenotypic assay. Front Pharmacol 2018; 9(MAR): 265.
[http://dx.doi.org/10.3389/fphar.2018.00265] [PMID: 29632489]
[80]
Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 2014; 35(2): 63-75.
[http://dx.doi.org/10.1016/j.tips.2013.12.002] [PMID: 24412421]
[81]
Teame T, Zhang Z, Ran C, et al. The use of zebrafish (Danio rerio) as biomedical models. Anim Front 2019; 9(3): 68-77.
[http://dx.doi.org/10.1093/af/vfz020] [PMID: 32002264]
[82]
Thawabteh AM, Jibreen A, Karaman D, Thawabteh A, Karaman R. Skin pigmentation types, causes and treatment—A review. Molecules 2023; 28(12): 4839.
[http://dx.doi.org/10.3390/molecules28124839] [PMID: 37375394]
[83]
Harris JE. Chemical-induced vitiligo. Dermatol Clin 2017; 35(2): 151-61.
[http://dx.doi.org/10.1016/j.det.2016.11.006] [PMID: 28317525]
[84]
Jin Won Y, Lee E, Young Min S, Seung Cho B. Biological function of exosome-like particles isolated from rose 1 (Rosa Damascena) stem cell culture supernatant. bioRxiv 2023.
[http://dx.doi.org/10.1101/2023.10.17.562840]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy