Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

LKB1 Mutations Enhance Radiosensitivity in Non-Small Cell Lung Cancer Cells by Inducing G2/M Cell Cycle Phase Arrest

Author(s): Yuanhu Yao*, Xiangnan Qiu, Meng Chen, Zhaohui Qin, Xinjun Zhang and Wei Zhang

Volume 25, Issue 3, 2025

Published on: 15 January, 2024

Page: [353 - 360] Pages: 8

DOI: 10.2174/0115665240280822231221060656

Price: $65

Abstract

Background: Radiosensitivity remains an important factor affecting the clinical outcome of radiotherapy for non-small cell lung cancer (NSCLC). Liver kinase B1 (LKB1) as a tumor suppressor, is one of the most commonly mutated genes in NSCLC. However, the role of LKB1 on radiosensitivity and the possible mechanism have not been elucidated in the NSCLC. In this study, we investigated the regulatory function of LKB1 in the radiosensitivity of NSCLC cells and its possible signaling pathways.

Methods: After regulating the expression of LKB1, cell proliferation was determined by Cell Counting Kit-8 (CCK-8) assay. The flow cytometry assay was used to analyse cell cycle distribution. Survival fraction and sensitization enhancement ratio (SER) were generated by clonogenic survival assay. Western blot analysis was used to assess expression levels of LKB1, p53, p21, γ-H2AX and p-Chk2.

Results: Our study found that when the NSCLC cells were exposed to ionizing radiation, LKB1 could inhibit NSCLC cell proliferation by promoting DNA double strand break and inducing DNA repair. In addition, LKB1 could induce NSCLC cells G1 and G2/M phase arrest through up-regulating expression of p53 and p21 proteins.

Conclusion: This current study demonstrates that LKB1 enhances the radiosensitivity of NSCLC cells via inhibiting NSCLC cell proliferation and inducing G2/M phase arrest, and the mechanism of cell cycle arrest associated with signaling pathways of p53 and p21 probably.

Keywords: LKB1, radiosensitivity, non-small cell lung cancer, ionizing radiation, cell cycle, liver kinase.

« Previous
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCA N estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J 2022; 135(5): 584-90.
[http://dx.doi.org/10.1097/CM9.0000000000002108] [PMID: 35143424]
[3]
Zeng X, Ma Q, Li XK, et al. Patient-derived organoids of lung cancer based on organoids-on-a-chip: Enhancing clinical and translational applications. Front Bioeng Biotechnol 2023; 11: 1205157.
[http://dx.doi.org/10.3389/fbioe.2023.1205157] [PMID: 37304140]
[4]
Feng Q, Xiao K. Nanoparticle-mediated delivery of STAT3 inhibitors in the treatment of lung cancer. Pharmaceutics 2022; 14(12): 2787.
[http://dx.doi.org/10.3390/pharmaceutics14122787] [PMID: 36559280]
[5]
Vinod SK, Hau E. Radiotherapy treatment for lung cancer: Current status and future directions. Respirology 2020; 25(S2) (Suppl. 2): 61-71.
[http://dx.doi.org/10.1111/resp.13870] [PMID: 32516852]
[6]
Wu K, Chen X, Chen X, et al. Suberoylanilide hydroxamic acid enhances the radiosensitivity of lung cancer cells through acetylated wild-type and mutant p53-dependent modulation of mitochondrial apoptosis. J Int Med Res 2021; 49(2)
[http://dx.doi.org/10.1177/0300060520981545] [PMID: 33557658]
[7]
Wee CW, Kim JH, Kim HJ, et al. Newly synthesized DNA methyltransferase inhibitors as radiosensitizers for human lung cancer and glioblastoma cells. Anticancer Res 2021; 41(2): 757-64.
[http://dx.doi.org/10.21873/anticanres.14827] [PMID: 33517280]
[8]
Kim SY, Jeong EH, Lee TG, Kim HR, Kim CH. The combination of trametinib, a MEK inhibitor, and temsirolimus, an mtor inhibitor, radiosensitizes lung cancer cells. Anticancer Res 2021; 41(6): 2885-94.
[http://dx.doi.org/10.21873/anticanres.15070] [PMID: 34083279]
[9]
Lei X, Du L, Zhang P, et al. Knockdown GTSE1 enhances radiosensitivity in non–small‐cell lung cancer through DNA damage repair pathway. J Cell Mol Med 2020; 24(9): 5162-7.
[http://dx.doi.org/10.1111/jcmm.15165] [PMID: 32202046]
[10]
Xue A, Shang Y, Jiao P, et al. Increased activation of cGAS‐STING pathway enhances radiosensitivity of non‐small cell lung cancer cells. Thorac Cancer 2022; 13(9): 1361-8.
[http://dx.doi.org/10.1111/1759-7714.14400] [PMID: 35429143]
[11]
Sun X, Dong M, Gao Y, et al. Metformin increases the radiosensitivity of non-small cell lung cancer cells by destabilizing NRF2. Biochem Pharmacol 2022; 199: 114981.
[http://dx.doi.org/10.1016/j.bcp.2022.114981] [PMID: 35227644]
[12]
Li H, Zhao S, Chen X, Feng G, Chen Z, Fan S. MiR-145 modulates the radiosensitivity of non-small cell lung cancer cells by suppression of TMOD3. Carcinogenesis 2022; 43(3): 288-96.
[http://dx.doi.org/10.1093/carcin/bgab121] [PMID: 34888652]
[13]
Skoulidis F, Heymach JV. Co-occurring genomic alterations in non-small-cell lungcancer biology and therapy. Nat Rev Cancer 2019; (9): 495-509.
[http://dx.doi.org/10.1038/s41568-019-0179-8] [PMID: 31406302]
[14]
Sitthideatphaiboon P, Galan-Cobo A, Negrao MV, et al. STK11/LKB1 mutations in NSCLC are associated with KEAP1/NRF2-dependent radiotherapy resistance targetable by glutaminase inhibition. Clin Cancer Res 2021; 27(6): 1720-33.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2859]
[15]
Borzi C, Ganzinelli M, Caiola E, et al. LKB1 down-modulation by miR-17 identifies patients with nsclc having worse prognosis eligible for energy-stress-based treatments. J Thorac Oncol 2021; 16(8): 1298-311.
[http://dx.doi.org/10.1016/j.jtho.2021.04.005]
[16]
Pons-Tostivint E, Lugat A, Fontenau JF, Denis MG, Bennouna J. STK11/LKB1 Modulation of the immune response in lung cancer: From biology to therapeutic impact. Cells 2021; 10(11): 3129.
[http://dx.doi.org/10.3390/cells10113129] [PMID: 34831355]
[17]
Ndembe G, Intini I, Perin E, et al. LKB1: Can we target an hidden target? Focus on NSCLC. Front Oncol 2022; 12: 889826.
[http://dx.doi.org/10.3389/fonc.2022.889826]
[18]
Sumbly V, Landry I. Unraveling the role of STK11/LKB1 in non-small cell lung cancer. Cureus 2022; 14(1): e21078.
[http://dx.doi.org/10.7759/cureus.21078] [PMID: 35165542]
[19]
Murray CW, Brady JJ, Tsai MK, et al. An LKB1–SIK axis suppresses lung tumor growth and controls differentiation. Cancer Discov 2019; 9(11): 1590-605.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1237] [PMID: 31350327]
[20]
Wang Y, Yang L, Yang Y, Li Y. Liver kinase B1 (LKB1) regulates proliferation and apoptosis of non-small cell lung cancer A549 cells via targeting ERK signaling pathway. Cancer Manag Res 2021; 13: 65-74.
[http://dx.doi.org/10.2147/CMAR.S282417] [PMID: 33442295]
[21]
Lu J, Zhou Z, Tang M, et al. Role of LKB1 in migration and invasion of Cr(VI)-transformed human bronchial epithelial Beas-2B cells. Anticancer Drugs 2018; 29(7): 660-73.
[http://dx.doi.org/10.1097/CAD.0000000000000638] [PMID: 29782351]
[22]
Zulato E, Ciccarese F, Nardo G, et al. Involvement of NADPH oxidase 1 in liver kinase B1-mediated effects on tumor angiogenesis and growth. Front Oncol 2018; 8: 195.
[http://dx.doi.org/10.3389/fonc.2018.00195] [PMID: 29915721]
[23]
Hollstein PE, Eichner LJ, Brun SN, et al. The AMPK-related kinases SIK1 and SIK3 mediate key tumor-suppressive effects of LKB1 in NSCLC. Cancer Discov 2019; 9(11): 1606-27.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1261] [PMID: 31350328]
[24]
Yang R, Li SW, Chen Z, et al. Role of INSL4 signaling in sustaining the growth and viability of LKB1-inactivated lung cancer. J Natl Cancer Inst 2019; 111(7): 664-74.
[http://dx.doi.org/10.1093/jnci/djy166] [PMID: 30423141]
[25]
Zhang Y, Meng Q, Sun Q, Xu ZX, Zhou H, Wang Y. LKB1 deficiency-induced metabolic reprogramming in tumorigenesis and non-neoplastic diseases. Mol Metab 2021; 44: 101131.
[http://dx.doi.org/10.1016/j.molmet.2020.101131] [PMID: 33278637]
[26]
Mograbi B, Heeke S, Hofman P. The importance of STK11/LKB1 assessment in non-small cell lung carcinomas. Diagnostics 2021; 11(2): 196.
[http://dx.doi.org/10.3390/diagnostics11020196] [PMID: 33572782]
[27]
Pandit M, Timilshina M, Chang JH. LKB1-PTEN axis controls Th1 and Th17 cell differentiation via regulating mTORC1. J Mol Med 2021; 99(8): 1139-50.
[http://dx.doi.org/10.1007/s00109-021-02090-2] [PMID: 34003330]
[28]
Li F, Han X, Li F, et al. LKB1 inactivation elicits a redox imbalance to modulate non-small cell lung cancer plasticity and therapeutic response. Cancer Cell 2015; 27(5): 698-711.
[http://dx.doi.org/10.1016/j.ccell.2015.04.001] [PMID: 25936644]
[29]
Pore N, Wu S, Standifer N, et al. resistance to durvalumab and durvalumab plus tremelimumab is associated with functional STK11 mutations in patients with non–small cell lung cancer and is reversed by STAT3 knockdown. Cancer Discov 2021; 11(11): 2828-45.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1543] [PMID: 34230008]
[30]
Meraz IM, Majidi M, Shao R, et al. TUSC2 immunogene enhances efficacy of chemo-immuno combination on KRAS/LKB1 mutant NSCLC in humanized mouse model. Commun Biol 2022; 5(1): 167.
[http://dx.doi.org/10.1038/s42003-022-03103-7] [PMID: 35210547]
[31]
Yang K, Blanco DB, Neale G, et al. Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. Nature 2017; 548(7669): 602-6.
[http://dx.doi.org/10.1038/nature23665] [PMID: 28847007]
[32]
Deng J, Thennavan A, Dolgalev I, et al. ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1-mutant lung cancer. Nat Can 2021; 2(5): 503-14.
[http://dx.doi.org/10.1038/s43018-021-00208-6] [PMID: 34142094]
[33]
Rosellini P, Amintas S, Caumont C, et al. Clinical impact of STK11 mutation in advanced-stage non-small cell lung cancer. Eur J Cancer 2022; 172: 85-95.
[http://dx.doi.org/10.1016/j.ejca.2022.05.026] [PMID: 35759814]
[34]
Yao YH, Cui Y, Qiu XN, et al. Attenuated LKB1-SIK1 signaling promotes epithelial-mesenchymal transition and radioresistance of non–small cell lung cancer cells. Chin J Cancer 2016; 35(1): 50.
[http://dx.doi.org/10.1186/s40880-016-0113-3] [PMID: 27266881]
[35]
Du WY, Lu ZH, Ye W, et al. The loss-of-function mutations and down-regulated expression of ASB3 gene promote the growth and metastasis of colorectal cancer cells. Chin J Cancer 2017; 36(1): 11.
[http://dx.doi.org/10.1186/s40880-017-0180-0] [PMID: 28088228]
[36]
Zulato E, Ciccarese F, Agnusdei V, et al. LKB1 loss is associated with glutathione deficiency under oxidative stress and sensitivity of cancer cells to cytotoxic drugs and γ-irradiation. Biochem Pharmacol 2018; 156: 479-90.
[http://dx.doi.org/10.1016/j.bcp.2018.09.019] [PMID: 30222967]
[37]
Wang Y, Li N, Jiang W, et al. Mutant LKB1 confers enhanced radiosensitization in combination with trametinib in KRAS-mutant non-small cell lung cancer. Clin Cancer Res 2018; 24(22): 5744-56.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1489]
[38]
Williamson J, Hughes CM, Burke G, Davison GW. A combined γ-H2AX and 53BP1 approach to determine the DNA damage-repair response to exercise in hypoxia. Free Radic Biol Med 2020; 154: 9-17.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.04.026] [PMID: 32360611]
[39]
Grasselli C, Bombelli S, Eriani S, et al. DNA damage in circulating hematopoietic progenitor stem cells as promising biological sensor of frailty. J Gerontol A Biol Sci Med Sci 2022; 77(7): 1279-86.
[http://dx.doi.org/10.1093/gerona/glac034] [PMID: 35137086]
[40]
Kuo LJ, Yang LX. Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo 2008; 22(3): 305-9.
[PMID: 18610740]
[41]
Kinner A, Wu W, Staudt C, Iliakis G. -H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 2008; 36(17): 5678-94.
[http://dx.doi.org/10.1093/nar/gkn550] [PMID: 18772227]
[42]
Sharma A, Singh K, Almasan A. Histone H2AX phosphorylation: A marker for DNA damage. Methods Mol Biol 2012; 920: 613-26.
[http://dx.doi.org/10.1007/978-1-61779-998-3_40] [PMID: 22941631]
[43]
Nagelkerke A, Span PN. Staining against phospho-H2AX (γ-H2AX) as a marker for dna damage and genomic instability in cancer tissues and cells. Adv Exp Med Biol 2016; 899: 1-10.
[http://dx.doi.org/10.1007/978-3-319-26666-4_1] [PMID: 27325258]
[44]
Palla VV, Karaolanis G, Katafigiotis I, et al. gamma-H2AX: Can it be established as a classical cancer prognostic factor? Tumour Biol 2017; 39(3)
[http://dx.doi.org/10.1177/1010428317695931] [PMID: 28351323]
[45]
Zhang Y, Cong L, He J, et al. Photothermal treatment with EGFRmAb-AuNPs induces apoptosis in hypopharyngeal carcinoma cells via PI3K/AKT/mTOR and DNA damage response pathways. Acta Biochim Biophys Sin 2018; 50(6): 567-78.
[http://dx.doi.org/10.1093/abbs/gmy046]
[46]
Dai RQ, Wang HB, Liu WQ, Li LW, Wang W. Triptolide increases the radiosensitivity of lung cancer cells by inhibiting DNA repair and inducing apoptosis. Z red flower Z red l IU za Z Hi 2021; 43(12): 1235-40.
[http://dx.doi.org/10.3760/cma.j.cn112152-20191212-00800] [PMID: 34915630]
[47]
Maiuthed A, Ninsontia C, Erlenbach-Wuensch K, et al. Cytoplasmic p21 mediates 5-fluorouracil resistance by inhibiting pro-apoptotic Chk2. Cancers 2018; 10(10): 373.
[http://dx.doi.org/10.3390/cancers10100373] [PMID: 30304835]
[48]
Jiang J, Huang Y, Wang W, et al. Activation of ATM/Chk2 by Zanthoxylum armatum DC extract induces DNA damage and G1/S phase arrest in BRL 3A cells. J Ethnopharmacol 2022; 284: 114832.
[http://dx.doi.org/10.1016/j.jep.2021.114832] [PMID: 34775036]
[49]
Bian H, Gu Y, Chen C, et al. Silence of URI in gastric cancer cells promotes cisplatin-induced DNA damage and apoptosis. Am J Cancer Res 2023; 13(3): 936-49.
[PMID: 37034221]
[50]
Nie X, Guo E, Wu C, et al. SALL 4 induces radioresistance in nasopharyngeal carcinoma via the ATM/Chk2/p53 pathway. Cancer Med 2019; 8(4): 1779-92.
[http://dx.doi.org/10.1002/cam4.2056] [PMID: 30907073]
[51]
Tsoi H, Tsang WC, Man EPS, et al. Checkpoint kinase 2 inhibition can reverse tamoxifen resistance in ER-positive breast cancer. Int J Mol Sci 2022; 23(20): 12290.
[http://dx.doi.org/10.3390/ijms232012290] [PMID: 36293165]
[52]
Zhang T, Ren T, Lin H, et al. ASH1L contributes to oocyte apoptosis by regulating DNA damage. Am J Physiol Cell Physiol 2022; 323(4): C1264-73.
[http://dx.doi.org/10.1152/ajpcell.00196.2022] [PMID: 36094439]
[53]
Kang SH, Bak DH, Chung BY, Bai HW. Centipedegrass extract enhances radiosensitivity in melanoma cells by inducing G2/M cell cycle phase arrest. Mol Biol Rep 2021; 48(2): 1081-91.
[http://dx.doi.org/10.1007/s11033-021-06156-9] [PMID: 33511511]
[54]
Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004; 59(4): 928-42.
[http://dx.doi.org/10.1016/j.ijrobp.2004.03.005] [PMID: 15234026]
[55]
Wang Y, Oda S, Suzuki MG, Mitani H, Aoki F. Cell cycle-dependent radiosensitivity in mouse zygotes. DNA Repair 2022; 117: 103370.
[http://dx.doi.org/10.1016/j.dnarep.2022.103370] [PMID: 35863142]
[56]
Zhao PJ, Song SC, Du LW, et al. Paris Saponins enhance radiosensitivity in a gefitinib-resistant lung adenocarcinoma cell line by inducing apoptosis and G2/M cell cycle phase arrest. Mol Med Rep 2016; 13(3): 2878-84.
[http://dx.doi.org/10.3892/mmr.2016.4865] [PMID: 26846193]
[57]
Nakayama M, Kaida A, Deguchi S, Sakaguchi K, Miura M. Radiosensitivity of early and late M-phase HeLa cells isolated by a combination of fluorescent ubiquitination-based cell cycle indicator (Fucci) and mitotic shake-off. Radiat Res 2011; 176(3): 407-11.
[http://dx.doi.org/10.1667/RR2608.1] [PMID: 21692656]
[58]
Gui SJ, Ding RL, Wan YP, et al. Knockdown of annexin VII enhances nasopharyngeal carcinoma cell radiosensitivity in vivo and in vitro. Cancer Biomark 2020; 28(2): 129-39.
[http://dx.doi.org/10.3233/CBM-190739] [PMID: 31958076]
[59]
Haas M, Lenz T, Kadletz-Wanke L, Heiduschka G, Jank BJ. The radiosensitizing effect of β-Thujaplicin, a tropolone derivative inducing S-phase cell cycle arrest, in head and neck squamous cell carcinoma-derived cell lines. Invest New Drugs 2022; 40(4): 700-8.
[http://dx.doi.org/10.1007/s10637-022-01229-3] [PMID: 35412173]
[60]
Du C, Tian Y, Duan W, Chen X, Ren W, Deng Q. Curcumin enhances the radiosensitivity of human urethral scar fibroblasts by apoptosis, cell cycle arrest and downregulation of Smad4 via autophagy. Radiat Res 2021; 195(5): 452-62.
[http://dx.doi.org/10.1667/RADE-20-00239.1] [PMID: 33755170]
[61]
Engeland K. Cell cycle regulation: P53-p21-RB signaling. Cell Death Differ 2022; 29(5): 946-60.
[http://dx.doi.org/10.1038/s41418-022-00988-z] [PMID: 35361964]
[62]
Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 2016; 42: 63-71.
[http://dx.doi.org/10.1016/j.dnarep.2016.04.008] [PMID: 27156098]
[63]
Engeland K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ 2018; 25(1): 114-32.
[http://dx.doi.org/10.1038/cdd.2017.172] [PMID: 29125603]
[64]
Guan L, Crasta KC, Maier AB. Assessment of cell cycle regulators in human peripheral blood cells as markers of cellular senescence. Ageing Res Rev 2022; 78: 101634.
[http://dx.doi.org/10.1016/j.arr.2022.101634] [PMID: 35460888]
[65]
Tran AP, Tralie CJ, Reyes J, et al. Long-term p21 and p53 dynamics regulate the frequency of mitosis events and cell cycle arrest following radiation damage. Cell Death Differ 2023; 30(3): 660-72.
[http://dx.doi.org/10.1038/s41418-022-01069-x] [PMID: 36182991]
[66]
Fischer M, Quaas M, Steiner L, Engeland K. The p53-p21-DREAM-CDE/CHR pathway regulates G 2/M cell cycle genes. Nucleic Acids Res 2016; 44(1): 164-74.
[http://dx.doi.org/10.1093/nar/gkv927] [PMID: 26384566]
[67]
Yu L, Qiu W, Gao Y, et al. JNK1 activated pRb/E2F1 and inhibited p53/p21 signaling pathway is involved in hydroquinone‐induced pathway malignant transformation of TK6 cells by accelerating the cell cycle progression. Environ Toxicol 2023; 38(10): 2344-51.
[http://dx.doi.org/10.1002/tox.23870] [PMID: 37347496]
[68]
Deng L, Yao P, Li L, et al. p53-mediated control of aspartate-asparagine homeostasis dictates LKB1 activity and modulates cell survival. Nat Commun 2020; 11(1): 1755.
[http://dx.doi.org/10.1038/s41467-020-15573-6] [PMID: 32273511]
[69]
Huang SW, Chyuan IT, Shiue C, Yu MC, Hsu YF, Hsu MJ. Lovastatin‐mediated MCF‐7 cancer cell death involves LKB1‐AMPK‐p38MAPK‐p53‐survivin signalling cascade. J Cell Mol Med 2020; 24(2): 1822-36.
[http://dx.doi.org/10.1111/jcmm.14879] [PMID: 31821701]
[70]
Gomes AS, Ramos H, Soares J, Saraiva L. p53 and glucose metabolism: An orchestra to be directed in cancer therapy. Pharmacol Res 2018; 131: 75-86.
[http://dx.doi.org/10.1016/j.phrs.2018.03.015] [PMID: 29580896]
[71]
Troncone M, Cargnelli SM, Villani LA, et al. Targeting metabolism and AMP-activated kinase with metformin to sensitize non-small cell lung cancer (NSCLC) to cytotoxic therapy: Translational biology and rationale for current clinical trials. Oncotarget 2017; 8(34): 57733-54.
[http://dx.doi.org/10.18632/oncotarget.17496] [PMID: 28915708]
[72]
Zhang SX, Tian W, Liu YL, et al. Mechanism of N-Methyl-N-Nitroso-Urea-Induced gastric precancerous lesions in mice. J Oncol 2022; 2022: 1-9.
[http://dx.doi.org/10.1155/2022/3780854] [PMID: 35342404]
[73]
Sung JY, Woo CH, Kang YJ, Lee KY, Choi HC. AMPK induces vascular smooth muscle cell senescence via LKB1 dependent pathway. Biochem Biophys Res Commun 2011; 413(1): 143-8.
[http://dx.doi.org/10.1016/j.bbrc.2011.08.071] [PMID: 21872575]
[74]
Liu T, Qin W, Hou L, Huang Y. MicroRNA-17 promotes normal ovarian cancer cells to cancer stem cells development via suppression of the LKB1-p53-p21/WAF1 pathway. Tumour Biol 2015; 36(3): 1881-93.
[http://dx.doi.org/10.1007/s13277-014-2790-3] [PMID: 25510663]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy