Generic placeholder image

Current Women`s Health Reviews

Editor-in-Chief

ISSN (Print): 1573-4048
ISSN (Online): 1875-6581

Review Article

Intravaginal Delivery of Herbal Pharmaceutical Interventions for Uncomplicated UTIs in Women

Author(s): Nidhi Semwal, Deepika Joshi*, Priya Sharma, Archana Rautela and Bhavana Singh

Volume 21, Issue 2, 2025

Published on: 15 January, 2024

Article ID: e150124225636 Pages: 12

DOI: 10.2174/0115734048265267231119175852

Price: $65

Abstract

Background: Urinary tract infection (UTIs) is the most common infection in women affecting approximately 75% of women worldwide during their pregnancy, and in pre and postmenopausal women. Typical symptoms include urinary frequency, urgency, suprapubic discomfort, and dysuria.

Method: An introduction to the epidemiology of UTIs and detailed herbal nanoformulation treatment approach through novel intravaginal route is intended through this narrative review. UTIs are associated with significant morbidity and mortality, and they affect the quality of life of the affected patients. Multidrug-resistant bacteria and recurrent UTIs are becoming more common. Development of resistance, adverse effects of antibiotics, and other associated problems lead to establishing the research framework to find out the alternative approaches in controlling UTIs. Antibiotic- free treatments for uncomplicated urinary tract infections UTIs should be used, saving drugs for severe infections. Herbal medication might be used instead of antibiotics for uncomplicated UTIs, in addition to analgesics for purely symptomatic treatment.

Conclusion: This review identifies the pathophysiology of UTI, distinguish the intravaginal route as an alternative to oral delivery route, summarizes the management of urinary tract infections and highlights the anti-uropathogenic and anti-bactericidal effects of herbal approaches to prevent or treat urinary tract infections.

Keywords: Uncomplicated urinary tract infection, intravaginal, herbal, bacteria, diabetes, kidney transplant.

Graphical Abstract
[1]
Aires, A.; Mota, V.R.; Saavedra, M.J.; Rosa, E.A.S.; Bennett, R.N. The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. J. Appl. Microbiol., 2009, 106(6), 2086-2095.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04180.x] [PMID: 19291240]
[2]
Medina, M; Castillo-Pino, E An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol, 2019, 11, 1756287219832172.
[http://dx.doi.org/10.1177/1756287219832172]
[3]
Long, B.; Koyfman, A. The emergency department diagnosis and management of urinary tract infection. Emerg. Med. Clin. North Am., 2018, 36(4), 685-710.
[http://dx.doi.org/10.1016/j.emc.2018.06.003] [PMID: 30296999]
[4]
Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol., 2015, 13(5), 269-284.
[http://dx.doi.org/10.1038/nrmicro3432] [PMID: 25853778]
[5]
Kostakioti, M.; Hultgren, S.J.; Hadjifrangiskou, M. Molecular blueprint of uropathogenic Escherichia coli virulence provides clues toward the development of anti-virulence therapeutics. Virulence, 2012, 3(7), 592-593.
[http://dx.doi.org/10.4161/viru.22364] [PMID: 23154288]
[6]
Behzadi, P.; Behzadi, E.; Yazdanbod, H.; Aghapour, R.; Akbari Cheshmeh, M.; Salehian Omran, D. A survey on urinary tract infections associated with the three most common uropathogenic bacteria. Maedica, 2010, 5(2), 111-115.
[PMID: 21977133]
[7]
Yamaji, R.; Friedman, C.R.; Rubin, J.; Suh, J.; Thys, E. A population-based surveillance study of shared genotypes of escherichia coli isolates from retail meat and suspected cases of urinary tract infections. mSphere, 2018, 3(4), e00179-18.
[8]
Barnett, B.J.; Stephens, D.S.; Stephens, S. Urinary tract infection: An overview. Am. J. Med. Sci., 1997, 314(4), 245-249.
[PMID: 9332263]
[9]
Hooton, T.M. Clinical practice. Uncomplicated urinary tract infection. N. Engl. J. Med., 2012, 366(11), 1028-1037.
[http://dx.doi.org/10.1056/NEJMcp1104429] [PMID: 22417256]
[10]
Ong, D.S.Y.; Kuyvenhoven, M.M.; van Dijk, L.; Verheij, T.J.M. Antibiotics for respiratory, ear and urinary tract disorders and consistency among GPs. J. Antimicrob. Chemother., 2008, 62(3), 587-592.
[http://dx.doi.org/10.1093/jac/dkn230] [PMID: 18544602]
[11]
Epidemiology, diagnostics, therapy and management of uncomplicated bacterial community acquired urinary tract infection in adults: German S3-Guideline 2010.
[12]
Hooton, T.M.; Vecchio, M.; Iroz, A.; Tack, I.; Dornic, Q.; Seksek, I.; Lotan, Y. Effect of increased daily water intake in premenopausal women with recurrent urinary tract infections. JAMA Intern. Med., 2018, 178(11), 1509-1515.
[http://dx.doi.org/10.1001/jamainternmed.2018.4204] [PMID: 30285042]
[13]
Liu, Y.; Xiao, D.; Shi, X. Urinary tract infection control in intensive care patients. Medicine, 2018, 97(38), e12195.
[http://dx.doi.org/10.1097/MD.0000000000012195] [PMID: 30235665]
[14]
Foxman, B.; Brown, P. Epidemiology of urinary tract infections. Infect. Dis. Clin. North Am., 2003, 17(2), 227-241.
[http://dx.doi.org/10.1016/S0891-5520(03)00005-9] [PMID: 12848468]
[15]
Jansåker, F.; Li, X.; Vik, I.; Frimodt-Møller, N.; Knudsen, J.D.; Sundquist, K. The risk of pyelonephritis following uncomplicated cystitis: A nationwide primary healthcare study. Antibiotics, 2022, 11(12), 1695.
[http://dx.doi.org/10.3390/antibiotics11121695] [PMID: 36551352]
[16]
Stamm, W.E.; Norrby, S.R. Urinary tract infections: Disease panorama and challenges. J. Infect. Dis., 2001, 183(s1)(Suppl. 1), S1-S4.
[http://dx.doi.org/10.1086/318850] [PMID: 11171002]
[17]
Sakamoto, S.; Miyazawa, K.; Yasui, T.; Iguchi, T.; Fujita, M.; Nishimatsu, H.; Masaki, T.; Hasegawa, T.; Hibi, H.; Arakawa, T.; Ando, R.; Kato, Y.; Ishito, N.; Yamaguchi, S.; Takazawa, R.; Tsujihata, M.; Taguchi, M.; Akakura, K.; Hata, A.; Ichikawa, T. Chronological changes in epidemiological characteristics of lower urinary tract urolithiasis in Japan. Int. J. Urol., 2019, 26(1), 96-101.
[http://dx.doi.org/10.1111/iju.13817] [PMID: 30308705]
[18]
Alperin, M.; Burnett, L.; Lukacz, E.; Brubaker, L. The mysteries of menopause and urogynecologic health: Clinical and scientific gaps. Menopause, 2019, 26(1), 103-111.
[http://dx.doi.org/10.1097/GME.0000000000001209] [PMID: 30300297]
[19]
Maharjan, G.; Khadka, P.; Siddhi Shilpakar, G.; Chapagain, G.; Dhungana, G.R. Catheter-associated urinary tract infection and obstinate biofilm producers. Can. J. Infect. Dis. Med. Microbiol., 2018, 2018, 1-7.
[http://dx.doi.org/10.1155/2018/7624857] [PMID: 30224941]
[20]
Woolfson, A.D.; Malcolm, R.K.; Gallagher, R. Drug delivery by the intravaginal route. Crit. Rev. Ther. Drug Carrier Syst., 2000, 17(5), 47.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v17.i5.30] [PMID: 11108158]
[21]
Washington, N.; Washington, C.; Wilson, C.G. Vaginal and intrauterine drug delivery. In: Physiological pharmaceutics: Barriers to drug absorption; Washington, N.; Washington, C.; Wilson, C.G. Taylor and Francis: London, 2001; pp. 271-281.
[22]
Alexander, N.J.; Baker, E.; Kaptein, M.; Karck, U.; Miller, L.; Zampaglione, E. Why consider vaginal drug administration? Fertil. Steril., 2004, 82(1), 1-12.
[http://dx.doi.org/10.1016/j.fertnstert.2004.01.025] [PMID: 15236978]
[23]
Srikrishna, S.; Cardozo, L. The vagina as a route for drug delivery: A review. Int. Urogynecol. J. Pelvic Floor Dysfunct., 2013, 24(4), 537-543.
[http://dx.doi.org/10.1007/s00192-012-2009-3] [PMID: 23229421]
[24]
Hussain, A.; Ahsan, F. The vagina as a route for systemic drug delivery. J. Control. Release, 2005, 103(2), 301-313.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.034] [PMID: 15763615]
[25]
Tang, M.; Quanstrom, K.; Jin, C.; Suskind, A.M. Recurrent urinary tract infections are associated with frailty in older adults. Urology, 2019, 123, 24-27.
[http://dx.doi.org/10.1016/j.urology.2018.09.025] [PMID: 30296501]
[26]
Lavigne, J.P.; Bourg, G.; Botto, H.; Sotto, A. Cranberry (Vaccinium macrocarpon) and urinary tract infections: study model and review of literature. Pathol. Biol., 2007, 55(8-9), 460-464.
[http://dx.doi.org/10.1016/j.patbio.2007.07.005] [PMID: 17905535]
[27]
Neu, H.C. Optimal characteristics of agents to treat uncomplicated urinary tract infections. Infection, 1992, 20(S4)(Suppl. 4), S266-S271.
[http://dx.doi.org/10.1007/BF01710012] [PMID: 1294515]
[28]
Stamey, T.A.; Fair, W.R.; Timothy, M.M.; Millar, M.A.; Mihara, G.; Lowery, Y.C. Serum versus urinary antimicrobial concentrations in cure of urinary-tract infections. N. Engl. J. Med., 1974, 291(22), 1159-1163.
[http://dx.doi.org/10.1056/NEJM197411282912204] [PMID: 4422010]
[29]
Talan, D.A.; Stamm, W.E.; Hooton, T.M.; Moran, G.J.; Burke, T.; Iravani, A.; Reuning-Scherer, J.; Church, D.A. Comparison of ciprofloxacin (7 days) and trimethoprim-sulfamethoxazole (14 days) for acute uncomplicated pyelonephritis pyelonephritis in women: a randomized trial. JAMA, 2000, 283(12), 1583-1590.
[http://dx.doi.org/10.1001/jama.283.12.1583] [PMID: 10735395]
[30]
Gupta, K.; Sahm, D.F.; Mayfield, D.; Stamm, W.E. Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in women: a nationwide analysis. Clin. Infect. Dis., 2001, 33(1), 89-94.
[http://dx.doi.org/10.1086/320880] [PMID: 11389500]
[31]
Gupta, K.; Hooton, T.M.; Stamm, W.E. Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Ann. Intern. Med., 2001, 135(1), 41-50.
[http://dx.doi.org/10.7326/0003-4819-135-1-200107030-00012] [PMID: 11434731]
[32]
Gupta, K.; Scholes, D.; Stamm, W.E. Increasing prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in women. JAMA, 1999, 281(8), 736-738.
[http://dx.doi.org/10.1001/jama.281.8.736] [PMID: 10052444]
[33]
Das, D.C.; Sinha, N.K.; Patsa, M.K.; Das, M. Investigation of herbals for the treatment of leucorrhoea from south west Bengal, India. Int. J. Bioassays, 2015, 4, 4555-4559.
[34]
Taid, T.C.; Rajkhowa, R.C.; Kalita, J.C. A study on the medicinal plants used by the local traditional healers of Dhemaji district, Assam, India for curing reproductive health related disorders. Adv. Appl. Sci. Res., 2014, 5, 296-301.
[35]
Pattayak, S.; Das, D.C.; Sinha, N.K.; Parida, S. Use of medicinal plants for the treatment of urinary tract infections: A study from paschim medinipur district, west bengal, India. Int. J. Pharma Bio Sci., 2017, 8, 250-259.
[36]
Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci., 2015, 16(10), 24673-24706.
[http://dx.doi.org/10.3390/ijms161024673] [PMID: 26501271]
[37]
Dason, S.; Dason, J.T.; Kapoor, A. Guidelines for the diagnosis and management of recurrent urinary tract infection in women. Can. Urol. Assoc. J., 2013, 5(5), 316-322.
[http://dx.doi.org/10.5489/cuaj.687] [PMID: 22031610]
[38]
Hisano, M.; Bruschini, H.; Nicodemo, A.C.; Srougi, M. Cranberries and lower urinary tract infection prevention. Clinics, 2012, 67(6), 661-667.
[http://dx.doi.org/10.6061/clinics/2012(06)18] [PMID: 22760907]
[39]
Pérez-López, F.R.; Haya, J.; Chedraui, P. Vaccinium macrocarpon : An interesting option for women with recurrent urinary tract infections and other health benefits. J. Obstet. Gynaecol. Res., 2009, 35(4), 630-639.
[http://dx.doi.org/10.1111/j.1447-0756.2009.01026.x] [PMID: 19751320]
[40]
Chettaoui, R.; Mayot, G.; De Almeida, L.; Di Martino, P. Cranberry (Vaccinium macrocarpon) dietary supplementation and fecal microbiota of Wistar rats. AIMS Microbiol., 2021, 7(2), 257-270.
[http://dx.doi.org/10.3934/microbiol.2021016] [PMID: 34250378]
[41]
Al-Bayati, F.A.; Al-Mola, H.F. Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq. J. Zhejiang Univ. Sci. B, 2008, 9(2), 154-159.
[http://dx.doi.org/10.1631/jzus.B0720251] [PMID: 18257138]
[42]
Kannabiran, K.; Mohankumar, T.; Gunaseker, V. Evaluation of antimicrobial activity of saponin isolated from Solanum xanthocarpum and Centella asiatica. Intern J Nat Engin Sci, 2009, 3(1), 22-25.
[43]
Mandal, P.; Sinha Babu, S.P.; Mandal, N.C. Antimicrobial activity of saponins from Acacia auriculiformis. Fitoterapia, 2005, 76(5), 462-465.
[http://dx.doi.org/10.1016/j.fitote.2005.03.004] [PMID: 15951137]
[44]
Batoei, S.; Mahboubi, M.; Yari, R. Antibacterial activity of Tribulus terrestris methanol extract against clinical isolates of Escherichia coli. Herba Pol., 2016, 62(2), 57-66.
[http://dx.doi.org/10.1515/hepo-2016-0011]
[45]
Sharma, R.; Godatwar, P.K. In vitro anti-microbial effect of various extracts of Ġokṣura (Tribulus terrestris) fruits on common pathogens causing urinary tract infection. J Ayu Int Med Sci, 2022, 7(9), 64-69.
[46]
Bhuker, A.; Mor, V.S.; Ms, P.R.; Jakhar, S.S. Potential use of medicinal plant Gokhru: A review. Journal of Ayurvedic and Herbal Medicine, 2022, 8(2), 101-106.
[http://dx.doi.org/10.31254/jahm.2022.8208]
[47]
Arabski, M.; Wąsik, S.; Dworecki, K.; Kaca, W. Laser interferometric and cultivation methods for measurement of colistin/ampicilin and saponin interactions with smooth and rough of Proteus mirabilis lipopolysaccharides and cells. J. Microbiol. Methods, 2009, 77(2), 178-183.
[http://dx.doi.org/10.1016/j.mimet.2009.01.020] [PMID: 19318050]
[48]
Kumar, A.; Jhadwal, N.; Lal, M. Antibacterial activity of some medicinal plants used against UTI causing Pathogens. Inter J Drug Develop Res, 2012, 4, 278-280.
[49]
Saxena, A.P.; Vyas, K.M. Antimicrobial activity of seeds of some ethnomedicinal plants. J. Econ. Taxon. Bot., 1986, 8, 291-300.
[50]
Khanuja, S.P. Formulation Comprising Thymol useful in the Treatment of Drug Resistance Bacterial infection, CCIR, New Delhi United state patent no US 6,824,795 b2, 2004.
[51]
Bairwa, R.; Rajawat, B.S.; Sodha, R.S. Trachyspermum ammi. Pharmacogn. Rev., 2012, 6(11), 56-60.
[http://dx.doi.org/10.4103/0973-7847.95871] [PMID: 22654405]
[52]
Singh, D.B.; Singh, S.P.; Gupta, R.C. Antifungal effect of volatiles from seeds of some Umbelliferae. Trans. Br. Mycol. Soc., 1979, 73(2), 349-350.
[http://dx.doi.org/10.1016/S0007-1536(79)80121-7]
[53]
Caccioni, D.L.; Guizzardi, M.; Biondi, D.M. Relationships between volatile components of citrus fruit essential oil and antimicrobial action on Penicillium digitatum and Penicillium italicum. Int. J. Food Microbiol., 2000, 88, 170-175.
[54]
Khan, R.; Islam, B.; Akram, M.; Shakil, S.; Ahmad, A.A.; Ali, S.M.; Siddiqui, M.; Khan, A. Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules, 2009, 14(2), 586-597.
[http://dx.doi.org/10.3390/molecules14020586] [PMID: 19214149]
[55]
Vasconcelos, N.G.; Croda, J.; Simionatto, S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog., 2018, 120, 198-203.
[http://dx.doi.org/10.1016/j.micpath.2018.04.036] [PMID: 29702210]
[56]
Rasool, N.; Saeed, Z.; Pervaiz, M.; Ali, F.; Younas, U.; Bashir, R.; Bukhari, S.M.; Mahmood khan, R.R.; Jelani, S.; Sikandar, R. Evaluation of essential oil extracted from ginger, cinnamon and lemon for therapeutic and biological activities. Biocatal. Agric. Biotechnol., 2022, 44, 102470.
[http://dx.doi.org/10.1016/j.bcab.2022.102470]
[57]
Rao, P.V.; Gan, S.H. Cinnamon: A multifaceted medicinal plant. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/642942] [PMID: 24817901]
[58]
Jayaprakasha, G.K.; Rao, L.J.M. Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum. Crit. Rev. Food Sci. Nutr., 2011, 51(6), 547-562.
[http://dx.doi.org/10.1080/10408391003699550] [PMID: 21929331]
[59]
Hussain, S.; Rahman, R.; Mushtaq, A.; Zerey-Belaskri, A. El Clove: A review of a precious species with multiple uses. Int. J. Chem. Biochem. Sci., 2017, 11, 129-133.
[60]
Yun, J.W.; You, J.R.; Kim, Y.S.; Kim, S.H.; Cho, E.Y.; Yoon, J.H.; Kwon, E.; Jang, J.J.; Park, J.S.; Kim, H.C.; Che, J.H.; Kang, B.C. In vitro and in vivo safety studies of cinnamon extract (Cinnamomum cassia) on general and genetic toxicology. Regul. Toxicol. Pharmacol., 2018, 95, 115-123.
[http://dx.doi.org/10.1016/j.yrtph.2018.02.017] [PMID: 29501463]
[61]
Ortega-Lozano, A.J.; Hernández-Cruz, E.Y.; Gómez-Sierra, T.; Pedraza-Chaverri, J. Antimicrobial activity of spices popularly used in mexico against urinary tract infections. Antibiotics, 2023, 12(2), 325.
[http://dx.doi.org/10.3390/antibiotics12020325] [PMID: 36830236]
[62]
Vakilwala, M.; Macan, K.; Tandel, A. Phytochemical analysis and antimicrobial activity of Cinnamomum verum. International Journal of Research and Scientific Innovation, 2017, 4(4), 69-74.
[63]
Kumar, A.; Sharma, V. Antibacterial activity of allicin from allium sativum against antibiotic resistant uropathogens. Int. J. Infect. Dis., 2009, 8(1), 1-5.
[64]
Joshi, B.; Lekhak, S.; Sharma, A. Antibacterial property of different medicinal plants: Ocimum sanctum, Cinnamomum zeylanicum, Xanthoxylum armatum and Origanum majorana. Kathmand Univ J Sci Engineer Technol, 2009, 5, 143-150.
[65]
Buddhadev, S.; Buddhadev, S.; Mehta, N. A review article on ocimum sanctum linn. PunarnaV, 2014, 2, 01-06.
[66]
Cohen, M. Tulsi - Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med., 2014, 5(4), 251-259.
[http://dx.doi.org/10.4103/0975-9476.146554] [PMID: 25624701]
[67]
Mahajan, N.; Rawal, S.; Verma, M.; Poddar, M.; Alok, S. A phytopharmacological overview on Ocimum species with special emphasis on Ocimum sanctum. Biomedicine & Preventive Nutrition, 2013, 3(2), 185-192.
[http://dx.doi.org/10.1016/j.bionut.2012.08.002]
[68]
Mohan, L.; Amberkar, M.V.; Kumari, M. Ocimum sanctum linn. (TULSI)-an overview. Int. J. Pharm. Sci. Rev. Res., 2011, 7, 51-53.
[69]
Pattanayak, P.; Behera, P.; Das, D.; Panda, S. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev., 2010, 4(7), 95-105.
[http://dx.doi.org/10.4103/0973-7847.65323] [PMID: 22228948]
[70]
Ali, H.; Dixit, S. In vitro antimicrobial activity of flavanoids of Ocimum sanctum with synergistic effect of their combined form. Asian Pac. J. Trop. Dis., 2012, 2, S396-S398.
[http://dx.doi.org/10.1016/S2222-1808(12)60189-3]
[71]
Singh, S.; Malhotra, M.; Majumdar, D.K. Antibacterial activity of Ocimum sanctum L. fixed oil. Indian J. Exp. Biol., 2005, 43(9), 835-837.
[PMID: 16187537]
[72]
Mondal, S.; Mirdha, B.R.; Mahapatra, S.C. The science behind sacredness of Tulsi (Ocimum sanctum Linn.). Indian J. Physiol. Pharmacol., 2009, 53(4), 291-306.
[PMID: 20509321]
[73]
Deo, S.S.; Inam, F.; Mahashabde, R.P. Antimicrobial activity and HPLC fingerprinting of crude ocimum extracts. E-J. Chem., 2011, 8(3), 1430-1437.
[http://dx.doi.org/10.1155/2011/428019]
[74]
Balakumar, S.; Rajan, S.; Thirunalasundari, T.; Jeeva, S. Antifungal activity of Ocimum sanctum Linn. (Lamiaceae) on clinically isolated dermatophytic fungi. Asian Pac. J. Trop. Med., 2011, 4(8), 654-657.
[http://dx.doi.org/10.1016/S1995-7645(11)60166-1] [PMID: 21914546]
[75]
Das, J.; Buragohain, B.; Srivastava, R.B. In vitro evaluation of ocimum sanctum leaf extract against dermatophytes and opportunistic fungi. Asian J. Microbiol. Biotechnol. Environ. Sci., 2010, 12, 789-792.
[76]
Chandra, R.; Dwivedi, V.; Shivam, K.; Jha, A.K. Detection of antimicrobial activity of Oscimum sanctum (Tulsi) and Trigonella foenum graecum (Methi) against some selected bacterial and fungal strains. Res. J. Pharm. Biol. Chem. Sci., 2011, 2, 809-813.
[77]
Karuppiah, P.; Rajaram, S. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens. Asian Pac. J. Trop. Biomed., 2012, 2(8), 597-601.
[http://dx.doi.org/10.1016/S2221-1691(12)60104-X] [PMID: 23569978]
[78]
Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods, 2019, 8(6), 185.
[http://dx.doi.org/10.3390/foods8060185] [PMID: 31151279]
[79]
Prasad, S.; Tyagi, A.K. Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer. Gastroenterol. Res. Pract., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/142979] [PMID: 25838819]
[80]
Ji, K.; Fang, L.; Zhao, H.; Li, Q.; Shi, Y.; Xu, C.; Wang, Y.; Du, L.; Wang, J.; Liu, Q. Ginger oleoresin alleviated gamma-ray irradiation-induced reactive oxygen species via the Nrf2 protective response in human mesenchymal stem cells. Oxid. Med. Cell. Longev., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/1480294] [PMID: 29181121]
[81]
Schadich, E.; Hlaváč, J.; Volná, T.; Varanasi, L.; Hajdúch, M.; Džubák, P. Effects of ginger phenylpropanoids and quercetin on Nrf2-ARE pathway in human BJ fibroblasts and HaCaT keratinocytes. BioMed Res. Int., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/2173275] [PMID: 26942188]
[82]
Moon, Y.S.; Lee, H.S.; Lee, S.E. Inhibitory effects of three monoterpenes from ginger essential oil on growth and aflatoxin production of Aspergillus flavus and their gene regulation in aflatoxin biosynthesis. Applied Biological Chemistry, 2018, 61(2), 243-250.
[http://dx.doi.org/10.1007/s13765-018-0352-x]
[83]
Nassan, M.A.; Mohamed, E.H. Immunopathological and antimicrobial effect of black pepper, ginger and thyme extracts on experimental model of acute hematogenous pyelonephritis in albino rats. Int. J. Immunopathol. Pharmacol., 2014, 27(4), 531-541.
[http://dx.doi.org/10.1177/039463201402700409] [PMID: 25572733]
[84]
Chakotiya, A.S.; Tanwar, A.; Narula, A.; Sharma, R.K. Zingiber officinale : Its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow cytometry. Microb. Pathog., 2017, 107, 254-260.
[http://dx.doi.org/10.1016/j.micpath.2017.03.029] [PMID: 28389345]
[85]
Shanmugapriya, R.; Ushadevi, T. In vitro antibacterial and antioxidant activities of Apium graveolens L. seed extracts. Int J Drug Dev Res, 2014, 6, 165-170.
[86]
Al-Snafi, A.E. The pharmacology of apium graveolens-a review. International Journal for Pharmaceutical Research Scholars, 2014, 3(1), 671-677.
[87]
Khairullah, A.R.; Solikhah, T.I.; Ansori, A.N.M.; Hidayatullah, A.R.; Hartadi, E.B.; Ramandinianto, S.C.; Fadholly, A. Review on the pharmacological and health aspects of Apium graveolens or celery: An update. SRP, 2021, 12(1), 606-612.
[88]
Al-Jiffri, O.; El-Sayed, Z.; Al-Sharif, F. Urinary tract infection with Escherichia coli and antibacterial activity of some plants extracts. Int. J. Microbiol. Res., 2011, 2, 1-7.
[89]
Singh, R.; Shushni, M.A.M.; Belkheir, A.; Belkheir, A. Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem., 2015, 8(3), 322-328.
[http://dx.doi.org/10.1016/j.arabjc.2011.01.019]
[90]
Gholamipourfard, K.; Salehi, M.; Banchio, E. Mentha piperita phytochemicals in agriculture, food industry and medicine: Features and applications. S. Afr. J. Bot., 2021, 141, 183-195.
[http://dx.doi.org/10.1016/j.sajb.2021.05.014]
[91]
Ahmed, S.; Khatri, M.S.; Hasan, M.M. Plants of family lamiaceae: A promising hand for new antiurolithiatic drug development. World J. Pharm. Pharm. Sci., 2017, 6, 90-96.
[92]
Mahendran, G.; Rahman, L.U. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint ( Mentha × piperita L.)—A review. Phytother. Res., 2020, 34(9), 2088-2139.
[http://dx.doi.org/10.1002/ptr.6664] [PMID: 32173933]
[93]
Neto, C.C.; Vinson, J.A. Cranberry. In: Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed; Benzie, I.F.F.; Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, 2011.
[http://dx.doi.org/10.1201/b10787-7]
[94]
Rajashekar, V.; Rao, E.U.; Srinivas, P. Biological activities and medicinal properties of Gokhru (Pedalium murex L.). Asian Pac. J. Trop. Biomed., 2012, 2(7), 581-585.
[http://dx.doi.org/10.1016/S2221-1691(12)60101-4] [PMID: 23569975]
[95]
Chhatre, S.; Nesari, T.; Kanchan, D.; Somani, G.; Sathaye, S. Phytopharmacological overview of Tribulus terrestris. Pharmacogn. Rev., 2014, 8(15), 45-51.
[http://dx.doi.org/10.4103/0973-7847.125530] [PMID: 24600195]
[96]
Jakhetia, V.; Patel, R.; Khatri, P. Cinnamon: A pharmacological review. Int. J. Adv. Sci. Res., 2010, 1(2), 19-12.
[97]
Jamshed, A.; Jabeen, Q. Pharmacological evaluation of Mentha piperita against urolithiasis: An in vitro and in vivo study. Dose Response, 2022, 20(1)
[http://dx.doi.org/10.1177/15593258211073087] [PMID: 35110977]
[98]
Nordin, N.I.; Gibbons, S.; Perrett, D.; Mageed, R.A.; Nafiah, M.A. Immunomodulatory effects of Roscoe var. (Halia Bara) ON inflammatory responses relevant to psoriasis. Open Conf. Proc. J., 2013, 4(1), 76.
[http://dx.doi.org/10.2174/2210289201304010076]
[99]
Razali, N.; Dewa, A.; Asmawi, M.Z.; Mohamed, N.; Manshor, N.M. Mechanisms underlying the vascular relaxation activities of Zingiber officinale var. rubrum in thoracic aorta of spontaneously hypertensive rats. J. Integr. Med., 2020, 18(1), 46-58.
[http://dx.doi.org/10.1016/j.joim.2019.12.003] [PMID: 31882255]
[100]
Nirvana, S.J.; Widiyani, T.; Budiharjo, A. Antihypercholesterolemia activities of red ginger extract (Zingiber officinale Roxb. var rubrum) on wistar rats Proceedings of the IOP Conference Series: Materials Science and Engineering, Chennai, India2020, p. 012025.
[http://dx.doi.org/10.1088/1757-899X/858/1/012025]
[101]
Hariyanto, I.H.; Indri, K.; Saragih, N. Antihyperuricemia activity from methanol extract of red ginger rhizomes (Zingiber officinale Rosc. var rubrum) towards white male rat wistar strain. Int J Pharm Teach Pr, 2013, 4, 540.
[102]
Syafitri, D.M.; Levita, J.; Mutakin, M.; Diantini, A. A Review: Is Ginger (Zingiber officinale var. Roscoe) Potential for Future Phytomedicine? Indonesian Journal of Applied Sciences, 2018, 8(1), 30.
[http://dx.doi.org/10.24198/ijas.v8i1.16466]
[103]
Srinivasa, B.; Desu, R.; Sivaramakrishna, K. Antidepressant activity of methanolic extract of Apium graveolens seeds. Int. J. Res. Pharm. Chem., 2012, 2(4), 1124-1127.
[104]
Shad, A.A.; Shah, H.U.; Bakht, J.; Choudhary, M.I.; Ullah, J. Nutraceutical potential and bioassay of Apium graveolens L. grown in Khyber Pakhtunkhwa Pakistan. J. Med. Plants Res., 2011, 5, 5160-5166.
[105]
Baananou, S.; Bouftira, I.; Mahmoud, A.; Boukef, K.; Marongiu, B.; Boughattas, N.A. Antiulcerogenic and antibacterial activities of Apium graveolens essential oil and extract. Nat. Prod. Res., 2013, 27(12), 1075-1083.
[http://dx.doi.org/10.1080/14786419.2012.717284] [PMID: 22934666]
[106]
Genatrika, E.; Satriani, F.; Hapsari, I. Hapsari. antibacterial activity of celery leaves (Apium graveolens L.) formulated in toothpaste against streptococcus mutans. International Journal of Applied Pharmaceutics, 2019, 11(5), 14-16.
[http://dx.doi.org/10.22159/ijap.2019.v11s5.T0028]
[107]
Momin, R.A.; Nair, M.G. Mosquitocidal, nematicidal, and antifungal compounds from Apium graveolens L. seeds. J. Agric. Food Chem., 2001, 49(1), 142-145.
[http://dx.doi.org/10.1021/jf001052a] [PMID: 11305251]
[108]
Rumiyati, A.R.; Winarti, A.D.; Septia, D.N. Antihypertensive testing of Combination of Apium graveolans L., Orthosiphon stamineus Benth., and Morinda citrifolia L. extract on Normotensive and Hypertensive Sprague Dawley Rats. Traditional Medicine Journal, 2016, 21(3), 149-156.
[109]
Al-Howiriny, T.; Alsheikh, A.; Alqasoumi, S.; Al-Yahya, M.; ElTahir, K.; Rafatullah, S. Gastric antiulcer, antisecretory and cytoprotective properties of celery ( Apium graveolens ) in rats. Pharm. Biol., 2010, 48(7), 786-793.
[http://dx.doi.org/10.3109/13880200903280026] [PMID: 20645778]
[110]
Jittiwat, J.; Chonpathompikunlert, P.; Sukketsiri, W. Neuroprotective effects of Apium graveolens against focal cerebral ischemia occur partly via antioxidant, anti-inflammatory, and anti-apoptotic pathways. J. Sci. Food Agric., 2021, 101(6), 2256-2263.
[http://dx.doi.org/10.1002/jsfa.10846] [PMID: 33006386]
[111]
Aburjai, T.; Mansi, K.; Abushoffa, A.; Disi, A. Hypolipidemic effects of seed extract of Celery ( Apium graveolens ) in rats. Pharmacogn. Mag., 2009, 5(20), 301-305.
[http://dx.doi.org/10.4103/0973-1296.58149]
[112]
Subhadradevi, V.; Khairunissa, K.; Asokkumar, K.; Umamaheswari, M.; Sivashanmugam, A.; Jagannath, P. Induction of apoptosis and cytotoxic activities of Apium graveolens linn. using in vitro models. Middle East J. Sci. Res., 2011, 9(1), 90-94.
[113]
Sameh, B.; Ibtissem, B.; Mahmoud, A.; Boukef, K.; Boughattas, N.A. Antioxidant activity of Apium graveolens extracts. Journal of Biologically Active Products from Nature, 2011, 1(5-6), 340-343.
[http://dx.doi.org/10.1080/22311866.2011.10719102]
[114]
Lewis, D.A.; Tharib, S.M.; Veitch, G.B.A. The antiinflammatory activity of celery Apium graveolens L. (Fam. Umbelliferae). Pharm. Biol., 1985, 23(1), 27-32.
[115]
Al-Sanabra, O.M.F.; Qunaibi, E.A.; Aburjai, T.A.; Al-Qaadan, F.A.; Shomaf, M.S.; Disi, A.M. Antifertility activity of ethanolic seed extract of celery (Apium Graveolens L.) in male albino rats. Jordan J. Pharm. Sci., 2013, 6(1), 30-39.
[http://dx.doi.org/10.12816/0000360]
[116]
Lans, C.A. Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. J. Ethnobiol. Ethnomed., 2006, 2(1), 45.
[http://dx.doi.org/10.1186/1746-4269-2-45] [PMID: 17040567]
[117]
Magryś, A.; Olender, A.; Tchórzewska, D. Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics. Arch. Microbiol., 2021, 203(5), 2257-2268.
[http://dx.doi.org/10.1007/s00203-021-02248-z] [PMID: 33638666]
[118]
Patela, J.; Patelb, R.; Khambholjab, K.; Patela, N. An overview of phytosomes as an advanced herbal drug delivery system. Asian Journal of Pharmaceutical Sciences, 2009, 4(6), 363-371.
[119]
Neamtu, I.; Rusu, A.G.; Diaconu, A.; Nita, L.E.; Chiriac, A.P. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv., 2017, 24(1), 539-557.
[http://dx.doi.org/10.1080/10717544.2016.1276232] [PMID: 28181831]
[120]
Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol., 2016, 7, 1831.
[http://dx.doi.org/10.3389/fmicb.2016.01831] [PMID: 27899918]
[121]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[122]
Venkatesan, N.; Babu, B.S.; Vyas, S.P. Protected particulate drug carriers for prolonged systemic circulation–a review. Indian J. Pharm. Sci., 2000, 62, 327-333.
[123]
Sharma, S.; Sikarwar, M. Phytosome: A review. Planta Indica, 2005, 1, 1-3.
[124]
Gupta, A.; Ashawal, M.S.; Saraf, S. Phytosomes: A novel approach towards functional cosmetics. J. Plant Sci., 2007, 2(6), 644-649.
[125]
Cotellese, R.; Ledda, A.; Belcaro, G.; Cesarone, M.R.; Scipione, C.; Scipione, V.; Dugall, M.; Feragalli, B.; Riva, A.; Allegrini, P.; Petrangolini, G.; Togni, S. Anthocran® Phytosome®: Prevention of recurring urinary infections and symptoms after catheterization. J. Diet. Suppl., 2023, 20(1), 55-67.
[http://dx.doi.org/10.1080/19390211.2021.1972074] [PMID: 34632933]
[126]
Langer, R. Biomaterials in drug delivery and tissue engineering: One laboratory’s experience. Acc. Chem. Res., 2000, 33(2), 94-101.
[http://dx.doi.org/10.1021/ar9800993] [PMID: 10673317]
[127]
Bhadra, D.; Bhadra, S.; Jain, P.; Jain, N.K. Pegnology: A review of PEG-ylated systems. Pharmazie, 2002, 57(1), 5-29.
[PMID: 11836932]
[128]
Kommareddy, S.; Tiwari, S.B.; Amiji, M.M. Long-circulating polymeric nanovectors for tumor-selective gene delivery. Technol. Cancer Res. Treat., 2005, 4(6), 615-625.
[http://dx.doi.org/10.1177/153303460500400605] [PMID: 16292881]
[129]
Lee, M.; Kim, S.W. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm. Res., 2005, 22(1), 1-10.
[http://dx.doi.org/10.1007/s11095-004-9003-5] [PMID: 15771224]
[130]
Akbarzadeh, F.; Motaghi, M.; Chauhan, N.P.S.; Sargazi, G. A novel synthesis of new antibacterial nanostructures based on Zn-MOF compound: Design, characterization and a high performance application. Heliyon, 2020, 6(1), e03231.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03231] [PMID: 32021929]
[131]
Sargazi, G.; Afzali, D.; Mostafavi, A.; Shadman, A.; Rezaee, B.; Zarrintaj, P.; Saeb, M.R.; Ramakrishna, S.; Mozafari, M. Chitosan/polyvinyl alcohol nanofibrous membranes: Towards green super-adsorbents for toxic gases. Heliyon, 2019, 5(4), e01527.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01527] [PMID: 31049436]
[132]
Liang, H.; Nacharaju, P.; Friedman, A.; Friedman, J.M. Nitric oxide generating/releasing materials. Future Sci. OA, 2015, 1(1), fso.15.54.
[http://dx.doi.org/10.4155/fso.15.54] [PMID: 26855790]
[133]
Quinn, J.F.; Whittaker, M.R.; Davis, T.P. Delivering nitric oxide with nanoparticles. J. Control. Release, 2015, 205, 190-205.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.007] [PMID: 25665865]
[134]
Bannov, A.G.; Popov, M.V.; Kurmashov, P.B. Thermal analysis of carbon nanomaterials: Advantages and problems of interpretation. J. Therm. Anal. Calorim., 2020, 142(1), 349-370.
[http://dx.doi.org/10.1007/s10973-020-09647-2]
[135]
Kumar, M.S.; Das, A.P. Emerging nanotechnology based strategies for diagnosis and therapeutics of urinary tract infections: A review. Adv. Colloid Interface Sci., 2017, 249, 53-65.
[http://dx.doi.org/10.1016/j.cis.2017.06.010] [PMID: 28668171]
[136]
Bartelds, R.; Nematollahi, M.H.; Pols, T.; Stuart, M.C.A.; Pardakhty, A.; Asadikaram, G.; Poolman, B. Niosomes, an alternative for liposomal delivery. PLoS One, 2018, 13(4), e0194179.
[http://dx.doi.org/10.1371/journal.pone.0194179] [PMID: 29649223]
[137]
Nematollahi, M.H.; Pardakhty, A.; Torkzadeh-Mahanai, M.; Mehrabani, M.; Asadikaram, G. Changes in physical and chemical properties of niosome membrane induced by cholesterol: A promising approach for niosome bilayer intervention. RSC Advances, 2017, 7(78), 49463-49472.
[http://dx.doi.org/10.1039/C7RA07834J]
[138]
Abbaszadeh-Goudarzi, K.; Nematollahi, M.H.; Khanbabaei, H.; Nave, H.H.; Mirzaei, H.R.; Pourghadamyari, H.; Sahebkar, A. Targeted delivery of CRISPR/Cas13 as a promising therapeutic approach to treat SARS-CoV-2. Curr. Pharm. Biotechnol., 2021, 22(9), 1149-1155.
[http://dx.doi.org/10.2174/18734316MTEwtNTgrw] [PMID: 33038909]
[139]
Santhoshkumar, J.; Kumar, S.V.; Rajeshkumar, S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 2017, 3(4), 459-465.
[http://dx.doi.org/10.1016/j.reffit.2017.05.001]
[140]
Sehad, C.; Shiao, T.; Sallam, L.; Azzouz, A.; Roy, R. Effect of dendrimer generation and aglyconic linkers on the binding properties of mannosylated dendrimers prepared by a combined convergent and onion peel approach. Molecules, 2018, 23(8), 1890.
[http://dx.doi.org/10.3390/molecules23081890] [PMID: 30060568]
[141]
Zhu, Z.; Yu, F.; Chen, H.; Wang, J.; Lopez, A.I.; Chen, Q.; Li, S.; Long, Y.; Darouiche, R.O.; Hull, R.A.; Zhang, L.; Cai, C. Coating of silicone with mannoside-PAMAM dendrimers to enhance formation of non-pathogenic Escherichia coli biofilms against colonization of uropathogens. Acta Biomater., 2017, 64, 200-210.
[http://dx.doi.org/10.1016/j.actbio.2017.10.008] [PMID: 29024820]
[142]
Suhail, M.; Rosenholm, J.M.; Minhas, M.U.; Badshah, S.F.; Naeem, A.; Khan, K.U.; Fahad, M. Nanogels as drug-delivery systems: A comprehensive overview. Ther. Deliv., 2019, 10(11), 697-717.
[http://dx.doi.org/10.4155/tde-2019-0010] [PMID: 31789106]
[143]
Gharaghie, T.P.; Beiranvand, S.; Shirin, N.J.; Elahianfar, Y. Thymol-based Chitosan Nanogels Have Strong Antibacterial and Anti-bio lm Effects on Multidrug-resistant Pathogens. Research Square, 2021.
[144]
Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter, 2016, 12(11), 2826-2841.
[http://dx.doi.org/10.1039/C5SM02958A]
[145]
Troncoso, E.; Aguilera, J.M.; McClements, D.J. Fabrication, characterization and lipase digestibility of food-grade nanoemulsions. Food Hydrocoll., 2012, 27(2), 355-363.
[http://dx.doi.org/10.1016/j.foodhyd.2011.10.014]
[146]
Talegaonkar, S.; Azeem, A.; Ahmad, F.; Khar, R.; Pathan, S.; Khan, Z. Microemulsions: A novel approach to enhanced drug delivery. Recent Pat. Drug Deliv. Formul., 2008, 2(3), 238-257.
[http://dx.doi.org/10.2174/187221108786241679] [PMID: 19075911]
[147]
Gao, Y.; Yuan, A.; Chuchuen, O.; Ham, A.; Yang, K.H.; Katz, D.F. Vaginal deployment and tenofovir delivery by microbicide gels. Drug Deliv. Transl. Res., 2015, 5(3), 279-294.
[http://dx.doi.org/10.1007/s13346-015-0227-1] [PMID: 25874971]
[148]
Kaur, A.; Gabrani, R.; Dang, S. Nanoemulsions of green tea catechins and other natural compounds for the treatment of urinary tract infection: Antibacterial analysis. Adv. Pharm. Bull., 2019, 9(3), 401-408.
[http://dx.doi.org/10.15171/apb.2019.047] [PMID: 31592118]
[149]
Kaur, A.; Gupta, S.; Tyagi, A.; Sharma, R.K.; Ali, J.; Gabrani, R.; Dang, S. Development of nanoemulsion based gel loaded with phytoconstituents for the treatment of urinary tract infection and in vivo biodistribution studies. Adv. Pharm. Bull., 2017, 7(4), 611-619.
[http://dx.doi.org/10.15171/apb.2017.073] [PMID: 29399551]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy