Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

A Review of the Synthesis of Oxazoline Derivatives

Author(s): Cynthia Nathalia Pereira, Amanda Cristina Cruz Eschholz and Maurício Silva dos Santos*

Volume 22, Issue 2, 2025

Published on: 12 January, 2024

Page: [184 - 197] Pages: 14

DOI: 10.2174/0115701794283180231228075225

Price: $65

TIMBC 2025
Abstract

Oxazolines are important heterocyclic systems due to their biological activities, such as antibacterial, antimalarial, anticancer, antiviral, anti-inflammatory, antifungal, antipyretic, and antileishmanial. They have been widely applied as chiral auxiliaries, polymers, catalysts, protecting groups, building blocks, and ligands in asymmetric synthesis. Due to their importance, many synthetic routes to prepare oxazoline moieties have been investigated and developed by researchers around the world. In this review, we summarized several synthetic methodologies published in the literature. The main substrates are nitriles, carboxylic acids, and acid derivatives, which react with a variety of reactants under conventional heating, microwave irradiation or ultrasound irradiation conditions. Syntheses via intramolecular cyclisation from amides have also been reported. Many publications have highlighted procedures based on solvent-free conditions using eco-friendly, reusable, and easy-availability catalysts.

Keywords: Oxazolines, organic synthesis, solvent-free synthesis, microwave irradiation, ultrasound irradiation, chemoselectivity.

Graphical Abstract
[1]
Scriven, E.F.V.; Ramsden, C.A. Adv. Heterocycl. Chem., 2016, 119, 1-336.
[http://dx.doi.org/10.1016/bs.aihch.2016.01.001]
[2]
Haider, S. Back bone of drug design. J. Phytochemistry Biochem., 2017, 1(1), 1000-1010.
[3]
Kaur, R.; Bariwal, J.; Voskressensky, L.G.; Van der Eycken, E.V. Gold and silver nanoparticle-catalyzed synthesis of heterocyclic compounds. Chem. Heterocycl. Compd., 2018, 54(3), 241-248.
[http://dx.doi.org/10.1007/s10593-018-2259-1]
[4]
Wilkinson, M.C. Asymmetric synthesis of an aminomethyl morpholine via double allylic substitution. Tetrahedron Lett., 2005, 46(28), 4773-4775.
[http://dx.doi.org/10.1016/j.tetlet.2005.05.038]
[5]
Katritzky, A.R. Introduction: Heterocycles. Chem. Rev., 2004, 104(5), 2125-2126.
[http://dx.doi.org/10.1021/cr0406413]
[6]
Haji, M. Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates. Beilstein J. Org. Chem., 2016, 12, 1269-1301.
[http://dx.doi.org/10.3762/bjoc.12.121] [PMID: 27559377]
[7]
Frump, J.A. Oxazolines. Their preparation, reactions, and applications. Chem. Rev., 1971, 71(5), 483-505.
[http://dx.doi.org/10.1021/cr60273a003]
[8]
Wiley, R.H.; Bennett, L.L., Jr The chemistry of the oxazolines. Chem. Rev., 1949, 44(3), 447-476.
[http://dx.doi.org/10.1021/cr60139a002]
[9]
Facchinetti, V.; Gomes, C.R.B.; de Souza, M.V.N. Application of nitriles on the synthesis of 1,3-oxazoles, 2-oxazolines, and oxadiazoles: An update from 2014 to 2021. Tetrahedron, 2021, 102(3), 132544.
[http://dx.doi.org/10.1016/j.tet.2021.132544]
[10]
Le, T.N.; Nguyen, Q.P.B.; Kim, J.N.; Kim, T.H. 5,5-Dimethyl-2-phenylamino-2-oxazoline as an effective chiral auxiliary for asymmetric alkylations. Tetrahedron Lett., 2007, 48(44), 7834-7837.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.001]
[11]
Nguyen, Q.P.B.; Kim, T.H. Solid phase asymmetric benzylation using 5,5-dimethyl-2-phenylamino-2-oxazoline chiral auxiliary. Bull. Korean Chem. Soc., 2012, 33(12), 4223-4226.
[http://dx.doi.org/10.5012/bkcs.2012.33.12.4223]
[12]
Park, J.; Yu, Y.; Lee, J.W.; Kim, B.S. Anionic ring-opening polymerization of a functional epoxide monomer with an oxazoline protecting group for the synthesis of polyethers with carboxylic acid pendants. Macromolecules, 2022, 55(13), 5448-5458.
[http://dx.doi.org/10.1021/acs.macromol.2c00761]
[13]
Meyers, A.I.; Temple, D.L.; Haidukewych, D.; Mihelich, E.D.; Oxazolines, X.I.; Oxazolines, X.I. Synthesis of functionalized aromatic and aliphatic acids. Useful protecting group for carboxylic acids against Grignard and hydride reagents. J. Org. Chem., 1974, 39(18), 2787-2793.
[http://dx.doi.org/10.1021/jo00932a024]
[14]
Riobé, F.; Avarvari, N. Electroactive oxazoline ligands. Coord. Chem. Rev., 2010, 254(13-14), 1523-1533.
[http://dx.doi.org/10.1016/j.ccr.2009.12.017]
[15]
Gómez, M.; Muller, G.; Rocamora, M. Coordination chemistry of oxazoline ligands. Coord. Chem. Rev., 1999, 193-195, 769-835.
[http://dx.doi.org/10.1016/S0010-8545(99)00086-7]
[16]
Debono, N.; Pinel, C.; Jahjah, R.; Alaaeddine, A.; Delichère, P.; Lefebvre, F.; Djakovitch, L. Asymmetric reduction of ketones with ruthenium-oxazoline based catalysts. J. Mol. Catal. Chem., 2008, 287(1-2), 142-150.
[http://dx.doi.org/10.1016/j.molcata.2008.03.012]
[17]
Ghosh, A.K.; Mathivanan, P.; Cappiello, J. C2-Symmetric chiral bis(oxazoline)-metal complexes in catalytic asymmetric synthesis. Tetrahedron Asymmetry, 1998, 9(1), 1-45.
[18]
Hayes, G.; Drain, B.; Becer, C.R. Multiarm core cross-linked star-shaped poly(2-oxazoline)s using a bisfunctional 2‐oxazoline monomer. Macromolecules, 2022, 55(1), 146-155.
[http://dx.doi.org/10.1021/acs.macromol.1c02245]
[19]
Knospe, P.; Böhm, P.; Gutmann, J.; Dornbusch, M. Oxazoline-based crosslinking reaction for coatings. J. Coat. Technol. Res., 2021, 18(5), 1199-1207.
[http://dx.doi.org/10.1007/s11998-021-00479-9]
[20]
Hoogenboom, R. The future of poly(2-oxazoline)s. Eur. Polym. J., 2022, 179, 111521.
[http://dx.doi.org/10.1016/j.eurpolymj.2022.111521]
[21]
Verbraeken, B.; Monnery, B.D.; Lava, K.; Hoogenboom, R. The chemistry of poly(2-oxazoline)s. Eur. Polym. J., 2017, 88, 451-469.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.11.016]
[22]
Stafast, L.M.; Engel, N.; Görls, H.; Weber, C.; Schubert, U.S. End-functionalized diblock copolymers by mix and match of poly(2-oxazoline) and polyester building blocks. Eur. Polym. J., 2023, 184, 111779.
[http://dx.doi.org/10.1016/j.eurpolymj.2022.111779]
[23]
Inaba, M.; Moriwake, T.; Saito, S. New synthesis of secondary carboxamide by using 2-methyl-2-oxazoline as a building block. Tetrahedron Lett., 1985, 26(27), 3235-3238.
[http://dx.doi.org/10.1016/S0040-4039(00)98160-7]
[24]
Cockerham, L.E.; Purcell, R.F. Ethyl cellulose compositions. Chem. Abstr., 1967, 68, 14166.
[25]
Connon, R.; Roche, B.; Rokade, B.V.; Guiry, P.J. Further developments and applications of oxazoline-containing ligands in asymmetric catalysis. Chem. Rev., 2021, 121(11), 6373-6521.
[http://dx.doi.org/10.1021/acs.chemrev.0c00844] [PMID: 34019404]
[26]
Hoogenboom, R. Poly(2-oxazoline)s: A polymer class with numerous potential applications. Angew. Chem. Int. Ed., 2009, 48(43), 7978-7994.
[http://dx.doi.org/10.1002/anie.200901607] [PMID: 19768817]
[27]
Faizi, S.; Farooqi, F.; Zikr-Ur-Rehman, S.; Naz, A.; Noor, F.; Ansari, F.; Ahmad, A.; Khan, S.A. Shahidine, a novel and highly labile oxazoline from Aegle marmelos: The parent compound of aegeline and related amides. Tetrahedron, 2009, 65(5), 998-1004.
[http://dx.doi.org/10.1016/j.tet.2008.11.088]
[28]
Pirrung, M.C.; Tumey, L.N.; McClerren, A.L.; Raetz, C.R.H. High-throughput catch-and-release synthesis of oxazoline hydroxamates. Structure-activity relationships in novel inhibitors of Escherichia coli LpxC: In vitro enzyme inhibition and antibacterial properties. J. Am. Chem. Soc., 2003, 125(6), 1575-1586.
[http://dx.doi.org/10.1021/ja0209114] [PMID: 12568618]
[29]
Waschinski, C.J.; Barnert, S.; Theobald, A.; Schubert, R.; Kleinschmidt, F.; Hoffmann, A.; Saalwächter, K.; Tiller, J.C. Insights in the antibacterial action of poly(methyloxazoline)s with a biocidal end group and varying satellite groups. Biomacromolecules, 2008, 9(7), 1764-1771.
[http://dx.doi.org/10.1021/bm7013944] [PMID: 18572919]
[30]
Aguirre-Rentería, S.A.; Carrizales-Castillo, J.J.J.; del Rayo Camacho Corona, M.; Hernández-Fernández, E.; Garza-González, E.; Rivas-Galindo, V.M.; Arredondo-Espinoza, E.; Avalos-Alanís, F.G. Synthesis and in vitro evaluation of antimycobacterial and cytotoxic activity of new α,β-unsaturated amide, oxazoline and oxazole derivatives from -serine. Bioorg. Med. Chem. Lett., 2020, 30(9), 127074.
[http://dx.doi.org/10.1016/j.bmcl.2020.127074] [PMID: 32151467]
[31]
Moraski, G.C.; Chang, M.; Villegas-Estrada, A.; Franzblau, S.G.; Möllmann, U.; Miller, M.J. Structure–activity relationship of new anti-tuberculosis agents derived from oxazoline and oxazole benzyl esters. Eur. J. Med. Chem., 2010, 45(5), 1703-1716.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.074] [PMID: 20116900]
[32]
Avalos-Alanís, F.G.; Hernández-Fernández, E.; Carranza-Rosales, P.; López-Cortina, S.; Hernández-Fernández, J.; Ordóñez, M.; Guzmán-Delgado, N.E.; Morales-Vargas, A.; Velázquez-Moreno, V.M.; Santiago-Mauricio, M.G. Synthesis, antimycobacterial and cytotoxic activity of α,β-unsaturated amides and 2,4-disubstituted oxazoline derivatives. Bioorg. Med. Chem. Lett., 2017, 27(4), 821-825.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.024] [PMID: 28117200]
[33]
Pandey, A.K.; Sharma, S.; Pandey, M.; Alam, M.M.; Shaquiquzzaman, M.; Akhter, M. 4, 5-Dihydrooxazole-pyrazoline hybrids: Synthesis and their evaluation as potential antimalarial agents. Eur. J. Med. Chem., 2016, 123, 476-486.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.055] [PMID: 27494165]
[34]
Herrin, T.R.; Pauvlik, J.M.; Schuber, E.V.; Geiszler, A.O. Antimalarials. Synthesis and antimalarial activity of 1-(4-methoxycinnamoyl)-4-(5-phenyl-4-oxo-2-oxazolin-2-yl)piperazine and derivatives. J. Med. Chem., 1975, 18(12), 1216-1223.
[http://dx.doi.org/10.1021/jm00246a009] [PMID: 1104830]
[35]
Gordey, E.E.; Yadav, P.N.; Merrin, M.P.; Davies, J.; Ward, S.A.; Woodman, G.M.J.; Sadowy, A.L.; Smith, T.G.; Gossage, R.A. Synthesis and biological activities of 4-N-(anilinyl-n-[oxazolyl])-7-chloroquinolines (n=3′ or 4′) against Plasmodium falciparum in in vitro models. Bioorg. Med. Chem. Lett., 2011, 21(15), 4512-4515.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.131] [PMID: 21723121]
[36]
Kostin, V.A.; Latysheva, A.S.; Zolottsev, V.A.; Tkachev, Y.V.; Timofeev, V.P.; Kuzikov, A.V.; Shumyantseva, V.V.; Morozevich, G.E.; Misharin, A.Y. Oxazoline derivatives of [17(20)E]-21-norpregnene – inhibitors of CYP17A1 activity and proliferation of prostate carcinoma cells. Russ. Chem. Bull., 2018, 67(4), 682-687.
[http://dx.doi.org/10.1007/s11172-018-2122-7]
[37]
Cegłowski, M.; Jerca, V.V.; Jerca, F.A.; Hoogenboom, R. Reduction-responsive molecularly imprinted poly(2-isopropenyl-2-oxazoline) for controlled release of anticancer agents. Pharmaceutics, 2020, 12(6), 506.
[http://dx.doi.org/10.3390/pharmaceutics12060506] [PMID: 32498326]
[38]
Romio, M.; Morgese, G.; Trachsel, L.; Babity, S.; Paradisi, C.; Brambilla, D.; Benetti, E.M. Poly(2-oxazoline)-pterostilbene block copolymer nanoparticles for dual-anticancer drug delivery. Biomacromolecules, 2018, 19(1), 103-111.
[http://dx.doi.org/10.1021/acs.biomac.7b01279] [PMID: 29216713]
[39]
Kumar, N.; Tyeb, S.; Manzar, N.; Behera, L.; Ateeq, B.; Verma, V. Entropically driven controlled release of paclitaxel from poly(2-ethyl-2-oxazoline) coated maghemite nanostructures for magnetically guided cancer therapy. Soft Matter, 2018, 14(31), 6537-6553.
[http://dx.doi.org/10.1039/C8SM01220B] [PMID: 30051119]
[40]
Gros, C.; Fahy, J.; Halby, L.; Dufau, I.; Erdmann, A.; Gregoire, J.M.; Ausseil, F.; Vispé, S.; Arimondo, P.B. DNA methylation inhibitors in cancer: Recent and future approaches. Biochimie, 2012, 94(11), 2280-2296.
[http://dx.doi.org/10.1016/j.biochi.2012.07.025] [PMID: 22967704]
[41]
Madia, V.N.; Messore, A.; Pescatori, L.; Saccoliti, F.; Tudino, V.; De Leo, A.; Scipione, L.; Fiore, L.; Rhoden, E.; Manetti, F.; Oberste, M.S.; Di Santo, R.; Costi, R. In vitro antiviral activity of new oxazoline derivatives as potent poliovirus inhibitors. J. Med. Chem., 2019, 62(2), 798-810.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01482] [PMID: 30512950]
[42]
Ramsey, J.D.; Stewart, I.E.; Madden, E.A.; Lim, C.; Hwang, D.; Heise, M.T.; Hickey, A.J.; Kabanov, A.V. Nanoformulated remdesivir with extremely low content of poly(2-oxazoline)-based stabilizer for aerosol treatment of covid-19. Macromol. Biosci., 2022, 22(8), 2200056.
[http://dx.doi.org/10.1002/mabi.202200056] [PMID: 35526106]
[43]
Khanum, S.A.; Khanum, N.F.; Shashikanth, M. Synthesis and anti-inflammatory activity of 2-aryloxy methyl oxazolines. Bioorg. Med. Chem. Lett., 2008, 18(16), 4597-4601.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.029] [PMID: 18662873]
[44]
Impellizzeri, D.; Cordaro, M.; Bruschetta, G.; Crupi, R.; Pascali, J.; Alfonsi, D.; Marcolongo, G.; Cuzzocrea, S. 2-pentadecyl-2-oxazoline: Identification in coffee, synthesis and activity in a rat model of carrageenan-induced hindpaw inflammation. Pharmacol. Res., 2016, 108, 23-30.
[http://dx.doi.org/10.1016/j.phrs.2016.04.007] [PMID: 27083308]
[45]
Petrosino, S.; Campolo, M.; Impellizzeri, D.; Paterniti, I.; Allarà, M.; Gugliandolo, E.; D’Amico, R.; Siracusa, R.; Cordaro, M.; Esposito, E.; Di Marzo, V.; Cuzzocrea, S. 2-Pentadecyl-2-oxazoline, the oxazoline of pea, modulates carrageenan-induced acute inflammation. Front. Pharmacol., 2017, 8, 308.
[http://dx.doi.org/10.3389/fphar.2017.00308] [PMID: 28611664]
[46]
Ahmad, A.; Ahmad, A.; Sudhakar, R.; Varshney, H.; Subbarao, N.; Ansari, S.; Rauf, A.; Khan, A.U. Designing, synthesis, and antimicrobial action of oxazoline and thiazoline derivatives of fatty acid esters. J. Biomol. Struct. Dyn., 2017, 35(15), 3412-3431.
[http://dx.doi.org/10.1080/07391102.2016.1255260] [PMID: 27801287]
[47]
Jiang, W.; Zhou, M.; Cong, Z.; Xie, J.; Zhang, W.; Chen, S.; Zou, J.; Ji, Z.; Shao, N.; Chen, X.; Li, M.; Liu, R. Short guanidinium-functionalized poly(2-oxazoline)s displaying potent therapeutic efficacy on drug-resistant fungal infections. Angew. Chem. Int. Ed., 2022, 61(17), e202200778.
[http://dx.doi.org/10.1002/anie.202200778] [PMID: 35182092]
[48]
Jiang, X.; Cao, Y.; Wang, Y.; Liu, L.; Shen, F.; Wang, R. A unique approach to the concise synthesis of highly optically active spirooxazolines and the discovery of a more potent oxindole-type phytoalexin analogue. J. Am. Chem. Soc., 2010, 132(43), 15328-15333.
[http://dx.doi.org/10.1021/ja106349m] [PMID: 20939568]
[49]
Baréa, P.; de Paula, J.; Alonso, L.; de Oliveira, A.; da Costa, W.; Alonso, A.; Nakamura, C.; Sarragiotto, M. Synthesis, antileishmanial activity and spin labeling epr studies of novel β-carboline-oxazoline and β-carboline-dihydrooxazine derivatives. J. Braz. Chem. Soc., 2020, 31(6), 1170-1185.
[http://dx.doi.org/10.21577/0103-5053.20200003]
[50]
Yoshimura, A.; Saito, A.; Zhdankin, V.V.; Yusubov, M.S. Synthesis of oxazoline and oxazole derivatives by hypervalent-iodine-mediated oxidative cycloaddition reactions. Synthesis, 2020, 52(16), 2299-2310.
[http://dx.doi.org/10.1055/s-0040-1707122]
[51]
Berrabger, T.; Langiois, Y. [2+3]-cycloadditions of enantiomerically pure oxazoline-N-oxides1: A short stereoselective synthesis of (+)-carbovir. Tetrahedron Lett., 1995, 36(31), 5523-5526.
[52]
Lorsbach, B.A.; Miller, R.B.; Kurth, M.J. Reissert-Based “Traceless” solid-phase synthesis: Isoquinoline, and isoxazoline-containing heterocycles. J. Org. Chem., 1996, 61(25), 8716-8717.
[http://dx.doi.org/10.1021/jo961916k] [PMID: 11667837]
[53]
Barnum, E.R. Corrosion-preventive compositions. US2587955A, 1952, 46, 29540.
[54]
Mulahmetovic, E.; Hargaden, G.C. Synthetic routes to oxazolines. Mini Rev. Org. Chem., 2019, 16(6), 507-526.
[http://dx.doi.org/10.2174/1570193X15666180802105505]
[55]
Ibrahim, K.T.; Neetha, M.; Anilkumar, G. Advancements in the synthesis of oxazolines. Monatsh. Chem., 2022, 153(10), 837-871.
[http://dx.doi.org/10.1007/s00706-022-02976-y]
[56]
Honey, M.A.; Yamashita, Y.; Kobayashi, S. A cooperative water effect in proazaphosphatrane-catalysed heterocycle synthesis. Chem. Commun., 2014, 50(25), 3288-3291.
[http://dx.doi.org/10.1039/C3CC49808E] [PMID: 24525763]
[57]
Gabriel, S. Zur Kenntniss des Bromäthylamins. Ber. Dtsch. Chem. Ges., 1889, 22(2), 2220-2223.
[http://dx.doi.org/10.1002/cber.18890220296]
[58]
Mohammadpoor-Baltork, I.; Khosropour, A.R.; Hojati, S.F. ZrOCl2·8H2O as an environmentally friendly and recyclable catalyst for the chemoselective synthesis of 2-aryloxazolines and bis-oxazolines under thermal conditions and microwave irradiation. Catal. Commun., 2007, 8(2), 200-204.
[http://dx.doi.org/10.1016/j.catcom.2006.06.003]
[59]
Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Hojati, S.F. Supported 12-tungstophosphoric acid as heterogeneous and recoverable catalysts for the synthesis of oxazolines, imidazolines and thiazolines under solvent-free conditions. Polyhedron, 2008, 27(2), 750-758.
[http://dx.doi.org/10.1016/j.poly.2007.11.018]
[60]
Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Hojati, S.F. Environmental-friendly synthesis of oxazolines, imidazolines and thiazolines catalyzed by tungstophosphoric acid. Catal. Commun., 2008, 9(6), 1153-1161.
[http://dx.doi.org/10.1016/j.catcom.2007.10.026]
[61]
Mohammadpoor-Baltork, I.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Zolfigol, M.A.; Abdollahi-Alibeik, M.; Khosropour, A.R.; Kargar, H.; Hojati, S.F. Silica sulfuric acid: A versatile and reusable heterogeneous catalyst for the synthesis of oxazolines and imidazolines under various reaction conditions. Catal. Commun., 2008, 9(5), 894-901.
[http://dx.doi.org/10.1016/j.catcom.2007.09.017]
[62]
Kempe, K.; Lobert, M.; Hoogenboom, R.; Schubert, U.S. Screening the synthesis of 2-substituted-2-oxazolines. J. Comb. Chem., 2009, 11(2), 274-280.
[http://dx.doi.org/10.1021/cc800174d] [PMID: 19236014]
[63]
Li, X.; Zhou, B.; Zhang, J.; She, M.; An, S.; Ge, H.; Li, C.; Yin, B.; Li, J.; Shi, Z. Solvent-free tandem synthesis of 2-thiazolines and 2-oxazolines catalyzed by a copper catalyst. Eur. J. Org. Chem., 2012, 2012(8), 1626-1632.
[http://dx.doi.org/10.1002/ejoc.201101786]
[64]
Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Mahdavi, M. Preparation of an improved sulfonated carbon-based solid acid as a novel, efficient, and reusable catalyst for chemoselective synthesis of 2-oxazolines and bis-oxazolines. Monatsh. Chem., 2009, 140(12), 1489-1494.
[http://dx.doi.org/10.1007/s00706-009-0213-8]
[65]
Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.; Kargar, H. InCl3 as an efficient catalyst for synthesis of oxazolines under thermal, ultrasonic and microwave irradiations. J. Indian Chem. Soc., 2009, 6(2), 251-258.
[http://dx.doi.org/10.1007/BF03245832]
[66]
Hojati, F.; Nezhadhoseiny, A. Trichloroisocyanuric acid as an efficient homogeneous catalyst for the chemoselective synthesis of 2-substituted oxazolines, imidazolines and thiazolines under solvent-free condition. J. Serb. Chem. Soc., 2012, 77(9), 1181-1189.
[http://dx.doi.org/10.2298/JSC111031028H]
[67]
Bazgir, A.; Amini, M.M.; Fazaeli, Y. Dowex-50w-promoted synthesis of oxazoline, imidazoline and thiazoline derivatives. Open Catalysis Journal, 2010, 2(1), 163-165.
[http://dx.doi.org/10.2174/1876214X00902010163]
[68]
Zeng, X.; Zhong, G.; Zhou, H.; Xie, Y. Synthesis of 3-oxazolines via SnCl4-promoted formal [3+2] cycloaddition of donor-acceptor oxiranes and nitriles. Synlett, 2015, 26(12), 1693-1696.
[http://dx.doi.org/10.1055/s-0034-1380216]
[69]
Cui, S.Q.; Cheng, N.; Ma, Q.Q.; Wei, Z.L.; Liao, W.W. Palladium-catalyzed direct construction of oxazoline-containing polycyclic scaffolds via tandem addition/cyclization of nitriles and arylboronic acids. Org. Chem. Front., 2021, 9(1), 123-128.
[http://dx.doi.org/10.1039/D1QO01260F]
[70]
Trose, M.; Lazreg, F.; Lesieur, M.; Cazin, C.S.J. Copper n-heterocyclic carbene complexes as active catalysts for the synthesis of 2-substituted oxazolines from nitriles and aminoalcohols. J. Org. Chem., 2015, 80(20), 9910-9914.
[http://dx.doi.org/10.1021/acs.joc.5b01382] [PMID: 26423118]
[71]
Garg, P.; Chaudhary, S.; Milton, M.D. Synthesis of 2-aryl/heteroaryloxazolines from nitriles under metal- and catalyst-free conditions and evaluation of their antioxidant activities. J. Org. Chem., 2014, 79(18), 8668-8677.
[http://dx.doi.org/10.1021/jo501430p] [PMID: 25165864]
[72]
Jadhav, K.A.; Bhosle, S.D.; Itage, S.V.; Bhosale, R.S.; Eppa, G.; Yadav, J.S. A novel method for the synthesis of 2-oxazolines. Tetrahedron Lett., 2022, 106, 154048.
[http://dx.doi.org/10.1016/j.tetlet.2022.154048]
[73]
Zhu, J.; Zhou, M.; Jiang, W.; Zhou, Y.; Song, G.; Liu, R. Facile one-pot synthesis of 2-oxazoline. Tetrahedron Lett., 2022, 91(16), 153637.
[http://dx.doi.org/10.1016/j.tetlet.2022.153637]
[74]
Ilkgul, B.; Gunes, D.; Sirkecioglu, O.; Bicak, N. Synthesis of 2-oxazolines via boron esters of N-(2-hydroxyethyl) amides. Tetrahedron Lett., 2010, 51(40), 5313-5315.
[http://dx.doi.org/10.1016/j.tetlet.2010.07.167]
[75]
Samimi, H.A.; Mostafavi, A.; Farsani, M.R. K5[PW11ZnO3923H2O-catalyzed acylation/ring expansion of ketoaziridines in a single pot: A new regio- and stereo-selective route for the synthesis of oxazolines. J. Indian Chem. Soc., 2015, 12(11), 2031-2035.
[http://dx.doi.org/10.1007/s13738-015-0678-9]
[76]
Jeon, H.; Kim, D.; Lee, J.H.; Song, J.; Lee, W.S.; Kang, D.W.; Kang, S.; Lee, S.B.; Choi, S.; Hong, K.B. Hypervalent iodine-mediated alkene functionalization: Oxazoline and thiazoline synthesis via inter-/intramolecular aminohydroxylation and thioamination. Adv. Synth. Catal., 2018, 360(4), 779-783.
[http://dx.doi.org/10.1002/adsc.201701087]
[77]
Wu, W.; Li, G.; Liu, T.L. Chloride-mediated electrochemical synthesis of oxazolines. Chem Catal., 2021, 1(5), 966-967.
[http://dx.doi.org/10.1016/j.checat.2021.10.003] [PMID: 37693688]
[78]
Frippiat, S.; Sarre, C.; Baudequin, C.; Hoarau, C.; Bischoff, L. Insights in the synthesis of imidazolones from aldehydes, isocyanides, or oxazolines. J. Org. Chem., 2022, 87(11), 7464-7473.
[http://dx.doi.org/10.1021/acs.joc.1c02454] [PMID: 35574806]
[79]
Glöckner, S.; Tran, D.N.; Ingham, R.J.; Fenner, S.; Wilson, Z.E.; Battilocchio, C.; Ley, S.V. The rapid synthesis of oxazolines and their heterogeneous oxidation to oxazoles under flow conditions. Org. Biomol. Chem., 2015, 13(1), 207-214.
[http://dx.doi.org/10.1039/C4OB02105C] [PMID: 25370905]
[80]
Bendi, A.; Atri, S.; Rao, G.B.D.; Raza, M.J.; Sharma, N. Ultrasound-accelerated, concise, and highly efficient synthesis of 2-oxazoline derivatives using heterogenous calcium ferrite nanoparticles and their dft studies. J. Chem., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/7375058]
[81]
Morino, Y.; Hidaka, I.; Oderaotoshi, Y.; Komatsu, M.; Minakata, S. Electrophilic cyclization of N-alkenylamides using a chloramine-T/I2 system. Tetrahedron, 2006, 62(52), 12247-12251.
[http://dx.doi.org/10.1016/j.tet.2006.10.003]
[82]
Abazid, A.H.; Hollwedel, T.N.; Nachtsheim, B.J. Stereoselective oxidative cyclization of n-allyl benzamides to oxaz(ol)ines. Org. Lett., 2021, 23(13), 5076-5080.
[http://dx.doi.org/10.1021/acs.orglett.1c01607] [PMID: 34138574]
[83]
Sun, R.; Yang, X.; Ge, Y.; Song, J.; Zheng, X.; Yuan, M.; Li, R.; Chen, H.; Fu, H. Visible-light-induced oxazoline formations from n-vinyl amides catalyzed by an ion-pair charge-transfer complex. ACS Catal., 2021, 11(18), 11762-11773.
[http://dx.doi.org/10.1021/acscatal.1c01755]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy