Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Mini-Review Article

Exploring the Efficacy of Herbal Medications in the Treatment of Parkinsonism: A Mini Review

Author(s): Pravin Kumar, Ritik Chaudhary* and Mahendra Singh Ashawat

Volume 20, Issue 2, 2025

Published on: 12 January, 2024

Page: [126 - 134] Pages: 9

DOI: 10.2174/0115748855260576231116145448

Price: $65

Abstract

Background: Over 10 million people worldwide are affected by the chronic neurodegenerative condition of Parkinson's disease. Dopaminergic neurons in the Substantia Nigra area of the brain are gradually lost as a result. Herbal medicine, which have its roots in ancient cultures, uses medicinal herbs to treat illnesses and advance general health. There is considerable interest in researching the possibilities of herbal medicine for treating neurodegenerative diseases like Parkinson's disease because they are thought to be safer than synthetic medications.

Objective: The objective of this article is to investigate the potential of herbal medications as a treatment option for Parkinsonism, and to provide a clear understanding of the current state of research on this topic.

Conclusion: This review focuses on herbal treatments and components that have demonstrated promise in Parkinson's disease in vitro and animal models. This information can be used to identify prospective traditional medicine prescription therapies. New therapeutic treatments for Parkinson's disease may result from further study of pharmaceutical components with well-established therapeutic potential.

Keywords: Parkinson’s disease, neuroprotective, antioxidant, herbal treatment, traditional medicine, ayurveda.

Graphical Abstract
[1]
Zhang H, Tong R, Bai L, Shi J, Ouyang L. Emerging targets and new small molecule therapies in Parkinson’s disease treatment. Bioorg Med Chem 2016; 24(7): 1419-30.
[http://dx.doi.org/10.1016/j.bmc.2016.02.030] [PMID: 26935940]
[2]
Davie CA. A review of Parkinson’s disease. Br Med Bull 2008; 86(1): 109-27.
[http://dx.doi.org/10.1093/bmb/ldn013] [PMID: 18398010]
[3]
Pahwa R, Lyons K, Koller WC, Jankovic J. Pathophysiology and assessment of parkinsonian symptoms and signs. In: Pahwa R, Lyons K, Koller WC, Eds. Handbook of Parkinson’s disease. New York 2007; pp. 79-104.
[4]
Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet 2004; 363(9423): 1783-93.
[http://dx.doi.org/10.1016/S0140-6736(04)16305-8] [PMID: 15172778]
[5]
Toulouse A, Sullivan AM. Progress in Parkinson’s disease-where do we stand? Prog Neurobiol 2008; 85(4): 376-92.
[http://dx.doi.org/10.1016/j.pneurobio.2008.05.003] [PMID: 18582530]
[6]
Huang L, Zhao H, Huang B, Zheng C, Peng W, Qin L. Acanthopanax senticosus: Review of botany, chemistry and pharmacology. Pharmazie 2011; 66(2): 83-97.
[PMID: 21434569]
[7]
Zhang Q, Zheng Y, Hu X, et al. Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Alpinia oxyphylla Miquel: A review. J Ethnopharmacol 2018; 224: 149-68.
[http://dx.doi.org/10.1016/j.jep.2018.05.002] [PMID: 29738847]
[8]
An LJ, Guan S, Shi GF, Bao YM, Duan YL, Jiang B. Protocatechuic acid from Alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 cells. Food Chem Toxicol 2006; 44(3): 436-43.
[http://dx.doi.org/10.1016/j.fct.2005.08.017] [PMID: 16223555]
[9]
Kim IS, Ko HM, Koppula S, Kim BW, Choi DK. Protective effect of Chrysanthemum indicum Linne against 1-methyl-4-phenylpridinium ion and lipopolysaccharide-induced cytotoxicity in cellular model of Parkinson’s disease. Food Chem Toxicol 2011; 49(4): 963-73.
[http://dx.doi.org/10.1016/j.fct.2011.01.002] [PMID: 21219959]
[10]
De Andrade DVG, Madureira de Oliveria D, Barreto G, et al. Effects of the extract of Anemopaegma mirandum (Catuaba) on Rotenone-induced apoptosis in human neuroblastomas SH-SY5Y cells. Brain Res 2008; 1198: 188-96.
[http://dx.doi.org/10.1016/j.brainres.2008.01.006] [PMID: 18241847]
[11]
Ittiyavirah SP, Hameed J. Herbs treating Parkinson’s disease. Biomed Aging Pathol 2014; 4(4): 369-76.
[http://dx.doi.org/10.1016/j.biomag.2014.08.003]
[12]
Simpson T, Pase M, Stough C. Bacopa Monnieri as an anti-oxidant therapy to reduce oxidative stress in the aging brain. Evid Based Complement Alternat Med 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/615384] [PMID: 26413126]
[13]
Akbar S. Centella asiatica (L.) Urban (Apiaceae/Umbelliferae). In: Lim TK, Ed. Handbook of 200 Medicinal Plants. Springer 2020; pp. 573-88.
[http://dx.doi.org/10.1007/978-3-030-16807-0_61]
[14]
Lim TK. Clausena lansium. In: Lim TK, Ed. Edible Medicinal and Non-Medicinal Plants. Springer 2012; pp. 871-83.
[http://dx.doi.org/10.1007/978-94-007-4053-2_100]
[15]
Sharma N, Bafna P. Effect of Cynodon dactylon on rotenone induced Parkinson’s disease. Orient Pharm Exp Med 2012; 12(3): 167-75.
[http://dx.doi.org/10.1007/s13596-012-0075-1]
[16]
Auddy B, Ferreira M, Blasina F, et al. Screening of antioxi-dant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J Ethnopharmacol 2003; 84(2-3): 131-8.
[http://dx.doi.org/10.1016/S0378-8741(02)00322-7] [PMID: 12648805]
[17]
Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT. Neuroprotective properties of the natural phenolic anti-oxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 2005; 39(10): 1119-25.
[http://dx.doi.org/10.1080/10715760500233113] [PMID: 16298737]
[18]
Rajeswari A, Sabesan M. Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology 2008; 16(2): 96-9.
[http://dx.doi.org/10.1007/s10787-007-1614-0] [PMID: 18408903]
[19]
Ojha RP, Rastogi M, Devi BP, Agrawal A, Dubey GP. Neuroprotective effect of curcuminoids against inflammation-mediated dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. J Neuroimmune Pharmacol 2012; 7(3): 609-18.
[http://dx.doi.org/10.1007/s11481-012-9363-2] [PMID: 22527634]
[20]
Chen J, Tang XQ, Zhi JL, et al. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 2006; 11(6): 943-53.
[http://dx.doi.org/10.1007/s10495-006-6715-5] [PMID: 16547587]
[21]
Jagatha B, Mythri RB, Vali S, Bharath MMS. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: Therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radic Biol Med 2008; 44(5): 907-17.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.11.011] [PMID: 18166164]
[22]
Mythri RB, Jagatha B, Pradhan N, Andersen J, Bharath MMS. Mitochondrial complex I inhibition in Parkinson’s disease: How can curcumin protect mitochondria? Antioxid Redox Signal 2007; 9(3): 399-408.
[http://dx.doi.org/10.1089/ars.2006.1479] [PMID: 17184173]
[23]
Pandey N, Strider J, Nolan WC, Yan SX, Galvin JE. Curcumin inhibits aggregation of α-synuclein. Acta Neuropathol 2008; 115(4): 479-89.
[http://dx.doi.org/10.1007/s00401-007-0332-4] [PMID: 18189141]
[24]
Yang S, Zhang D, Yang Z, et al. Curcumin protects dopamin-ergic neuron against LPS induced neurotoxicity in primary rat neuron/glia culture. Neurochem Res 2008; 33(10): 2044-53.
[http://dx.doi.org/10.1007/s11064-008-9675-z] [PMID: 18368483]
[25]
Lou H, Jing X, Wei X, Shi H, Ren D, Zhang X. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacology 2014; 79: 380-8.
[http://dx.doi.org/10.1016/j.neuropharm.2013.11.026] [PMID: 24333330]
[26]
Kandinov B, Giladi N, Korczyn AD. Smoking and tea consumption delay onset of Parkinson’s disease. Parkinsonism Relat Disord 2009; 15(1): 41-6.
[http://dx.doi.org/10.1016/j.parkreldis.2008.02.011] [PMID: 18434232]
[27]
Hu G, Bidel S, Jousilahti P, Antikainen R, Tuomilehto J. Coffee and tea consumption and the risk of Parkinson’s disease. Mov Disord 2007; 22(15): 2242-8.
[http://dx.doi.org/10.1002/mds.21706] [PMID: 17712848]
[28]
Pan T, Jankovic J, Le W. Potential therapeutic properties of green tea polyphenols in Parkinson’s disease. Drugs Aging 2003; 20(10): 711-21.
[http://dx.doi.org/10.2165/00002512-200320100-00001] [PMID: 12875608]
[29]
Mandel SA, Amit T, Kalfon L, Reznichenko L, Youdim M. Targeting multiple neurodegenerative diseases etiologies with multimodalacting green tea catechins. J Nutr 2008; 138(8): 1578S-83S.
[http://dx.doi.org/10.1093/jn/138.8.1578S] [PMID: 18641210]
[30]
Chaturvedi RK, Shukla S, Seth K, et al. Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neurobiol Dis 2006; 22(2): 421-34.
[http://dx.doi.org/10.1016/j.nbd.2005.12.008] [PMID: 16480889]
[31]
Guo S, Yan J, Yang T, Yang X, Bezard E, Zhao B. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biol Psychiatry 2007; 62(12): 1353-62.
[http://dx.doi.org/10.1016/j.biopsych.2007.04.020] [PMID: 17624318]
[32]
Guo S, Bezard E, Zhao B. Protective effect of green tea poly-phenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS–NO pathway. Free Radic Biol Med 2005; 39(5): 682-95.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.04.022] [PMID: 16085186]
[33]
Levites Y, Amit T, Youdim MBH, Mandel S. Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 2002; 277(34): 30574-80.
[http://dx.doi.org/10.1074/jbc.M202832200] [PMID: 12058035]
[34]
Anandhan A, Tamilselvam K, Radhiga T, Rao S, Essa MM, Manivasagam T. Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced Parkinson’s disease. Brain Res 2012; 1433: 104-13.
[http://dx.doi.org/10.1016/j.brainres.2011.11.021] [PMID: 22138428]
[35]
Zhao DL, Zou LB, Lin S, Shi JG, Zhu HB. 6,7-di-O-glucopyranosyl-esculetin protects SH-SY5Y cells from dopamine-induced cytotoxicity. Eur J Pharmacol 2008; 580(3): 329-38.
[http://dx.doi.org/10.1016/j.ejphar.2007.11.057] [PMID: 18177636]
[36]
Choi H, Zhao T, Shin K, et al. Anxiolytic effects of herbal ethanol extract from Gynostemma pentaphyllum in mice after exposure to chronic stress. Molecules 2013; 18(4): 4342-56.
[http://dx.doi.org/10.3390/molecules18044342] [PMID: 23584055]
[37]
Wang P, Niu L, Guo XD, et al. Gypenosides protects dopa-minergic neurons in primary culture against MPP+-induced oxidative injury. Brain Res Bull 2010; 83(5): 266-71.
[http://dx.doi.org/10.1016/j.brainresbull.2010.06.014] [PMID: 20615455]
[38]
Tanaka K, Galduróz RFS, Gobbi LTB, Galduróz JCF. Ginkgo biloba extract in an animal model of Parkinson’s disease: A systematic review. Curr Neuropharmacol 2013; 11(4): 430-5.
[http://dx.doi.org/10.2174/1570159X11311040006] [PMID: 24381532]
[39]
Ahmad M, Saleem S, Ahmad AS, et al. Ginkgo biloba affords dosedependent protection against 6‐hydroxydopamine‐induced parkinsonism in rats: Neurobehavioural, neurochemical and immunohistochemical evidences. J Neurochem 2005; 93(1): 94-104.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03000.x] [PMID: 15773909]
[40]
Zhao Y, Gong XJ, Zhou X, Kang ZJ. Relative bioavailability of gastrodin and parishin from extract and powder of Gastrodiae rhizoma in rat. J Pharm Biomed Anal 2014; 100: 309-15.
[http://dx.doi.org/10.1016/j.jpba.2014.08.017] [PMID: 25194344]
[41]
Kim IS, Choi DK, Jung HJ. Neuroprotective effects of vanillyl alcohol in Gastrodia elata Blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells. Molecules 2011; 16(7): 5349-61.
[http://dx.doi.org/10.3390/molecules16075349] [PMID: 21705974]
[42]
Nagashayana N, Sankarankutty P, Nampoothiri MRV, Mohan PK, Mohanakumar KP. Association of l-DOPA with recovery following Ayurveda medication in Parkinson’s disease. J Neurol Sci 2000; 176(2): 124-7.
[http://dx.doi.org/10.1016/S0022-510X(00)00329-4] [PMID: 10930594]
[43]
Brown JH, Taylor P. Muscarinic receptor agonists and antagonists. In: Hardman JG, Limbird LE, Gilman AG, Eds. Goodman and Gilman’s the pharmacological basis of therapeutics. (10th ed.). New York: McGraw-Hill 2001; pp. 163-82.
[44]
Rezak M. Current pharmacotherapeutic treatment options in Parkinson’s disease. Dis Mon 2007; 53(4): 214-22.
[http://dx.doi.org/10.1016/j.disamonth.2007.05.002] [PMID: 17586328]
[45]
Gilani AH, Khan A, Raoof M, et al. Gastrointestinal, selective airways and urinary bladder relaxant effects of Hyoscyamus niger are mediated through dual blockade of muscarinic receptors and Ca 2+ channels. Fundam Clin Pharmacol 2008; 22(1): 87-99.
[http://dx.doi.org/10.1111/j.1472-8206.2007.00561.x] [PMID: 18251725]
[46]
Sengupta T, Vinayagam J, Nagashayana N, Gowda B, Jai-sankar P, Mohanakumar KP. Antiparkinsonian effects of aqueous methanolic extract of Hyoscyamus niger seeds result from its monoamine oxidase inhibitory and hydroxyl radical scavenging potency. Neurochem Res 2011; 36(1): 177-86.
[http://dx.doi.org/10.1007/s11064-010-0289-x] [PMID: 20972705]
[47]
Sánchez-Reus MI, Gómez del Rio MA, Iglesias I, Elorza M, Slowing K, Benedí J. Standardized Hypericum perforatum reduces oxidative stress and increases gene expression of antioxidant enzymes on rotenone-exposed rats. Neuropharmacology 2007; 52(2): 606-16.
[http://dx.doi.org/10.1016/j.neuropharm.2006.09.003] [PMID: 17070561]
[48]
Mohanasundari M, Srinivasan MS, Sethupathy S, Sabesan M. Enhanced neuroprotective effect by combination of bromo-criptine and Hypericum perforatum extract against MPTP-induced neurotoxicity in mice. J Neurol Sci 2006; 249(2): 140-4.
[http://dx.doi.org/10.1016/j.jns.2006.06.018] [PMID: 16876826]
[49]
Su MY, Huang HY, Li L, Lu YH. Protective effects of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone to PC12 cells against cytotoxicity induced by hydrogen peroxide. J Agric Food Chem 2011; 59(2): 521-7.
[http://dx.doi.org/10.1021/jf104408d] [PMID: 21186823]
[50]
More SV, Kumar H, Kang SM, Song SY, Lee K, Choi DK. Advances in neuroprotective ingredients of medicinal herbs by using cellular and animal models of Parkinson’s disease. Evid Based Complementary Altern Med 2013.
[http://dx.doi.org/10.1155/2013/957875]
[51]
Katzenschlager R, Evans A, Manson A, et al. Mucuna pruri-ens in Parkinson’s disease: A double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry 2004; 75(12): 1672-7.
[http://dx.doi.org/10.1136/jnnp.2003.028761] [PMID: 15548480]
[52]
Lorenz P, Roychowdhury S, Engelmann M, Wolf G, Horn TFW. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: Effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 2003; 9(2): 64-76.
[http://dx.doi.org/10.1016/j.niox.2003.09.005] [PMID: 14623172]
[53]
Chung KO, Kim BY, Lee MH, et al. In-vitro and in-vivo anti-inflammatory effect of oxyresveratrol from Morus alba L. J Pharm Pharmacol 2010; 55(12): 1695-700.
[http://dx.doi.org/10.1211/0022357022313] [PMID: 14738598]
[54]
Chao J, Yu MS, Ho YS, Wang M, Chang RCC. Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radic Biol Med 2008; 45(7): 1019-26.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.07.002] [PMID: 18675900]
[55]
ur Rasheed MS, Tripathi MK, Mishra AK, Shukla S, Singh MP. Resveratrol protects from toxin-induced parkinsonism: Plethora of proofs hitherto petty translational value. Mol Neurobiol 2016; 53(5): 2751-60.
[http://dx.doi.org/10.1007/s12035-015-9124-3] [PMID: 25691456]
[56]
Ahmad M, Yousuf S, Khan MB, et al. Attenuation by Nardostachys jatamansi of 6-hydroxydopamine-induced parkinsonism in rats: behavioral, neurochemical, and immunohistochemical studies. Pharmacol Biochem Behav 2006; 83(1): 150-60.
[http://dx.doi.org/10.1016/j.pbb.2006.01.005] [PMID: 16500697]
[57]
Cohen M. Tulsi-Ocimum sanctum: A herb for all reasons. J Ayurveda Integr Med 2014; 5(4): 251-9.
[http://dx.doi.org/10.4103/0975-9476.146554] [PMID: 25624701]
[58]
Sampath S, Mahapatra SC, Padhi MM, Sharma R, Talwar A. Holy basil (Ocimum sanctum Linn.) leaf extract enhances specific cognitive parameters in healthy adult volunteers: A placebo controlled study. Indian J Physiol Pharmacol 2015; 59(1): 69-77.
[PMID: 26571987]
[59]
Sun LQ. Information on research and application of ginseng, the king of traditional and herbal medicines. Asian J Drug Metab and Pharmacokinet 2004; 4: 261-84.
[60]
Xu H, Jiang H, Wang J, Xie J. Rg1 protects the MPP+-treated MES23.5 cells via attenuating DMT1 up-regulation and cellu-lar iron uptake. Neuropharmacology 2010; 58(2): 488-94.
[http://dx.doi.org/10.1016/j.neuropharm.2009.09.002] [PMID: 19744503]
[61]
Liu HQ, Zhang WY, Luo XT, Ye Y, Zhu XZ. Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease by activation of adenosine A 1 receptor. Br J Pharmacol 2006; 148(3): 314-25.
[http://dx.doi.org/10.1038/sj.bjp.0706732] [PMID: 16582933]
[62]
Kim HG, Park G, Piao Y, et al. Effects of the root bark of Paeonia suffruticosa on mitochondria-mediated neuroprotection in an MPTP-induced model of Parkinson’s disease. Food Chem Toxicol 2014; 65: 293-300.
[http://dx.doi.org/10.1016/j.fct.2013.12.037] [PMID: 24389454]
[63]
Jung UJ, Jeon MT, Choi MS, Kim SR. Silibinin attenuates MPP+-induced neurotoxicity in the substantia nigra in vivo. J Med Food 2014; 17(5): 599-605.
[http://dx.doi.org/10.1089/jmf.2013.2926] [PMID: 24660866]
[64]
Franco CIF, Morais LCSL, Quintans-Júnior LJ, Almeida RN, Antoniolli AR. CNS pharmacological effects of the hydroalcoholic extract of Sida cordifolia L. leaves. J Ethnopharmacol 2005; 98(3): 275-9.
[http://dx.doi.org/10.1016/j.jep.2005.01.008] [PMID: 15814259]
[65]
Khurana N, Gajbhiye A. Ameliorative effect of Sida cordifo-lia in rotenone induced oxidative stress model of Parkinson’s disease. Neurotoxicology 2013; 39: 57-64.
[http://dx.doi.org/10.1016/j.neuro.2013.08.005] [PMID: 23994302]
[66]
Girish C, Muralidhara . Propensity of Selaginella delicatula aqueous extract to offset rotenone-induced oxidative dysfunctions and neurotoxicity in Drosophila melanogaster: Implications for Parkinson’s disease. Neurotoxicology 2012; 33(3): 444-56.
[http://dx.doi.org/10.1016/j.neuro.2012.04.002] [PMID: 22521218]
[67]
Li FQ, Wang T, Pei Z, Liu B, Hong JS. Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammationmediated degeneration of dopaminergic neurons. J Neural Transm 2005; 112(3): 331-47.
[http://dx.doi.org/10.1007/s00702-004-0213-0] [PMID: 15503194]
[68]
Shang YZ, Qin BW, Cheng JJ, Miao H. Prevention of oxida-tive injury by flavonoids from stems and leaves of Scutellaria baicalensis georgi in PC12 cells. Phytother Res 2006; 20(1): 53-7.
[http://dx.doi.org/10.1002/ptr.1802] [PMID: 16397922]
[69]
Mu X, He G, Cheng Y, Li X, Xu B, Du G. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol Biochem Behav 2009; 92(4): 642-8.
[http://dx.doi.org/10.1016/j.pbb.2009.03.008] [PMID: 19327378]
[70]
Liu Y, Chen HL, Yang G. Extract of Tripterygium wilfordii Hook F protect dopaminergic neurons against lipopolysaccharide-induced inflammatory damage. Am J Chin Med 2010; 38(4): 801-14.
[http://dx.doi.org/10.1142/S0192415X10008251] [PMID: 20626064]
[71]
Shi Z, Lu Z, Zhao Y, et al. Neuroprotective effects of aque-ous extracts of Uncaria tomentosa: Insights from 6-OHDA induced cell damage and transgenic Caenorhabditis elegans model. Neurochem Int 2013; 62(7): 940-7.
[http://dx.doi.org/10.1016/j.neuint.2013.03.001] [PMID: 23500604]
[72]
Shim JS, Kim HG, Ju MS, Choi JG, Jeong SY, Oh MS. Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson’s disease. J Ethnopharmacol 2009; 126(2): 361-5.
[http://dx.doi.org/10.1016/j.jep.2009.08.023] [PMID: 19703534]
[73]
Rabey JM, Vered Y, Shabtai H, Graff E, Harsat A, Korczyn AD. Broad bean (Vicia faba) consumption and Parkinson’s disease. Adv Neurol 1993; 60: 681-4.
[PMID: 8420210]
[74]
Manjunath MJ, Muralidhara . Standardized extract of Withania somnifera (Ashwagandha) markedly offsets rotenone-induced locomotor deficits, oxidative impairments and neurotoxicity in Drosophila melanogaster. J Food Sci Technol 2015; 52(4): 1971-81.
[http://dx.doi.org/10.1007/s13197-013-1219-0] [PMID: 25829577]
[75]
Dar NJ, Hamid A, Ahmad M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell Mol Life Sci 2015; 72(23): 4445-60.
[http://dx.doi.org/10.1007/s00018-015-2012-1] [PMID: 26306935]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy