Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

General Research Article

TPGS-modified Chitosan Nanoparticles of EGFR Inhibitor: Physicochemical and In vitro Evaluation against HepG2 Cell Lines

Author(s): Mahendra Singh, Alka, Prashant Shukla, Zhi-Hong Wen, Chou-Yuan Ko* and Ramachandran Vinayagam*

Volume 22, Issue 4, 2025

Published on: 08 January, 2024

Page: [465 - 478] Pages: 14

DOI: 10.2174/0115672018268315231206045504

Price: $65

Abstract

Background: Gefitinib (GFN) is an Epithelial Growth Factor Receptor (EGFR) inhibitor, and Food and Drug Administration (FDA) has approved medication to treat lung cancer. However, this investigation aimed to produce and characterize Gefitinib (GFN)-loaded chitosan and soy lecithin nanoparticles (NPs) modified with D-α-tocopheryl polyethylene glycol 1000 succinate mono ester (TPGS) and assess their therapeutic potential against HepG2 liver cell lines.

Methods: Chitosan, a cationic polymer with biocompatible and biodegradable properties, was combined with soy lecithin to develop the NPs loaded with GFN using a self-organizing ionic interaction methodology.

Results: The entrapment efficiency and drug loading were found to be 59.04±4.63 to 87.37±3.82% and 33.46±3.76 to 49.50±4.35%, respectively, and results indicated the encapsulation of GEN in NPs. The pH of the formulations was observed between 4.48-4.62. Additionally, all the prepared NPs showed the size and PDI range of 89.2±15.9 nm to 799.2±35.8 nm and 0.179±0.065 to 0.455±0.097, respectively. The FTIR bands in optimized formulation (GFN-NP1) indicated that the drug might be contained within the NP's core. The SEM photograph revealed the spherical shape of NPs. The kinetic release model demonstrated the combination of diffusion and erosion mechanisms. The IC50 value of GFN and GFN-NP1 formulation against the HepG2 cell lines were determined and found to be 63.22±3.36 μg/ml and 45.80±2.53 μg/ml, respectively. DAPI and PI staining agents were used to detect nuclear morphology.

Conclusion: It was observed that the optimized GFN-NP1 formulation successfully internalized and inhibited the growth of HepG2 cells. Hence, it can be concluded that the prepared NPs can be a new therapeutic option for treating liver cancer.

Keywords: Gefitinib, hepatocellular carcinoma, chitosan, nanoparticles, nanomedicine, HepG2, cytotoxicity.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res., 2014, 74(11), 2913-2921.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0155] [PMID: 24840647]
[4]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[5]
Akinyemiju, T.; Abera, S.; Ahmed, M.; Alam, N.; Alemayohu, M.A.; Allen, C.; Al-Raddadi, R.; Alvis-Guzman, N.; Amoako, Y.; Artaman, A.; Ayele, T.A.; Barac, A.; Bensenor, I.; Berhane, A.; Bhutta, Z.; Castillo-Rivas, J.; Chitheer, A.; Choi, J.Y.; Cowie, B.; Dandona, L.; Dandona, R.; Dey, S.; Dicker, D.; Phuc, H.; Ekwueme, D.U.; Zaki, M.E.S.; Fischer, F.; Fürst, T.; Hancock, J.; Hay, S.I.; Hotez, P.; Jee, S.H.; Kasaeian, A.; Khader, Y.; Khang, Y.H.; Kumar, G.A.; Kutz, M.; Larson, H.; Lopez, A.; Lunevicius, R.; Malekzadeh, R.; McAlinden, C.; Meier, T.; Mendoza, W.; Mokdad, A.; Moradi-Lakeh, M.; Nagel, G.; Nguyen, Q.; Nguyen, G.; Ogbo, F.; Patton, G.; Pereira, D.M.; Pourmalek, F.; Qorbani, M.; Radfar, A.; Roshandel, G.; Salomon, J.A.; Sanabria, J.; Sartorius, B.; Satpathy, M.; Sawhney, M.; Sepanlou, S.; Shackelford, K.; Shore, H.; Sun, J.; Mengistu, D.T.; Topór-Madry, R.; Tran, B.; Ukwaja, K.N.; Vlassov, V.; Vollset, S.E.; Vos, T.; Wakayo, T.; Weiderpass, E.; Werdecker, A.; Yonemoto, N.; Younis, M.; Yu, C.; Zaidi, Z.; Zhu, L.; Murray, C.J.L.; Naghavi, M.; Fitzmaurice, C. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: Results from the global burden of disease study 2015. JAMA Oncol., 2017, 3(12), 1683-1691.
[http://dx.doi.org/10.1001/jamaoncol.2017.3055] [PMID: 28983565]
[6]
Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet, 2014, 383(9935), 2168-2179.
[http://dx.doi.org/10.1016/S0140-6736(13)61903-0] [PMID: 24581682]
[7]
Li, Y.; Song, Y.; Liu, S. The new insight of treatment in Cholangiocarcinoma. J. Cancer, 2022, 13(2), 450-464.
[http://dx.doi.org/10.7150/jca.68264] [PMID: 35069894]
[8]
Scheiner, B.; Pomej, K.; Kirstein, M.M.; Hucke, F.; Finkelmeier, F.; Waidmann, O.; Himmelsbach, V.; Schulze, K.; von Felden, J.; Fründt, T.W.; Stadler, M.; Heinzl, H.; Shmanko, K.; Spahn, S.; Radu, P.; Siebenhüner, A.R.; Mertens, J.C.; Rahbari, N.N.; Kütting, F.; Waldschmidt, D.T.; Ebert, M.P.; Teufel, A.; De Dosso, S.; Pinato, D.J.; Pressiani, T.; Meischl, T.; Balcar, L.; Müller, C.; Mandorfer, M.; Reiberger, T.; Trauner, M.; Personeni, N.; Rimassa, L.; Bitzer, M.; Trojan, J.; Weinmann, A.; Wege, H.; Dufour, J.F.; Peck-Radosavljevic, M.; Vogel, A.; Pinter, M. Prognosis of patients with hepatocellular carcinoma treated with immunotherapy – development and validation of the CRAFITY score. J. Hepatol., 2022, 76(2), 353-363.
[http://dx.doi.org/10.1016/j.jhep.2021.09.035] [PMID: 34648895]
[9]
Lugari, S.; Baldelli, E.; Lonardo, A. Metabolic primary liver cancer in adults: Risk factors and pathogenic mechanisms. Metabolism and Target Organ Damage, 2023, 3(1), 5.
[http://dx.doi.org/10.20517/mtod.2022.38]
[10]
El‐Serag, H.B. Epidemiology of hepatocellular carcinoma. The liver: Biology and pathobiology, 6th ed; Wiley: USA, 2020, pp. 758-772.
[http://dx.doi.org/10.1002/9781119436812.ch59]
[11]
Singal, A.G.; Sanduzzi-Zamparelli, M.; Nahon, P.; Ronot, M.; Hoshida, Y.; Rich, N.; Reig, M.; Vilgrain, V.; Marrero, J.; Llovet, J.M.; Parikh, N.D.; Villanueva, A. International Liver Cancer Association (ILCA) white paper on hepatocellular carcinoma risk stratification and surveillance. J. Hepatol., 2023, 79(1), 226-239.
[http://dx.doi.org/10.1016/j.jhep.2023.02.022] [PMID: 36854345]
[12]
Santana-Salgado, I.; Bautista-Santos, A.; Moreno-Alcántar, R. Risk factors for developing hepatocellular carcinoma in patients treated with direct-acting antivirals. Revista de Gastroenterología de México (English Edition), 2022, 87(4), 455-461.
[http://dx.doi.org/10.1016/j.rgmxen.2021.09.005] [PMID: 35523684]
[13]
Kanwal, F.; Kramer, J.; Asch, S.M.; Chayanupatkul, M.; Cao, Y.; El-Serag, H.B. Risk of hepatocellular cancer in HCV patients treated with direct-acting antiviral agents. Gastroenterology, 2017, 153(4), 996-1005.e1.
[http://dx.doi.org/10.1053/j.gastro.2017.06.012] [PMID: 28642197]
[14]
Hamoir, C.; Horsmans, Y.; Stärkel, P.; Dahlqvist, G.; Negrin Dastis, S.; Lanthier, N. Risk of hepatocellular carcinoma and fibrosis evolution in hepatitis C patients with severe fibrosis or cirrhosis treated with direct acting antiviral agents. Acta Gastroenterol. Belg., 2021, 84(1), 25-32.
[http://dx.doi.org/10.51821/84.1.420] [PMID: 33639690]
[15]
VoPham, T.; Jones, R.R. State of the science on outdoor air pollution exposure and liver cancer risk. Environ. Adv., 2023, 11, 100354.
[http://dx.doi.org/10.1016/j.envadv.2023.100354] [PMID: 36875691]
[16]
Estes, C.; Razavi, H.; Loomba, R.; Younossi, Z.; Sanyal, A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology, 2018, 67(1), 123-133.
[http://dx.doi.org/10.1002/hep.29466] [PMID: 28802062]
[17]
Wen, Q.; Zhang, Y.; Muluh, T.A.; Xiong, K.; Wang, B.; Lu, Y.; Wu, Z.; Liu, Y.; Shi, H.; Xiao, S.; Fu, S. Erythrocyte membranecamouflaged gefitinib/albumin nanoparticles for tumor imaging and targeted therapy against lung cancer. Int. J. Biol. Macromol., 2021, 193(Pt A), 228-237.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.10.113] [PMID: 34688683]
[18]
Liu, Y.C.; Lin, C.H.; Chen, K.T.; Lai, D.W.; Hsu, F.T. Inactivation of EGFR/ERK/NF‐κB signalling associates with radiosensitizing effect of 18β‐glycyrrhetinic acid on progression of hepatocellular carcinoma. J. Cell. Mol. Med., 2023, 27(11), 1539-1549.
[http://dx.doi.org/10.1111/jcmm.17760] [PMID: 37177859]
[19]
Tanabe, K.K.; Zahrieh, D.; Strand, C.A.; Hoshida, Y.; Flotte, T.J.; Della’Zanna, G.; Umar, A.; Limburg, P. Abstract 3031: Pilot study of EGFR inhibition with erlotinib in liver fibrosis for hepatocellular carcinoma prevention. Cancer Res., 2023, 83(7_Supplement), 3031-3031.
[http://dx.doi.org/10.1158/1538-7445.AM2023-3031]
[20]
Jin, H.; Shi, Y.; Lv, Y.; Yuan, S.; Ramirez, C.F.A.; Lieftink, C.; Wang, L.; Wang, S.; Wang, C.; Dias, M.H.; Jochems, F.; Yang, Y.; Bosma, A.; Hijmans, E.M.; de Groot, M.H.P.; Vegna, S.; Cui, D.; Zhou, Y.; Ling, J.; Wang, H.; Guo, Y.; Zheng, X.; Isima, N.; Wu, H.; Sun, C.; Beijersbergen, R.L.; Akkari, L.; Zhou, W.; Zhai, B.; Qin, W.; Bernards, R. EGFR activation limits the response of liver cancer to lenvatinib. Nature, 2021, 595(7869), 730-734.
[http://dx.doi.org/10.1038/s41586-021-03741-7] [PMID: 34290403]
[21]
Höpfner, M.; Sutter, A.P.; Huether, A.; Schuppan, D.; Zeitz, M.; Scherübl, H. Targeting the epidermal growth factor receptor by gefitinib for treatment of hepatocellular carcinoma. J. Hepatol., 2004, 41(6), 1008-1016.
[http://dx.doi.org/10.1016/j.jhep.2004.08.024] [PMID: 15582135]
[22]
Campiglio, M.; Locatelli, A.; Olgiati, C.; Normanno, N.; Somenzi, G.; Viganò, L.; Fumagalli, M.; Ménard, S.; Gianni, L. Inhibition of proliferation and induction of apoptosis in breast cancer cells by the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor ZD1839 (‘Iressa’) is independent of EGFR expression level. J. Cell. Physiol., 2004, 198(2), 259-268.
[http://dx.doi.org/10.1002/jcp.10411] [PMID: 14603528]
[23]
Baselga, J.; Albanell, J. Targeting epidermal growth factor receptor in lung cancer. Curr. Oncol. Rep., 2002, 4(4), 317-324.
[http://dx.doi.org/10.1007/s11912-002-0007-1] [PMID: 12044241]
[24]
Daneshmand, M.; Parolin, D.A.E.; Hirte, H.W.; Major, P.; Goss, G.; Stewart, D.; Batist, G.; Miller, W.H., Jr; Matthews, S.; Seymour, L.; Lorimer, I.A. A pharmacodynamic study of the epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 in metastatic colorectal cancer patients. Clin. Cancer Res., 2003, 9(7), 2457-2464.
[PMID: 12855618]
[25]
Schiffer, E.; Housset, C.; Cacheux, W.; Wendum, D.; Desbois-Mouthon, C.; Rey, C.; Clergue, F.; Poupon, R.; Barbu, V.; Rosmorduc, O. Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis. Hepatology, 2005, 41(2), 307-314.
[http://dx.doi.org/10.1002/hep.20538] [PMID: 15660382]
[26]
Okano, J.; Matsumoto, K.; Nagahara, T.; Murawaki, Y. Gefitinib and the modulation of the signaling pathways downstream of epidermal growth factor receptor in human liver cancer cells. J. Gastroenterol., 2006, 41(2), 166-176.
[http://dx.doi.org/10.1007/s00535-005-1736-3] [PMID: 16568376]
[27]
Fratto, M.E.; Santini, D.; Vincenzi, B.; Silvestris, N.; Azzariti, A.; Tommasi, S.; Zoccoli, A.; Galluzzo, S.; Maiello, E.; Colucci, G.; Tonini, G. Targeting EGFR in bilio-pancreatic and liver carcinoma. Front. Biosci. (Schol. Ed.), 2011, 3(1), 16-22.
[PMID: 21196353]
[28]
Moradi Kashkooli, F.; Soltani, M.; Souri, M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J. Control. Release, 2020, 327, 316-349.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.012] [PMID: 32800878]
[29]
Li, Z.; Xiao, C.; Yong, T.; Li, Z.; Gan, L.; Yang, X. Influence of nanomedicine mechanical properties on tumor targeting delivery. Chem. Soc. Rev., 2020, 49(8), 2273-2290.
[http://dx.doi.org/10.1039/C9CS00575G] [PMID: 32215407]
[30]
Martins, A.F.; Vlcek, J.; Wigmosta, T.; Hedayati, M.; Reynolds, M.M.; Popat, K.C.; Kipper, M.J. Chitosan/iota-carrageenan and chitosan/pectin polyelectrolyte multilayer scaffolds with antiadhesive and bactericidal properties. Appl. Surf. Sci., 2020, 502, 144282.
[http://dx.doi.org/10.1016/j.apsusc.2019.144282]
[31]
Wong, C.Y.; Al-Salami, H.; Dass, C.R. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int. J. Pharm., 2018, 537(1-2), 223-244.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.036] [PMID: 29288095]
[32]
Roy, S.; Chakraborty, T.; Begum, J.; Hasnain, M.S.; Nayak, A.K. Chapter 1-chitosan: A versatile biopolymer. In chitosan in biomedical applications; Hasnain, M.S., Beg, S., Nayak, A.K., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2022, pp. 1-11.
[33]
Rao, S.B.; Sharma, C.P. Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential. J. Biomed. Mater. Res., 1997, 34(1), 21-28.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199701)34:1<21::AID-JBM4>3.0.CO;2-P] [PMID: 8978649]
[34]
Wedmore, I.; McManus, J.G.; Pusateri, A.E.; Holcomb, J.B. A special report on the chitosan-based hemostatic dressing: Experience in current combat operations. J. Trauma, 2006, 60(3), 655-658.
[http://dx.doi.org/10.1097/01.ta.0000199392.91772.44] [PMID: 16531872]
[35]
Gades, M.D.; Stern, J.S. Chitosan supplementation and fecal fat excretion in men. Obes. Res., 2003, 11(5), 683-688.
[http://dx.doi.org/10.1038/oby.2003.97] [PMID: 12740459]
[36]
Tapola, N.S.; Lyyra, M.L.; Kolehmainen, R.M.; Sarkkinen, E.S.; Schauss, A.G. Safety aspects and cholesterol-lowering efficacy of chitosan tablets. J. Am. Coll. Nutr., 2008, 27(1), 22-30.
[http://dx.doi.org/10.1080/07315724.2008.10719671] [PMID: 18460478]
[37]
Alavi, M.; Aghaie, E. Self-assembled nanostructures for anticancer applications: Advances and limitations. Nano Micro Biosystems, 2022, 1, 27-31.
[38]
Narmani, A.; Jafari, S.M. Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohydr. Polym., 2021, 272, 118464.
[http://dx.doi.org/10.1016/j.carbpol.2021.118464] [PMID: 34420724]
[39]
Kurczewska, J. Chitosan-based nanoparticles with optimized parameters for targeted delivery of a specific anticancer Drug—A comprehensive review. Pharmaceutics, 2023, 15(2), 503.
[http://dx.doi.org/10.3390/pharmaceutics15020503] [PMID: 36839824]
[40]
Lin, X.; Sheng, Y.; Zhang, X.; Li, Z.; Yang, Y.; Wu, J.; Su, Z.; Ma, G.; Zhang, S. Oil-in-ionic liquid nanoemulsion-based intranasal delivery system for influenza split-virus vaccine. J. Control. Release, 2022, 346, 380-391.
[http://dx.doi.org/10.1016/j.jconrel.2022.04.036] [PMID: 35483639]
[41]
Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W.E. Chitosan-based delivery systems for protein therapeutics and antigens. Adv. Drug Deliv. Rev., 2010, 62(1), 59-82.
[http://dx.doi.org/10.1016/j.addr.2009.11.009] [PMID: 19925837]
[42]
Giri, N.C. Protein and peptide drug delivery. Smart Drug Delivery, 2022, 12, 39.
[43]
Ragelle, H.; Riva, R.; Vandermeulen, G.; Naeye, B.; Pourcelle, V.; Le Duff, C.S.; D’Haese, C.; Nysten, B.; Braeckmans, K.; De Smedt, S.C.; Jérôme, C.; Préat, V. Chitosan nanoparticles for siRNA delivery: Optimizing formulation to increase stability and efficiency. J. Control. Release, 2014, 176, 54-63.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.026] [PMID: 24389132]
[44]
Soliman, N.M.; Shakeel, F.; Haq, N.; Alanazi, F.K.; Alshehri, S.; Bayomi, M.; Alenazi, A.S.M.; Alsarra, I.A. Development and optimization of ciprofloxacin hcl-loaded chitosan nanoparticles using box–behnken experimental design. Molecules, 2022, 27(14), 4468.
[http://dx.doi.org/10.3390/molecules27144468] [PMID: 35889340]
[45]
Miladi, K.; Sfar, S.; Fessi, H.; Elaissari, A. Enhancement of alendronate encapsulation in chitosan nanoparticles. J. Drug Deliv. Sci. Technol., 2015, 30, 391-396.
[http://dx.doi.org/10.1016/j.jddst.2015.04.007]
[46]
Tan, Q.; Liu, W.; Guo, C.; Zhai, G. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int. J. Nanomedicine, 2011, 6, 1621-1630.
[PMID: 21904452]
[47]
Hu, B.; Pan, C.; Sun, Y.; Hou, Z.; Ye, H.; Hu, B.; Zeng, X. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins. J. Agric. Food Chem., 2008, 56(16), 7451-7458.
[http://dx.doi.org/10.1021/jf801111c] [PMID: 18627163]
[48]
Konecsni, K.; Low, N.H.; Nickerson, M.T. Chitosan–tripolyphosphate submicron particles as the carrier of entrapped rutin. Food Chem., 2012, 134(4), 1775-1779.
[http://dx.doi.org/10.1016/j.foodchem.2012.03.070] [PMID: 23442620]
[49]
Jang, K.I.; Lee, H.G. Stability of chitosan nanoparticles for L-ascorbic acid during heat treatment in aqueous solution. J. Agric. Food Chem., 2008, 56(6), 1936-1941.
[http://dx.doi.org/10.1021/jf073385e] [PMID: 18284198]
[50]
Anitha, A.; Maya, S.; Deepa, N.; Chennazhi, K.P.; Nair, S.V.; Jayakumar, R.; Curcumin-loaded, N. Curcumin-loaded N, O-carboxymethyl chitosan nanoparticles for cancer drug delivery. J. Biomater. Sci. Polym. Ed., 2012, 23(11), 1381-1400.
[http://dx.doi.org/10.1163/092050611X581534] [PMID: 21722423]
[51]
de Pinho Neves, A.L.; Milioli, C.C.; Müller, L.; Riella, H.G.; Kuhnen, N.C.; Stulzer, H.K. Factorial design as tool in chitosan nanoparticles development by ionic gelation technique. Colloids Surf. A Physicochem. Eng. Asp., 2014, 445, 34-39.
[http://dx.doi.org/10.1016/j.colsurfa.2013.12.058]
[52]
Desai, K.G. Chitosan nanoparticles prepared by ionotropic gelation: An overview of recent advances. Crit. Rev. Ther. Drug Carrier Syst., 2016, 33(2), 107-158.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2016014850] [PMID: 27651100]
[53]
Bashir, S.M.; Ahmed Rather, G.; Patrício, A.; Haq, Z.; Sheikh, A.A.; Shah, M.Z.H.; Singh, H.; Khan, A.A.; Imtiyaz, S.; Ahmad, S.B.; Nabi, S.; Rakhshan, R.; Hassan, S.; Fonte, P. Chitosan nanoparticles: A versatile platform for biomedical applications. Materials, 2022, 15(19), 6521.
[http://dx.doi.org/10.3390/ma15196521] [PMID: 36233864]
[54]
Zhang, Z.; Tan, S.; Feng, S.S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials, 2012, 33(19), 4889-4906.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.046] [PMID: 22498300]
[55]
Singh, M.; Kanoujia, J.; Singh, P.; Tripathi, C.B.; Arya, M.; Parashar, P.; Sinha, V.R.; Saraf, S.A. Development of an α-linolenic acid containing soft nanocarrier for oral delivery: In vitro and in vivo evaluation. RSC Advances, 2016, 6(81), 77590-77602.
[http://dx.doi.org/10.1039/C6RA15166C]
[56]
Vinayagam, R.; Santhoshkumar, M.; Lee, K.E.; David, E.; Kang, S.G. Bioengineered gold nanoparticles using Cynodon dactylon extract and its cytotoxicity and antibacterial activities. Bioprocess Biosyst. Eng., 2021, 44(6), 1253-1262.
[http://dx.doi.org/10.1007/s00449-021-02527-5] [PMID: 33606108]
[57]
Arbab, I.A.; Abdul, A.B.; Sukari, M.A.; Abdullah, R.; Syam, S.; Kamalidehghan, B.; Ibrahim, M.Y.; Taha, M.M.E.; Abdelwahab, S.I.; Mohd Ali, H.; Mohan, S. Dentatin isolated from clausena excavata induces apoptosis in MCF-7 cells through the intrinsic pathway with involvement of NF-κB signalling and G0/G1 cell cycle arrest: A bioassay-guided approach. J. Ethnopharmacol., 2013, 145(1), 343-354.
[http://dx.doi.org/10.1016/j.jep.2012.11.020] [PMID: 23178663]
[58]
Liu, Y.; Jiang, Y.; Feng, Y. Study on the chitosan hydrolysis catalyzed by special cellulase and preparation of chitooligosaccharide. Journal of Functional Polymers, 2005, 18, 325.
[59]
Lustriane, C.; Dwivany, F.M.; Suendo, V.; Reza, M. Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits. J. Plant Biotechnol., 2018, 45(1), 36-44.
[http://dx.doi.org/10.5010/JPB.2018.45.1.036]
[60]
Michał, W.; Ewa, D.; Tomasz, C. Lecithin-based wet chemical precipitation of hydroxyapatite nanoparticles. Colloid Polym. Sci., 2015, 293(5), 1561-1568.
[http://dx.doi.org/10.1007/s00396-015-3557-0] [PMID: 26316673]
[61]
Zhou, S.; Xu, J.; Yang, H.; Deng, X. Synthesis and characterization of biodegradable poly(ε ‐caprolactone)‐polyglycolide‐poly(ethylene glycol) monomethyl ether random copolymer. Macromol. Mater. Eng., 2004, 289(6), 576-580.
[http://dx.doi.org/10.1002/mame.200300283]
[62]
Liu, K.; Kiran, E. High-pressure solution blending of poly(ɛ-caprolactone) with poly(methyl methacrylate) in acetone+carbon dioxide. Polymer (Guildf.), 2008, 49(6), 1555-1561.
[http://dx.doi.org/10.1016/j.polymer.2008.02.005]
[63]
Zheng, Y.; Chen, H.; Zeng, X.; Liu, Z.; Xiao, X.; Zhu, Y.; Gu, D.; Mei, L. Surface modification of TPGS-b-(PCL-ran-PGA) nanoparticles with polyethyleneimine as a co-delivery system of TRAIL and endostatin for cervical cancer gene therapy. Nanoscale Res. Lett., 2013, 8(1), 161.
[http://dx.doi.org/10.1186/1556-276X-8-161]
[64]
Khalil, N.Y.; Aldosari, K.F. Chapter six—meloxicam. in profiles of drug substances, excipients, and related methodology In: Brittain Excipients and Related Methodology; Brittain, H.G., Ed.; Academic Press: Cambridge, MA, USA, 2020; 45, pp. 159-197.
[65]
Rahman, A.F.M.M.; Korashy, H.M.; Kassem, M.G. Gefitinib. Profiles Drug Subst. Excip. Relat. Methodol., 2014, 39, 239-264.
[http://dx.doi.org/10.1016/B978-0-12-800173-8.00005-2] [PMID: 24794908]
[66]
Liu, J.; Luo, Z.; Zhang, J.; Luo, T.; Zhou, J.; Zhao, X.; Cai, K. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials, 2016, 83, 51-65.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.008] [PMID: 26773665]
[67]
Alrbyawi, H.; Poudel, I.; Annaji, M.; Boddu, S.H.S.; Arnold, R.D.; Tiwari, A.K.; Babu, R.J. pH-sensitive liposomes for enhanced cellular uptake and cytotoxicity of daunorubicin in melanoma (B16-BL6) cell lines. Pharmaceutics, 2022, 14(6), 1128.
[http://dx.doi.org/10.3390/pharmaceutics14061128] [PMID: 35745701]
[68]
Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm., 2010, 385(1-2), 113-142.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.018] [PMID: 19825408]
[69]
Hafner, A.; Lovrić, J.; Voinovich, D.; Filipović-Grčić, J. Melatonin-loaded lecithin/chitosan nanoparticles: Physicochemical characterisation and permeability through Caco-2 cell monolayers. Int. J. Pharm., 2009, 381(2), 205-213.
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.001] [PMID: 19596430]
[70]
Sonvico, F.; Cagnani, A.; Rossi, A.; Motta, S.; Di Bari, M.T.; Cavatorta, F.; Alonso, M.J.; Deriu, A.; Colombo, P. Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction. Int. J. Pharm., 2006, 324(1), 67-73.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.036] [PMID: 16973314]
[71]
Cun, D.; Foged, C.; Yang, M.; Frøkjær, S.; Nielsen, H.M. Preparation and characterization of poly(dl-lactide-co-glycolide) nanoparticles for siRNA delivery. Int. J. Pharm., 2010, 390(1), 70-75.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.023] [PMID: 19836438]
[72]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[73]
Alkholief, M.; Albasit, H.; Alhowyan, A.; Alshehri, S.; Raish, M.; Abul Kalam, M.; Alshamsan, A. Employing a PLGA-TPGS based nanoparticle to improve the ocular delivery of Acyclovir. Saudi Pharm. J., 2019, 27(2), 293-302.
[http://dx.doi.org/10.1016/j.jsps.2018.11.011] [PMID: 30766442]
[74]
Zafar, A.; Alruwaili, N.K.; Imam, S.S.; Alsaidan, O.A.; Ahmed, M.M.; Yasir, M.; Warsi, M.H.; Alquraini, A.; Ghoneim, M.M.; Alshehri, S. Development and optimization of hybrid polymeric nanoparticles of apigenin: Physicochemical characterization, antioxidant activity and cytotoxicity evaluation. Sensors, 2022, 22(4), 1364.
[http://dx.doi.org/10.3390/s22041364] [PMID: 35214260]
[75]
Peppas, N.A. Analysis of fickian and non-fickian drug release from polymers. Pharm. Acta Helv., 1985, 60(4), 110-111.
[PMID: 4011621]
[76]
Warsi, M.H.; Anwar, M.; Garg, V.; Jain, G.K.; Talegaonkar, S.; Ahmad, F.J.; Khar, R.K. Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: Pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits. Colloids Surf. B Biointerfaces, 2014, 122, 423-431.
[http://dx.doi.org/10.1016/j.colsurfb.2014.07.004] [PMID: 25159319]
[77]
Panda, A.; Meena, J.; Katara, R.; Majumdar, D.K. Formulation and characterization of clozapine and risperidone co-entrapped spray-dried PLGA nanoparticles. Pharm. Dev. Technol., 2016, 21(1), 43-53.
[http://dx.doi.org/10.3109/10837450.2014.965324] [PMID: 25403112]
[78]
Ford Versypt, A.N.; Pack, D.W.; Braatz, R.D. Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres — A review. J. Control. Release, 2013, 165(1), 29-37.
[http://dx.doi.org/10.1016/j.jconrel.2012.10.015] [PMID: 23103455]
[79]
Abdellatif, A.A.H.; Al-Subaiyel, A.; Mohammed, A.M. Thermosensitive polymers-based injectable hydrogels: a quantitative validations design utilized for controlled delivery of gefitinib anticancer drug. Eur. Rev. Med. Pharmacol. Sci., 2023, 27(6), 2646-2658.
[PMID: 37013783]
[80]
Akram Ghumman, S.; Mahmood, A.; Noreen, S.; Aslam, A.; Ijaz, B.; Amanat, A.; Kausar, R.; Rana, M.; Hameed, H. Chitosan-Linseed mucilage polyelectrolyte complex nanoparticles of Methotrexate: In vitro cytotoxic efficacy and toxicological studies. Arab. J. Chem., 2023, 16(2), 104463.
[http://dx.doi.org/10.1016/j.arabjc.2022.104463]
[81]
Huether, A.; Höpfner, M.; Sutter, A.P.; Schuppan, D.; Scherübl, H. Erlotinib induces cell cycle arrest and apoptosis in hepatocellular cancer cells and enhances chemosensitivity towards cytostatics. J. Hepatol., 2005, 43(4), 661-669.
[http://dx.doi.org/10.1016/j.jhep.2005.02.040] [PMID: 16023762]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy