Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Mechanisms of Stem Cells and Their Secreted Exosomes in the Treatment of Autoimmune Diseases

Author(s): Shu-Qian Lin, Kai Wang, Xing-Hua Pan and Guang-Ping Ruan*

Volume 19, Issue 11, 2024

Published on: 05 January, 2024

Page: [1415 - 1428] Pages: 14

DOI: 10.2174/011574888X271344231129053003

Price: $65

conference banner
Abstract

Stem cells play a therapeutic role in many diseases by virtue of their strong self-renewal and differentiation abilities, especially in the treatment of autoimmune diseases. At present, the mechanism of the stem cell treatment of autoimmune diseases mainly relies on their immune regulation ability, regulating the number and function of auxiliary cells, anti-inflammatory factors and proinflammatory factors in patients to reduce inflammation. On the other hand, the stem cell- derived secretory body has weak immunogenicity and low molecular weight, can target the site of injury, and can extend the length of its active time in the patient after combining it with the composite material. Therefore, the role of secretory bodies in the stem cell treatment of autoimmune diseases is increasingly important.

Keywords: Hematopoietic stem cells, mesenchymal stem cells, diabetes, systemic lupus erythematosus, inflammatory bowel disease, therapy, exosome.

Next »
Graphical Abstract
[1]
Liu, G.; David, B.T.; Trawczynski, M.; Fessler, R.G. Advances in pluripotent stem cells: History, mechanisms, technologies, and applications. Stem Cell Rev. Rep., 2020, 16(1), 3-32.
[http://dx.doi.org/10.1007/s12015-019-09935-x] [PMID: 31760627]
[2]
Caplan, A.I. Mesenchymal stem cells: Time to change the name! Stem Cells Transl. Med., 2017, 6(6), 1445-1451.
[http://dx.doi.org/10.1002/sctm.17-0051] [PMID: 28452204]
[3]
Tsiapalis, D.; O’Driscoll, L. Mesenchymal stem cell derived extracellular vesicles for tissue engineering and regenerative medicine applications. Cells, 2020, 9(4), 991.
[http://dx.doi.org/10.3390/cells9040991] [PMID: 32316248]
[4]
Kurup, S.; Pozun, A. Biochemistry, autoimmunity. In: StatPearls. edn. Treasure island (FL) ineligible companies. Disclosure. In: Alexander Pozun declares no relevant financial relationships with ineligible companies; StatPearls Publishing, 2023.
[5]
Wigerblad, G.; Kaplan, M.J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat. Rev. Immunol., 2023, 23(5), 274-288.
[http://dx.doi.org/10.1038/s41577-022-00787-0] [PMID: 36257987]
[6]
He, J.; Chen, J.; Miao, M.; Zhang, R.; Cheng, G.; Wang, Y.; Feng, R.; Huang, B.; Luan, H.; Jia, Y.; Jin, Y.; Zhang, X.; Shao, M.; Wang, Y.; Zhang, X.; Li, J.; Zhao, X.; Wang, H.; Liu, T.; Xiao, X.; Zhang, X.; Su, Y.; Mu, R.; Ye, H.; Li, R.; Liu, X.; Liu, Y.; Li, C.; Liu, H.; Hu, F.; Guo, J.; Liu, W.; Zhang, W.B.; Jacob, A.; Ambrus, J.L., Jr; Ding, C.; Yu, D.; Sun, X.; Li, Z. Efficacy and safety of low-dose interleukin 2 for primary sjögren syndrome. JAMA Netw. Open, 2022, 5(11), e2241451.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.41451] [PMID: 36355371]
[7]
Zhang, P.; Dong, B.; Yuan, P.; Li, X. Human umbilical cord mesenchymal stem cells promoting knee joint chondrogenesis for the treatment of knee osteoarthritis: A systematic review. J. Orthop. Surg. Res., 2023, 18(1), 639.
[http://dx.doi.org/10.1186/s13018-023-04131-7] [PMID: 37644595]
[8]
Vaillant, A.A.; Qurie, A. Immunodeficiency. In: StatPearls. edn. Treasure Island (FL) with ineligible companies. Disclosure. In: Ahmad Qurie declares no relevant financial relationships with ineligible companies; StatPearls Publishing, 2023.
[9]
Ghoryani, M.; Shariati-Sarabi, Z.; Tavakkol-Afshari, J.; Ghasemi, A.; Poursamimi, J.; Mohammadi, M. Amelioration of clinical symptoms of patients with refractory rheumatoid arthritis following treatment with autologous bone marrow-derived mesenchymal stem cells: A successful clinical trial in Iran. Biomed. Pharmacother., 2019, 109, 1834-1840.
[http://dx.doi.org/10.1016/j.biopha.2018.11.056] [PMID: 30551438]
[10]
Grigoriou, M.; Banos, A.; Filia, A.; Pavlidis, P.; Giannouli, S.; Karali, V.; Nikolopoulos, D.; Pieta, A.; Bertsias, G.; Verginis, P.; Mitroulis, I.; Boumpas, D.T. Transcriptome reprogramming and myeloid skewing in haematopoietic stem and progenitor cells in systemic lupus erythematosus. Ann. Rheum. Dis., 2020, 79(2), 242-253.
[http://dx.doi.org/10.1136/annrheumdis-2019-215782] [PMID: 31780527]
[11]
Jaime-Pérez, J.C.; González-Treviño, M.; Meléndez-Flores, J.D.; Ramos-Dávila, E.M.; Cantú-Rodriguez, O.G.; Gutiérrez-Aguirre, C.H.; Galarza-Delgado, D.A.; Gómez-Almaguer, D. Autologous ATG-free hematopoietic stem cell transplantation for refractory autoimmune rheumatic diseases: A Latin American cohort. Clin. Rheumatol., 2022, 41(3), 869-876.
[http://dx.doi.org/10.1007/s10067-021-05931-0] [PMID: 34585327]
[12]
Vaillant, A.A.; Sabir, S.; Jan, A. Physiology, immune response. In: In: StatPearls. edn. Treasure Island (FL) with ineligible companies; StatPearls Publishing, 2023.
[13]
Sapkota, B.; Al Khalili, Y. Mixed connective tissue disease. In: In: StatPearls. edn. Treasure Island (FL) ineligible companies. Disclosure: Yasir Al Khalili declares no relevant financial relationships with ineligible companies; StatPearls Publishing, 2023.
[14]
Jalalvand, M.; Enayati, S.; Akhtari, M.; Madreseh, E.; Jamshidi, A.; Farhadi, E.; Mahmoudi, M.; Amirzargar, A. Blood regulatory T cells in inflammatory bowel disease, a systematic review, and meta-analysis. Int. Immunopharmacol., 2023, 117, 109824.
[http://dx.doi.org/10.1016/j.intimp.2023.109824] [PMID: 36827916]
[15]
Silva, T.; Alencar, R.C.; de Souza Silva, B.C.; Viana, E.C.O.M.; Fragoso, Y.D.; Gomes, A.O.; Cristina Chavantes, M.; Deana, A.M.; Gallo, J.M.A.S.; Fernandes, K.P.S.; Mesquita-Ferrari, R.A.; Bussadori, S.K. Effect of photobiomodulation on fatigue in individuals with relapsing–remitting multiple sclerosis: a pilot study. Lasers Med. Sci., 2022, 37(8), 3107-3113.
[http://dx.doi.org/10.1007/s10103-022-03567-3] [PMID: 35499744]
[16]
Van Rampelbergh, J.; Achenbach, P.; Leslie, R.D.; Ali, M.A.; Dayan, C.; Keymeulen, B.; Owen, K.R.; Kindermans, M.; Parmentier, F.; Carlier, V.; Ahangarani, R.R.; Gebruers, E.; Bovy, N.; Vanderelst, L.; Van Mechelen, M.; Vandepapelière, P.; Boitard, C. First-in-human, double-blind, randomized phase 1b study of peptide immunotherapy IMCY-0098 in new-onset type 1 diabetes. BMC Med., 2023, 21(1), 190.
[http://dx.doi.org/10.1186/s12916-023-02900-z] [PMID: 37226224]
[17]
Vaillant, A.A.; Goyal, A.; Varacallo, M. Systemic lupus erythematosus. In: 2023 Aug 4. In: StatPearls [Internet]. Treasure Island (FL); StatPearls Publishing, 2023.
[18]
Shan, J.; Jin, H.; Xu, Y. T cell metabolism: A new perspective on Th17/Treg cell imbalance in systemic lupus erythematosus. Front. Immunol., 2020, 11, 1027.
[http://dx.doi.org/10.3389/fimmu.2020.01027] [PMID: 32528480]
[19]
Zhou, C.; Bai, X.; Yang, Y.; Shi, M.; Bai, X.Y. Single-cell sequencing informs that mesenchymal stem cell alleviates renal injury through regulating kidney regional immunity in lupus nephritis. Stem Cells Dev., 2023, 32(15-16), 465-483.
[http://dx.doi.org/10.1089/scd.2023.0047] [PMID: 37082951]
[20]
Geng, L.; Tang, X.; Wang, S.; Sun, Y.; Wang, D.; Tsao, B.P.; Feng, X.; Sun, L. Reduced Let-7f in bone marrow-derived mesenchymal stem cells triggers Treg/Th17 imbalance in patients with systemic lupus erythematosus. Front. Immunol., 2020, 11, 233.
[http://dx.doi.org/10.3389/fimmu.2020.00233] [PMID: 32133007]
[21]
Geng, L.; Sun, L. MicroRNAs in mesenchymal stem cells: The key to decoding systemic lupus erythematosus. Cell. Mol. Immunol., 2021, 18(9), 2286-2287.
[http://dx.doi.org/10.1038/s41423-021-00722-8] [PMID: 34321620]
[22]
Li, W.; Chen, W.; Sun, L. An update for mesenchymal stem cell therapy in lupus nephritis. Kidney Dis., 2021, 7(2), 79-89.
[http://dx.doi.org/10.1159/000513741] [PMID: 33824866]
[23]
Cheng, T.; Ding, S.; Liu, S.; Li, Y.; Sun, L. Human umbilical cord-derived mesenchymal stem cell therapy ameliorate lupus through increasing CD4+ T cell senescence via MiR-199a-5p/Sirt1/p53 axis. Theranostics, 2021, 11(2), 893-905.
[http://dx.doi.org/10.7150/thno.48080] [PMID: 33391511]
[24]
Gao, L.; O Connell, M.; Allen, M.; Liesveld, J.; McDavid, A.; Anolik, J.H.; Looney, R.J. Bone marrow mesenchymal stem cells from patients with SLE maintain an interferon signature during in vitro culture. Cytokine, 2020, 132, 154725.
[http://dx.doi.org/10.1016/j.cyto.2019.05.012] [PMID: 31153744]
[25]
Wei, S.; Xie, S.; Yang, Z.; Peng, X.; Gong, L.; Zhao, K.; Zeng, K.; Lai, K. Allogeneic adipose-derived stem cells suppress mTORC1 pathway in a murine model of systemic lupus erythematosus. Lupus, 2019, 28(2), 199-209.
[http://dx.doi.org/10.1177/0961203318819131] [PMID: 30572770]
[26]
Chun, W.; Tian, J.; Zhang, Y. Transplantation of mesenchymal stem cells ameliorates systemic lupus erythematosus and upregulates B10 cells through TGF-β1. Stem Cell Res. Ther., 2021, 12(1), 512.
[http://dx.doi.org/10.1186/s13287-021-02586-1] [PMID: 34563233]
[27]
Zhang, M.; Johnson-Stephenson, T.K.; Wang, W.; Wang, Y.; Li, J.; Li, L.; Zen, K.; Chen, X.; Zhu, D. Mesenchymal stem cell-derived exosome-educated macrophages alleviate systemic lupus erythematosus by promoting efferocytosis and recruitment of IL-17+ regulatory T cell. Stem Cell Res. Ther., 2022, 13(1), 484.
[http://dx.doi.org/10.1186/s13287-022-03174-7] [PMID: 36153633]
[28]
Dou, R.; Zhang, X.; Xu, X.; Wang, P.; Yan, B. Mesenchymal stem cell exosomal tsRNA-21109 alleviate systemic lupus erythematosus by inhibiting macrophage M1 polarization. Mol. Immunol., 2021, 139, 106-114.
[http://dx.doi.org/10.1016/j.molimm.2021.08.015] [PMID: 34464838]
[29]
Sun, W.; Yan, S.; Yang, C.; Yang, J.; Wang, H.; Li, C.; Zhang, L.; Zhao, L.; Zhang, J.; Cheng, M.; Li, X.; Xu, D. Mesenchymal stem cells-derived exosomes ameliorate lupus by inducing m2 macrophage polarization and regulatory T cell expansion in MRL/lpr Mice. Immunol. Invest., 2022, 51(6), 1785-1803.
[http://dx.doi.org/10.1080/08820139.2022.2055478] [PMID: 35332841]
[30]
Tu, J.; Zheng, N.; Mao, C.; Liu, S.; Zhang, H.; Sun, L. UC-BSCs exosomes regulate Th17/Treg balance in patients with systemic lupus erythematosus via miR-19b/KLF13. Cells, 2022, 11(24), 4123.
[http://dx.doi.org/10.3390/cells11244123] [PMID: 36552891]
[31]
Cao, Z.; Wang, D.; Jing, L.; Wen, X.; Xia, N.; Ma, W.; Zhang, X.; Jin, Z.; Shen, W.; Yao, G.; Chen, W.; Tang, X.; Geng, L.; Li, H.; Li, X.; Ding, S.; Liang, J.; Feng, X.; Zhang, H.; Liu, S.; Li, W.; Sun, L. Allogenic umbilical cord-derived mesenchymal stromal cells sustain long-term therapeutic efficacy compared with low-dose interleukin-2 in systemic lupus erythematosus. Stem Cells Transl. Med., 2023, 12(7), 431-443.
[http://dx.doi.org/10.1093/stcltm/szad032] [PMID: 37279956]
[32]
Hoseinzadeh, A.; Rezaieyazdi, Z.; Mahmoudi, M.; Tavakol Afshari, J.; Lavi Arab, F.; Esmaeili, S.A.; Faridzadeh, A.; Rezaeian, A.; Hoseini, S.; Barati, M.; Mahmoudi, A.; Sadat Tabasi, N. Dysregulated balance in Th17/Treg axis of Pristane-induced lupus mouse model, are mesenchymal stem cells therapeutic? Int. Immunopharmacol., 2023, 117, 109699.
[http://dx.doi.org/10.1016/j.intimp.2023.109699] [PMID: 36867923]
[33]
Hernandez, G.; Mills, T.S.; Rabe, J.L.; Chavez, J.S.; Kuldanek, S.; Kirkpatrick, G.; Noetzli, L.; Jubair, W.K.; Zanche, M.; Myers, J.R.; Stevens, B.M.; Fleenor, C.J.; Adane, B.; Dinarello, C.A.; Ashton, J.; Jordan, C.T.; Di Paola, J.; Hagman, J.R.; Holers, V.M.; Kuhn, K.A.; Pietras, E.M. Pro-inflammatory cytokine blockade attenuates myeloid expansion in a murine model of rheumatoid arthritis. Haematologica, 2020, 105(3), 585-597.
[http://dx.doi.org/10.3324/haematol.2018.197210] [PMID: 31101752]
[34]
Colmegna, I.; Weyand, C.M. Haematopoietic stem and progenitor cells in rheumatoid arthritis. Rheumatology, 2011, 50(2), 252-260.
[http://dx.doi.org/10.1093/rheumatology/keq298] [PMID: 20837497]
[35]
Hirohata, S.; Yanagida, T.; Nagai, T.; Sawada, T.; Nakamura, H.; Yoshino, S.; Tomita, T.; Ochi, T. Induction of fibroblast- like cells from CD34+ progenitor cells of the bone marrow in rheumatoid arthritis. J. Leukoc. Biol., 2001, 70(3), 413-421.
[http://dx.doi.org/10.1189/jlb.70.3.413] [PMID: 11527991]
[36]
Zheng, J.; Zhu, L.; Iok In, I.; Chen, Y.; Jia, N.; Zhu, W. Retracted: Bone marrow-derived mesenchymal stem cells-secreted exosomal microRNA-192-5p delays inflammatory response in rheumatoid arthritis. Int. Immunopharmacol., 2020, 78, 105985.
[http://dx.doi.org/10.1016/j.intimp.2019.105985] [PMID: 31776092]
[37]
Liu, H.; Li, R.; Liu, T.; Yang, L.; Yin, G.; Xie, Q. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front. Immunol., 2020, 11, 1912.
[http://dx.doi.org/10.3389/fimmu.2020.01912] [PMID: 32973792]
[38]
Liu, R.; Li, X.; Zhang, Z.; Zhou, M.; Sun, Y.; Su, D.; Feng, X.; Gao, X.; Shi, S.; Chen, W.; Sun, L. Allogeneic mesenchymal stem cells inhibited T follicular helper cell generation in rheumatoid arthritis. Sci. Rep., 2015, 5(1), 12777.
[http://dx.doi.org/10.1038/srep12777] [PMID: 26259824]
[39]
Vasilev, G.; Ivanova, M.; Ivanova-Todorova, E.; Tumangelova-Yuzeir, K.; Krasimirova, E.; Stoilov, R.; Kyurkchiev, D. Secretory factors produced by adipose mesenchymal stem cells downregulate Th17 and increase Treg cells in peripheral blood mononuclear cells from rheumatoid arthritis patients. Rheumatol. Int., 2019, 39(5), 819-826.
[http://dx.doi.org/10.1007/s00296-019-04296-7] [PMID: 30944956]
[40]
Burt, R.K.; Oyama, Y.; Verda, L.; Quigley, K.; Brush, M.; Yaung, K.; Statkute, L.; Traynor, A.; Barr, W.G. Induction of remission of severe and refractory rheumatoid arthritis by allogeneic mixed chimerism. Arthritis Rheum., 2004, 50(8), 2466-2470.
[http://dx.doi.org/10.1002/art.20451] [PMID: 15334459]
[41]
Mesa, L.E.; López, J.G.; López Quiceno, L.; Barrios Arroyave, F.; Halpert, K.; Camacho, J.C. Safety and efficacy of mesenchymal stem cells therapy in the treatment of rheumatoid arthritis disease: A systematic review and meta-analysis of clinical trials. PLoS One, 2023, 18(7), e0284828.
[http://dx.doi.org/10.1371/journal.pone.0284828] [PMID: 37498842]
[42]
Dowdell, A.S.; Colgan, S.P. Metabolic host–microbiota interactions in autophagy and the pathogenesis of inflammatory bowel disease (IBD). Pharmaceuticals, 2021, 14(8), 708.
[http://dx.doi.org/10.3390/ph14080708] [PMID: 34451805]
[43]
Kobayashi, T.; Siegmund, B.; Le Berre, C.; Wei, S.C.; Ferrante, M.; Shen, B.; Bernstein, C.N.; Danese, S.; Peyrin-Biroulet, L.; Hibi, T. Ulcerative colitis. Nat. Rev. Dis. Primers, 2020, 6(1), 74.
[http://dx.doi.org/10.1038/s41572-020-0205-x] [PMID: 32913180]
[44]
Girish, N.; Liu, C.Y.; Gadeock, S.; Gomez, M.L.; Huang, Y.; Sharifkhodaei, Z.; Washington, M.K.; Polk, D.B. Persistence of Lgr5+ colonic epithelial stem cells in mouse models of inflammatory bowel disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2021, 321(3), G308-G324.
[http://dx.doi.org/10.1152/ajpgi.00248.2020] [PMID: 34260310]
[45]
Grim, C.; Noble, R.; Uribe, G.; Khanipov, K.; Johnson, P.; Koltun, W.A.; Watts, T.; Fofanov, Y.; Yochum, G.S.; Powell, D.W.; Beswick, E.J.; Pinchuk, I.V. Impairment of tissue-resident mesenchymal stem cells in chronic ulcerative colitis and crohn’s disease. J. Crohn’s Colitis, 2021, 15(8), 1362-1375.
[http://dx.doi.org/10.1093/ecco-jcc/jjab001] [PMID: 33506258]
[46]
Qi, L.; Wu, J.; Zhu, S.; Wang, X.; Lv, X.; Liu, C.; Liu, Y.J.; Chen, J. Mesenchymal stem cells alleviate inflammatory bowel disease via tr1 cells. Stem Cell Rev. Rep., 2022, 18(7), 2444-2457.
[http://dx.doi.org/10.1007/s12015-022-10353-9] [PMID: 35274217]
[47]
Gu, W.; Wang, H.; Huang, X.; Kraiczy, J.; Singh, P.N.P.; Ng, C.; Dagdeviren, S.; Houghton, S.; Pellon-Cardenas, O.; Lan, Y.; Nie, Y.; Zhang, J.; Banerjee, K.K.; Onufer, E.J.; Warner, B.W.; Spence, J.; Scherl, E.; Rafii, S.; Lee, R.T.; Verzi, M.P.; Redmond, D.; Longman, R.; Helin, K.; Shivdasani, R.A.; Zhou, Q. SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. Cell Stem Cell, 2022, 29(1), 101-115.e10.
[http://dx.doi.org/10.1016/j.stem.2021.09.004] [PMID: 34582804]
[48]
Xu, J.; Wang, X.; Chen, J.; Chen, S.; Li, Z.; Liu, H.; Bai, Y.; Zhi, F. Embryonic stem cell-derived mesenchymal stem cells promote colon epithelial integrity and regeneration by elevating circulating IGF-1 in colitis mice. Theranostics, 2020, 10(26), 12204-12222.
[http://dx.doi.org/10.7150/thno.47683] [PMID: 33204338]
[49]
Yan, Y.; Zhao, N.; He, X.; Guo, H.; Zhang, Z.; Liu, T. Mesenchymal stem cell expression of interleukin-35 protects against ulcerative colitis by suppressing mucosal immune responses. Cytotherapy, 2018, 20(7), 911-918.
[http://dx.doi.org/10.1016/j.jcyt.2018.05.004] [PMID: 29907361]
[50]
Yang, S.; Liang, X.; Song, J.; Li, C.; Liu, A.; Luo, Y.; Ma, H.; Tan, Y.; Zhang, X. A novel therapeutic approach for inflammatory bowel disease by exosomes derived from human umbilical cord mesenchymal stem cells to repair intestinal barrier via TSG-6. Stem Cell Res. Ther., 2021, 12(1), 315.
[http://dx.doi.org/10.1186/s13287-021-02404-8] [PMID: 34051868]
[51]
Yu, H.; Yang, X.; Xiao, X.; Xu, M.; Yang, Y.; Xue, C.; Li, X.; Wang, S.; Zhao, R.C. Human adipose mesenchymal stem cell-derived exosomes protect mice from dss-induced inflammatory bowel disease by promoting intestinal-stem-cell and epithelial regeneration. Aging Dis., 2021, 12(6), 1423-1437.
[http://dx.doi.org/10.14336/AD.2021.0601] [PMID: 34527419]
[52]
Colombo, F.; Cammarata, F.; Baldi, C.; Rizzetto, F.; Bondurri, A.; Carmagnola, S.; Gridavilla, D.; Maconi, G.; Ardizzone, S.; Danelli, P. Stem cell injection for complex refractory perianal fistulas in crohn’s disease: A single center initial experience. Front. Surg., 2022, 9, 834870.
[http://dx.doi.org/10.3389/fsurg.2022.834870] [PMID: 35198598]
[53]
Visweswaran, M.; Hendrawan, K.; Massey, J.C.; Khoo, M.L.; Ford, C.D.; Zaunders, J.J.; Withers, B.; Sutton, I.J.; Ma, D.D.F.; Moore, J.J. Sustained immunotolerance in multiple sclerosis after stem cell transplant. Ann. Clin. Transl. Neurol., 2022, 9(2), 206-220.
[http://dx.doi.org/10.1002/acn3.51510] [PMID: 35106961]
[54]
Yuan, S.; Xiong, Y.; Larsson, S.C. An atlas on risk factors for multiple sclerosis: A Mendelian randomization study. J. Neurol., 2021, 268(1), 114-124.
[http://dx.doi.org/10.1007/s00415-020-10119-8] [PMID: 32728946]
[55]
Attia, M.S.; Ewida, H.A.; Abdel Hafez, M.A.; El-Maraghy, S.A.; El- Sawalhi, M.M. Altered Lnc-EGFR, SNHG1, and LincRNA-Cox2 profiles in patients with relapsing-remitting multiple sclerosis: Impact on disease activity and progression. Diagnostics, 2023, 13(8), 1448.
[http://dx.doi.org/10.3390/diagnostics13081448] [PMID: 37189549]
[56]
Shaker, O.G.; Mahmoud, R.H.; Abdelaleem, O.O.; Ibrahem, E.G.; Mohamed, A.A.; Zaki, O.M.; Abdelghaffar, N.K.; Ahmed, T.I.; Hemeda, N.F.; Ahmed, N.A.; Mansour, D.F. LncRNAs, MALAT1 and lnc-DC as potential biomarkers for multiple sclerosis diagnosis. Biosci. Rep., 2019, 39(1), BSR20181335.
[http://dx.doi.org/10.1042/BSR20181335] [PMID: 30514825]
[57]
Probst, Y.; Mowbray, E.; Svensen, E.; Thompson, K. A systematic review of the impact of dietary sodium on autoimmunity and inflammation related to multiple sclerosis. Adv. Nutr., 2019, 10(5), 902-910.
[http://dx.doi.org/10.1093/advances/nmz032] [PMID: 31079157]
[58]
Burt, R.K.; Han, X.; Quigley, K.; Helenowski, I.B.; Balabanov, R. Real- world application of autologous hematopoietic stem cell transplantation in 507 patients with multiple sclerosis. J. Neurol., 2022, 269(5), 2513-2526.
[http://dx.doi.org/10.1007/s00415-021-10820-2] [PMID: 34633525]
[59]
Genchi, A.; Brambilla, E.; Sangalli, F.; Radaelli, M.; Bacigaluppi, M.; Furlan, R.; Andolfo, A.; Drago, D.; Magagnotti, C.; Scotti, G.M.; Greco, R.; Vezzulli, P.; Ottoboni, L.; Bonopane, M.; Capilupo, D.; Ruffini, F.; Belotti, D.; Cabiati, B.; Cesana, S.; Matera, G.; Leocani, L.; Martinelli, V.; Moiola, L.; Vago, L.; Panina-Bordignon, P.; Falini, A.; Ciceri, F.; Uglietti, A.; Sormani, M.P.; Comi, G.; Battaglia, M.A.; Rocca, M.A.; Storelli, L.; Pagani, E.; Gaipa, G.; Martino, G. Neural stem cell transplantation in patients with progressive multiple sclerosis: an open-label, phase 1 study. Nat. Med., 2023, 29(1), 75-85.
[http://dx.doi.org/10.1038/s41591-022-02097-3] [PMID: 36624312]
[60]
Nabizadeh, F.; Pirahesh, K.; Rafiei, N.; Afrashteh, F.; Ahmadabad, M.A.; Zabeti, A.; Mirmosayyeb, O. Autologous hematopoietic stem-cell transplantation in multiple sclerosis: A systematic review and meta-analysis. Neurol. Ther., 2022, 11(4), 1553-1569.
[http://dx.doi.org/10.1007/s40120-022-00389-x] [PMID: 35902484]
[61]
Karnell, F.G.; Lin, D.; Motley, S.; Duhen, T.; Lim, N.; Campbell, D.J.; Turka, L.A.; Maecker, H.T.; Harris, K.M. Reconstitution of immune cell populations in multiple sclerosis patients after autologous stem cell transplantation. Clin. Exp. Immunol., 2017, 189(3), 268-278.
[http://dx.doi.org/10.1111/cei.12985] [PMID: 28498568]
[62]
Darlington, P.J.; Stopnicki, B.; Touil, T.; Doucet, J.S.; Fawaz, L.; Roberts, M.E.; Boivin, M.N.; Arbour, N.; Freedman, M.S.; Atkins, H.L.; Bar-Or, A. Natural killer cells regulate Th17 cells after autologous hematopoietic stem cell transplantation for relapsing remitting multiple sclerosis. Front. Immunol., 2018, 9, 834.
[http://dx.doi.org/10.3389/fimmu.2018.00834] [PMID: 29867923]
[63]
Vaivade, A.; Wiberg, A.; Khoonsari, P.E.; Carlsson, H.; Herman, S.; Al-Grety, A.; Freyhult, E.; Olsson-Strömberg, U.; Burman, J.; Kultima, K. Autologous hematopoietic stem cell transplantation significantly alters circulating ceramides in peripheral blood of relapsing-remitting multiple sclerosis patients. Lipids Health Dis., 2023, 22(1), 97.
[http://dx.doi.org/10.1186/s12944-023-01863-7] [PMID: 37420217]
[64]
Xun, C.; Deng, H.; Zhao, J.; Ge, L.; Hu, Z. Mesenchymal stromal cell extracellular vesicles for multiple sclerosis in preclinical rodent models: A meta-analysis. Front. Immunol., 2022, 13, 972247.
[http://dx.doi.org/10.3389/fimmu.2022.972247] [PMID: 36405749]
[65]
Rajan, T.S.; Giacoppo, S.; Diomede, F.; Ballerini, P.; Paolantonio, M.; Marchisio, M.; Piattelli, A.; Bramanti, P.; Mazzon, E.; Trubiani, O. The secretome of periodontal ligament stem cells from MS patients protects against EAE. Sci. Rep., 2016, 6(1), 38743.
[http://dx.doi.org/10.1038/srep38743] [PMID: 27924938]
[66]
Li, Z.; Liu, F.; He, X.; Yang, X.; Shan, F.; Feng, J. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia. Int. Immunopharmacol., 2019, 67, 268-280.
[http://dx.doi.org/10.1016/j.intimp.2018.12.001] [PMID: 30572251]
[67]
Riazifar, M.; Mohammadi, M.R.; Pone, E.J.; Yeri, A.; Lässer, C.; Segaliny, A.I.; McIntyre, L.L.; Shelke, G.V.; Hutchins, E.; Hamamoto, A.; Calle, E.N.; Crescitelli, R.; Liao, W.; Pham, V.; Yin, Y.; Jayaraman, J.; Lakey, J.R.T.; Walsh, C.M.; Van Keuren-Jensen, K.; Lotvall, J.; Zhao, W. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano, 2019, 13(6), 6670-6688.
[http://dx.doi.org/10.1021/acsnano.9b01004] [PMID: 31117376]
[68]
Kvistad, C.E.; Kråkenes, T.; Gjerde, C.; Mustafa, K.; Rekand, T.; Bø, L. Safety and clinical efficacy of mesenchymal stem cell treatment in traumatic spinal cord injury, multiple sclerosis and ischemic stroke – a systematic review and meta-analysis. Front. Neurol., 2022, 13, 891514.
[http://dx.doi.org/10.3389/fneur.2022.891514] [PMID: 35711260]
[69]
Rajkumar, V.; Levine, S.N. Latent autoimmune diabetes. In: In: StatPearls. edn. Treasure Island (FL) with ineligible companies. Disclosure: Steven Levine declares no relevant financial relationships with ineligible companies; StatPearls Publishing, 2023.
[70]
Lucier, J.; Weinstock, R.S. Type 1 Diabetes. In: StatPearls. edn. Treasure Island (FL) ineligible companies. Disclosure: Ruth Weinstock declares no relevant financial relationships with ineligible companies; StatPearls Publishing, 2023.
[71]
McVoy, M.; Hardin, H.; Fulchiero, E.; Caforio, K.; Briggs, F.; Neudecker, M.; Sajatovic, M. Mental health comorbidity and youth onset type 2 diabetes: A systematic review of the literature. Int. J. Psychiatry Med., 2023, 58(1), 37-55.
[http://dx.doi.org/10.1177/00912174211067335] [PMID: 35026126]
[72]
Gearty, S.V.; Dündar, F.; Zumbo, P.; Espinosa-Carrasco, G.; Shakiba, M.; Sanchez-Rivera, F.J.; Socci, N.D.; Trivedi, P.; Lowe, S.W.; Lauer, P.; Mohibullah, N.; Viale, A.; DiLorenzo, T.P.; Betel, D.; Schietinger, A. An autoimmune stem-like CD8 T cell population drives type 1 diabetes. Nature, 2022, 602(7895), 156-161.
[http://dx.doi.org/10.1038/s41586-021-04248-x] [PMID: 34847567]
[73]
Wang, R.R.; Qiu, X.; Pan, R.; Fu, H.; Zhang, Z.; Wang, Q.; Chen, H.; Wu, Q.Q.; Pan, X.; Zhou, Y.; Shan, P.; Wang, S.; Guo, G.; Zheng, M.; Zhu, L.; Meng, Z.X. Dietary intervention preserves β cell function in mice through CTCF-mediated transcriptional reprogramming. J. Exp. Med., 2022, 219(7), e20211779.
[http://dx.doi.org/10.1084/jem.20211779] [PMID: 35652891]
[74]
Memon, B.; Abdelalim, E.M. Stem cell therapy for diabetes: Beta cells versus pancreatic progenitors. Cells, 2020, 9(2), 283.
[http://dx.doi.org/10.3390/cells9020283] [PMID: 31979403]
[75]
Shapiro, A.M.J.; Thompson, D.; Donner, T.W.; Bellin, M.D.; Hsueh, W.; Pettus, J.; Wilensky, J.; Daniels, M.; Wang, R.M.; Brandon, E.P.; Jaiman, M.S.; Kroon, E.J.; D’Amour, K.A.; Foyt, H.L. Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Rep. Med., 2021, 2(12), 100466.
[http://dx.doi.org/10.1016/j.xcrm.2021.100466] [PMID: 35028608]
[76]
Salib, A.; Cayabyab, F.; Yoshihara, E. Stem Cell-Derived Islets for Type 2 Diabetes. Int. J. Mol. Sci., 2022, 23(9), 5099.
[http://dx.doi.org/10.3390/ijms23095099] [PMID: 35563490]
[77]
Leavens, K.F.; Alvarez-Dominguez, J.R.; Vo, L.T.; Russ, H.A.; Parent, A.V. Stem cell-based multi-tissue platforms to model human autoimmune diabetes. Mol. Metab., 2022, 66, 101610.
[http://dx.doi.org/10.1016/j.molmet.2022.101610] [PMID: 36209784]
[78]
Yang, J.; Chen, Z.; Pan, D.; Li, H.; Shen, J. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int. J. Nanomedicine, 2020, 15, 5911-5926.
[http://dx.doi.org/10.2147/IJN.S249129] [PMID: 32848396]
[79]
Hu, N.; Cai, Z.; Jiang, X.; Wang, C.; Tang, T.; Xu, T.; Chen, H.; Li, X.; Du, X.; Cui, W. Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and accelerate diabetic wound healing. Acta Biomater., 2023, 157, 175-186.
[http://dx.doi.org/10.1016/j.actbio.2022.11.057] [PMID: 36503078]
[80]
Song, J.; Liu, J.; Cui, C.; Hu, H.; Zang, N.; Yang, M.; Yang, J.; Zou, Y.; Li, J.; Wang, L.; He, Q.; Guo, X.; Zhao, R.; Yan, F.; Liu, F.; Hou, X.; Sun, Z.; Chen, L. Mesenchymal stromal cells ameliorate diabetes-induced muscle atrophy through exosomes by enhancing AMPK/ULK1-mediated autophagy. J. Cachexia Sarcopenia Muscle, 2023, 14(2), 915-929.
[http://dx.doi.org/10.1002/jcsm.13177] [PMID: 36708027]
[81]
Wang, Y.; Liu, J.; Wang, H.; Lv, S.; Liu, Q.; Li, S.; Yang, X.; Liu, G. Mesenchymal stem cell-derived exosomes ameliorate diabetic kidney disease through the NLRP3 signaling pathway. Stem Cells, 2023, 41(4), 368-383.
[http://dx.doi.org/10.1093/stmcls/sxad010] [PMID: 36682034]
[82]
Lv, J.; Hao, Y.N.; Wang, X.P.; Lu, W.H.; Xie, L.Y.; Niu, D. Bone marrow mesenchymal stem cell-derived exosomal miR-30e-5p ameliorates high-glucose induced renal proximal tubular cell pyroptosis by inhibiting ELAVL1. Ren. Fail., 2023, 45(1), 2177082.
[http://dx.doi.org/10.1080/0886022X.2023.2177082] [PMID: 36794663]
[83]
Yang, H.; Zhang, Y.; Du, Z.; Wu, T.; Yang, C. Hair follicle mesenchymal stem cell exosomal lncRNA H19 inhibited NLRP3 pyroptosis to promote diabetic mouse skin wound healing. Aging, 2023, 15(3), 791-809.
[http://dx.doi.org/10.18632/aging.204513] [PMID: 36787444]
[84]
Ju, Y.; Hu, Y.; Yang, P.; Xie, X.; Fang, B. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater. Today Bio, 2023, 18, 100522.
[http://dx.doi.org/10.1016/j.mtbio.2022.100522] [PMID: 36593913]
[85]
Ge, L.; Wang, K.; Lin, H.; Tao, E.; Xia, W.; Wang, F.; Mao, C.; Feng, Y. Engineered exosomes derived from miR-132-overexpresssing adipose stem cells promoted diabetic wound healing and skin reconstruction. Front. Bioeng. Biotechnol., 2023, 11, 1129538.
[http://dx.doi.org/10.3389/fbioe.2023.1129538] [PMID: 36937759]
[86]
Lian, X.F.; Lu, D.H.; Liu, H.L.; Liu, Y.J.; Han, X.Q.; Yang, Y.; Lin, Y.; Zeng, Q.X.; Huang, Z.J.; Xie, F.; Huang, C.H.; Wu, H.M.; Long, A.M.; Deng, L.P.; Zhang, F. Effectiveness and safety of human umbilical cord-mesenchymal stem cells for treating type 2 diabetes mellitus. World J. Diabetes, 2022, 13(10), 877-887.
[http://dx.doi.org/10.4239/wjd.v13.i10.877] [PMID: 36312002]
[87]
Lian, X.F.; Lu, D.H.; Liu, H.L.; Liu, Y.J.; Yang, Y.; Lin, Y.; Xie, F.; Huang, C.H.; Wu, H.M.; Long, A.M.; Hui, C.J.; Shi, Y.; Chen, Y.; Gao, Y.F.; Zhang, F. Safety evaluation of human umbilical cord-mesenchymal stem cells in type 2 diabetes mellitus treatment: A phase 2 clinical trial. World J. Clin. Cases, 2023, 11(21), 5083-5096.
[http://dx.doi.org/10.12998/wjcc.v11.i21.5083] [PMID: 37583846]
[88]
Yu, X.; Graner, M.; Kennedy, P.G.E.; Liu, Y. The role of antibodies in the pathogenesis of multiple sclerosis. Front. Neurol., 2020, 11, 533388.
[http://dx.doi.org/10.3389/fneur.2020.533388] [PMID: 33192968]
[89]
Zhu, W.; He, X.; Cheng, K.; Zhang, L.; Chen, D.; Wang, X.; Qiu, G.; Cao, X.; Weng, X. Ankylosing spondylitis: Etiology, pathogenesis, and treatments. Bone Res., 2019, 7(1), 22.
[http://dx.doi.org/10.1038/s41413-019-0057-8] [PMID: 31666997]
[90]
Shaikh, H.; Bakalov, V.; Shaikh, S.; Khattab, A.; Sadashiv, S. Coincident remission of ankylosing spondylitis after autologous stem cell transplantation for multiple myeloma. J. Oncol. Pharm. Pract., 2021, 27(1), 232-234.
[http://dx.doi.org/10.1177/1078155220927750] [PMID: 32493162]
[91]
Ma, C.; Feng, Y.; Yang, L.; Wang, S.; Sun, X.; Tai, S.; Guan, X.; Wang, D.; Yu, Y. In vitro immunomodulatory effects of human umbilical cord-derived mesenchymal stem cells on peripheral blood cells from warm autoimmune hemolytic anemia patients. Acta Haematol., 2022, 145(1), 63-71.
[http://dx.doi.org/10.1159/000506759] [PMID: 34284381]
[92]
Chihaby, N.; Orliaguet, M.; Le Pottier, L.; Pers, J.O.; Boisramé, S. Treatment of sjögren’s syndrome with mesenchymal stem cells: A systematic review. Int. J. Mol. Sci., 2021, 22(19), 10474.
[http://dx.doi.org/10.3390/ijms221910474] [PMID: 34638813]
[93]
Li, F.; Lu, J.; Shi, X.; Li, D.; Zhou, T.; Jiang, T.; Wang, S. Effect of adipose tissue-derived stem cells therapy on clinical response in patients with primary Sjogren’s syndrome. Sci. Rep., 2023, 13(1), 13521.
[http://dx.doi.org/10.1038/s41598-023-40802-5] [PMID: 37598237]
[94]
Zhang, L.; Ma, X.J.N.; Fei, Y.Y.; Han, H.T.; Xu, J.; Cheng, L.; Li, X. Stem cell therapy in liver regeneration: Focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacol. Ther., 2022, 232, 108004.
[http://dx.doi.org/10.1016/j.pharmthera.2021.108004] [PMID: 34597754]
[95]
Mead, B.E.; Hattori, K.; Levy, L.; Imada, S.; Goto, N.; Vukovic, M.; Sze, D.; Kummerlowe, C.; Matute, J.D.; Duan, J.; Langer, R.; Blumberg, R.S.; Ordovas-Montanes, J.; Yilmaz, Ö.H.; Karp, J.M.; Shalek, A.K. Screening for modulators of the cellular composition of gut epithelia via organoid models of intestinal stem cell differentiation. Nat. Biomed. Eng., 2022, 6(4), 476-494.
[http://dx.doi.org/10.1038/s41551-022-00863-9] [PMID: 35314801]
[96]
Lei, J.; Jiang, X.; Li, W.; Ren, J.; Wang, D.; Ji, Z.; Wu, Z.; Cheng, F.; Cai, Y.; Yu, Z.R.; Belmonte, J.C.I.; Li, C.; Liu, G.H.; Zhang, W.; Qu, J.; Wang, S. Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis. Protein Cell, 2022, 13(3), 220-226.
[http://dx.doi.org/10.1007/s13238-021-00860-9] [PMID: 34342820]
[97]
Liu, C.; Hu, F.; Jiao, G.; Guo, Y.; Zhou, P.; Zhang, Y.; Zhang, Z.; Yi, J.; You, Y.; Li, Z.; Wang, H.; Zhang, X. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury. J. Nanobiotechnology, 2022, 20(1), 65.
[http://dx.doi.org/10.1186/s12951-022-01273-4] [PMID: 35109874]
[98]
Xu, X.; Liang, Y.; Li, X.; Ouyang, K.; Wang, M.; Cao, T.; Li, W.; Liu, J.; Xiong, J.; Li, B.; Xia, J.; Wang, D.; Duan, L. Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration. Biomaterials, 2021, 269, 120539.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120539] [PMID: 33243424]
[99]
Ma, L.; Wei, J.; Zeng, Y.; Liu, J.; Xiao, E.; Kang, Y.; Kang, Y. Mesenchymal stem cell-originated exosomal circDIDO1 suppresses hepatic stellate cell activation by miR-141-3p/PTEN/AKT pathway in human liver fibrosis. Drug Deliv., 2022, 29(1), 440-453.
[http://dx.doi.org/10.1080/10717544.2022.2030428] [PMID: 35099348]
[100]
Minnie, S.A.; Waltner, O.G.; Ensbey, K.S.; Olver, S.D.; Collinge, A.D.; Sester, D.P.; Schmidt, C.R.; Legg, S.R.W.; Takahashi, S.; Nemychenkov, N.S.; Sekiguchi, T.; Driessens, G.; Zhang, P.; Koyama, M.; Spencer, A.; Holmberg, L.A.; Furlan, S.N.; Varelias, A.; Hill, G.R. TIGIT inhibition and lenalidomide synergistically promote antimyeloma immune responses after stem cell transplantation in mice. J. Clin. Invest., 2023, 133(4), e157907.
[http://dx.doi.org/10.1172/JCI157907] [PMID: 36512425]
[101]
Liuyang, S.; Wang, G.; Wang, Y.; He, H.; Lyu, Y.; Cheng, L.; Yang, Z.; Guan, J.; Fu, Y.; Zhu, J.; Zhong, X.; Sun, S.; Li, C.; Wang, J.; Deng, H. Highly efficient and rapid generation of human pluripotent stem cells by chemical reprogramming. Cell Stem Cell, 2023, 30(4), 450-459.e9.
[http://dx.doi.org/10.1016/j.stem.2023.02.008] [PMID: 36944335]
[102]
Hendrawan, K.; Khoo, M.L.M.; Visweswaran, M.; Massey, J.C.; Withers, B.; Sutton, I.; Ma, D.D.F.; Moore, J.J. Long-term suppression of circulating proinflammatory cytokines in multiple sclerosis patients following autologous haematopoietic stem cell transplantation. Front. Immunol., 2022, 12, 782935.
[http://dx.doi.org/10.3389/fimmu.2021.782935] [PMID: 35126353]
[103]
Motavalli, R.; Etemadi, J.; Soltani-Zangbar, M.S.; Ardalan, M.R.; Kahroba, H.; Roshangar, L.; Nouri, M.; Aghebati-Maleki, L.; Khiavi, F.M.; Abediazar, S.; Mehdizadeh, A.; Hojjat-Farsangi, M.; Mahmoodpoor, A.; Kafil, H.S.; Zolfaghari, M.; Ahmadian Heris, J.; Yousefi, M. Altered Th17/Treg ratio as a possible mechanism in pathogenesis of idiopathic membranous nephropathy. Cytokine, 2021, 141, 155452.
[http://dx.doi.org/10.1016/j.cyto.2021.155452] [PMID: 33571932]
[104]
Cailleteau, A.; Maingon, P.; Choquet, S.; Bourdais, R.; Antoni, D.; Lioure, B.; Hulin, C.; Batard, S.; Llagostera, C.; Guimas, V.; Touzeau, C.; Moreau, P.; Mahé, M.A.; Supiot, S. Phase 1 study of the combination of escalated total marrow irradiation using helical tomotherapy and fixed high-dose melphalan (140 mg/m²) followed by autologous stem cell transplantation at first relapse in multiple myeloma. Int. J. Radiat. Oncol. Biol. Phys., 2023, 115(3), 677-685.
[http://dx.doi.org/10.1016/j.ijrobp.2022.09.069] [PMID: 36174802]
[105]
Elkenani, M.; Mohamed, B.A. Murine embryonic stem cell culture, self-renewal, and differentiation. Methods Mol. Biol., 2021, 2520, 265-273.
[http://dx.doi.org/10.1007/7651_2021_447] [PMID: 34724189]
[106]
Reinders, M.E.J.; Groeneweg, K.E.; Hendriks, S.H.; Bank, J.R.; Dreyer, G.J.; de Vries, A.P.J.; van Pel, M.; Roelofs, H.; Huurman, V.A.L.; Meij, P.; Moes, D.J.A.R.; Fibbe, W.E.; Claas, F.H.J.; Roelen, D.L.; van Kooten, C.; Kers, J.; Heidt, S.; Rabelink, T.J.; de Fijter, J.W. Autologous bone marrow-derived mesenchymal stromal cell therapy with early tacrolimus withdrawal: The randomized prospective, single-center, open-label TRITON study. Am. J. Transplant., 2021, 21(9), 3055-3065.
[http://dx.doi.org/10.1111/ajt.16528] [PMID: 33565206]
[107]
Hawkins, F.J.; Suzuki, S.; Beermann, M.L.; Barillà, C.; Wang, R.; Villacorta-Martin, C.; Berical, A.; Jean, J.C.; Le Suer, J.; Matte, T.; Simone-Roach, C.; Tang, Y.; Schlaeger, T.M.; Crane, A.M.; Matthias, N.; Huang, S.X.L.; Randell, S.H.; Wu, J.; Spence, J.R.; Carraro, G.; Stripp, B.R.; Rab, A.; Sorsher, E.J.; Horani, A.; Brody, S.L.; Davis, B.R.; Kotton, D.N. Derivation of airway basal stem cells from human pluripotent stem cells. Cell Stem Cell, 2021, 28(1), 79-95.e8.
[http://dx.doi.org/10.1016/j.stem.2020.09.017] [PMID: 33098807]
[108]
Tan, Q.; Xia, D.; Ying, X. miR-29a in exosomes from bone marrow mesenchymal stem cells inhibit fibrosis during endometrial repair of intrauterine adhesion. Int. J. Stem Cells, 2020, 13(3), 414-423.
[http://dx.doi.org/10.15283/ijsc20049] [PMID: 33250449]
[109]
Xu, J.; Wang, W.; Wang, Y.; Zhu, Z.; Li, D.; Wang, T.; Liu, K. Progress in research on the role of exosomal miRNAs in the diagnosis and treatment of cardiovascular diseases. Front. Genet., 2022, 13, 929231.
[http://dx.doi.org/10.3389/fgene.2022.929231] [PMID: 36267409]
[110]
Yang, H.; Xu, H.; Wang, Z.; Li, X.; Wang, P.; Cao, X.; Xu, Z.; Lv, D.; Rong, Y.; Chen, M.; Tang, B.; Hu, Z.; Deng, W.; Zhu, J. Analysis of miR-203a-3p/SOCS3- mediated induction of M2 macrophage polarization to promote diabetic wound healing based on epidermal stem cell-derived exosomes. Diabetes Res. Clin. Pract., 2023, 197, 110573.
[http://dx.doi.org/10.1016/j.diabres.2023.110573] [PMID: 36764461]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy