Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

Bone Marrow Mesenchymal Stem Cell-derived Exosomal microRNA-99b-5p Promotes Cell Growth of High Glucose-treated Human Umbilical Vein Endothelial Cells by Modulating THAP Domain Containing 2 Expression

Author(s): Hongru Ruan, Hui Shi, Wenkang Luan and Sida Pan*

Volume 19, Issue 11, 2024

Published on: 05 January, 2024

Page: [1461 - 1471] Pages: 11

DOI: 10.2174/011574888X272011231128073104

Price: $65

conference banner
Abstract

Introduction: Bone marrow mesenchymal stem cell-derived exosomes (BMSC-exos) may function as novel candidates for treating diabetic wounds due to their ability to promote angiogenesis.

Materials and Methods: This study investigated the effects of BMSC-exos on the growth and metastasis of human umbilical vein endothelial cells (HUVECs) treated with high glucose (HG). The exosomes were separated from BMSCs and identified. The cell phenotype was detected by 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and 5-ethynyl-2’-deoxyuridine, wound healing, and transwell assays, while the number of tubes was measured via tube formation assay.

Result: The RNA and protein expression levels were studied using reverse transcription-quantitative polymerase chain reaction and western blotting, whereas integration of microRNA-99b-5p (miR-99b-5p) with THAP domain containing 2 (THAP2) was confirmed via dual-luciferase reporter and RNA pull-down assays. Results of transmission electron microscopy, nanoparticle tracking analysis, and laser scanning confocal microscopy revealed that exosomes were successfully separated from BMSCs and endocytosed into the cytoplasm by HUVECs. Similarly, BMSC-exos were found to promote the growth of HG-treated HUVECs, while their growth was inhibited by suppressing miR-99b-5p. THAP2 was found to bind to miR-99b-5p, where THAP2 inhibition reversed the miR-99b-5p-induced effects on cell growth, migration, and tube numbers.

Conclusion: In conclusion, miR-99b-5p in BMSC-exo protects HUVECs by negatively regulating THAP2 expression.

Keywords: Bone marrow, mesenchymal stem cell, high glucose, umbilical vein, endothelial cells, THAP domain.

Graphical Abstract
[1]
Bommer, C.; Sagalova, V.; Heesemann, E.; Manne-Goehler, J.; Atun, R.; Bärnighausen, T.; Davies, J.; Vollmer, S. Global economic burden of diabetes in adults: Projections from 2015 to 2030. Diabetes Care, 2018, 41(5), 963-970.
[http://dx.doi.org/10.2337/dc17-1962] [PMID: 29475843]
[2]
Vaz de Castro, P.A.S.; Bitencourt, L.; de Oliveira Campos, J.L.; Fischer, B.L.; Soares de Brito, S.B.C.; Soares, B.S.; Drummond, J.B.; Simões e Silva, A.C. Nephrogenic diabetes insipidus: A comprehensive overview. J. Pediatr. Endocrinol. Metab., 2022, 35(4), 421-434.
[http://dx.doi.org/10.1515/jpem-2021-0566] [PMID: 35146976]
[3]
Morris, A. New test for diabetes insipidus. Nat. Rev. Endocrinol., 2019, 15(10), 564-565.
[PMID: 31367010]
[4]
Maranda, E.; Rodriguez-Menocal, L.; Badiavas, E. Role of mesenchymal stem cells in dermal repair in burns and diabetic wounds. Curr. Stem Cell Res. Ther., 2016, 12(1), 61-70.
[http://dx.doi.org/10.2174/1574888X11666160714115926] [PMID: 27412677]
[5]
Cho, H.; Blatchley, M.R.; Duh, E.J.; Gerecht, S. Acellular and cellular approaches to improve diabetic wound healing. Adv. Drug Deliv. Rev., 2019, 146, 267-288.
[http://dx.doi.org/10.1016/j.addr.2018.07.019] [PMID: 30075168]
[6]
Holl, J.; Kowalewski, C.; Zimek, Z.; Fiedor, P.; Kaminski, A.; Oldak, T.; Moniuszko, M.; Eljaszewicz, A. Chronic diabetic wounds and their treatment with skin substitutes. Cells, 2021, 10(3), 655.
[http://dx.doi.org/10.3390/cells10030655] [PMID: 33804192]
[7]
Sen, C.K. Human wound and its burden: Updated 2020 compendium of estimates. Adv. Wound Care, 2021, 10(5), 281-292.
[http://dx.doi.org/10.1089/wound.2021.0026] [PMID: 33733885]
[8]
Ko, K.; Sculean, A.; Graves, D.T. Diabetic wound healing in soft and hard oral tissues. Transl. Res., 2021, 236, 72-86.
[http://dx.doi.org/10.1016/j.trsl.2021.05.001] [PMID: 33992825]
[9]
Han, G.; Ceilley, R. Chronic wound healing: A review of current management and treatments. Adv. Ther., 2017, 34(3), 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[10]
Yan, C.; Chen, J.; Wang, C.; Yuan, M.; Kang, Y.; Wu, Z.; Li, W.; Zhang, G.; Machens, H.G.; Rinkevich, Y.; Chen, Z.; Yang, X.; Xu, X. Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis. Drug Deliv., 2022, 29(1), 214-228.
[http://dx.doi.org/10.1080/10717544.2021.2023699] [PMID: 34985397]
[11]
Chen, X.; Jiang, W.; Liu, Y.; Ma, Z.; Dai, J. Anti-inflammatory action of geniposide promotes wound healing in diabetic rats. Pharm. Biol., 2022, 60(1), 294-299.
[http://dx.doi.org/10.1080/13880209.2022.2030760] [PMID: 35130118]
[12]
Kunkemoeller, B.; Kyriakides, T.R. Redox signaling in diabetic wound healing regulates extracellular matrix deposition. Antioxid. Redox Signal., 2017, 27(12), 823-838.
[http://dx.doi.org/10.1089/ars.2017.7263] [PMID: 28699352]
[13]
Li, Y.; Lin, S.; Xiong, S.; Xie, Q. Recombinant expression of human IL-33 protein and its effect on skin wound healing in diabetic mice. Bioengineering, 2022, 9(12), 734.
[http://dx.doi.org/10.3390/bioengineering9120734] [PMID: 36550940]
[14]
Shu, X.; Shu, S.; Tang, S.; Yang, L.; Liu, D.; Li, K.; Dong, Z.; Ma, Z.; Zhu, Z.; Din, J. Efficiency of stem cell based therapy in the treatment of diabetic foot ulcer: A meta-analysis. Endocr. J., 2018, 65(4), 403-413.
[http://dx.doi.org/10.1507/endocrj.EJ17-0424] [PMID: 29353870]
[15]
Lopes, L.; Setia, O.; Aurshina, A.; Liu, S.; Hu, H.; Isaji, T.; Liu, H.; Wang, T.; Ono, S.; Guo, X.; Yatsula, B.; Guo, J.; Gu, Y.; Navarro, T.; Dardik, A. Stem cell therapy for diabetic foot ulcers: A review of preclinical and clinical research. Stem Cell Res. Ther., 2018, 9(1), 188-188.
[http://dx.doi.org/10.1186/s13287-018-0938-6] [PMID: 29996912]
[16]
Friedenstein, A.J.; Petrakova, K.V.; Kurolesova, A.I.; Frolova, G.P. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 1968, 6(2), 230-247.
[http://dx.doi.org/10.1097/00007890-196803000-00009] [PMID: 5654088]
[17]
Pixley, J.S. Mesenchymal stem cells to treat type 1 diabetes. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(4), 165315.
[http://dx.doi.org/10.1016/j.bbadis.2018.10.033] [PMID: 30508575]
[18]
Li, H.; Fu, X. Mechanisms of action of mesenchymal stem cells in cutaneous wound repair and regeneration. Cell Tissue Res., 2012, 348(3), 371-377.
[http://dx.doi.org/10.1007/s00441-012-1393-9] [PMID: 22447168]
[19]
Gnecchi, M.; Zhang, Z.; Ni, A.; Dzau, V.J. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res., 2008, 103(11), 1204-1219.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.176826] [PMID: 19028920]
[20]
Poltavtseva, R.A.; Poltavtsev, A.V.; Lutsenko, G.V.; Svirshchevskaya, E.V. Myths, reality and future of mesenchymal stem cell therapy. Cell Tissue Res., 2019, 375(3), 563-574.
[http://dx.doi.org/10.1007/s00441-018-2961-4] [PMID: 30456646]
[21]
Ji, Y.; Ji, J.; Yin, H.; Chen, X.; Zhao, P.; Lu, H.; Wang, T. Exosomes derived from microRNA-129-5p-modified tumor cells selectively enhanced suppressive effect in malignant behaviors of homologous colon cancer cells. Bioengineered, 2021, 12(2), 12148-12156.
[http://dx.doi.org/10.1080/21655979.2021.2004981] [PMID: 34775889]
[22]
Wang, Z.; Sun, W.; Li, R.; Liu, Y. miRNA-93-5p in exosomes derived from M2 macrophages improves lipopolysaccharide-induced podocyte apoptosis by targeting Toll-like receptor 4. Bioengineered, 2022, 13(3), 7683-7696.
[http://dx.doi.org/10.1080/21655979.2021.2023794] [PMID: 35291915]
[23]
Kusuma, G.D.; Barabadi, M.; Tan, J.L.; Morton, D.A.V.; Frith, J.E.; Lim, R. To protect and to preserve: Novel preservation strategies for extracellular vesicles. Front. Pharmacol., 2018, 9, 1199-1199.
[http://dx.doi.org/10.3389/fphar.2018.01199] [PMID: 30420804]
[24]
Newton, W.C.; Kim, J.W.; Luo, J.Z.Q.; Luo, L. Stem cell-derived exosomes: A novel vector for tissue repair and diabetic therapy. J. Mol. Endocrinol., 2017, 59(4), R155-R165.
[http://dx.doi.org/10.1530/JME-17-0080] [PMID: 28835418]
[25]
Willis, G.R.; Fernandez-Gonzalez, A.; Anastas, J.; Vitali, S.H.; Liu, X.; Ericsson, M.; Kwong, A.; Mitsialis, S.A.; Kourembanas, S. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am. J. Respir. Crit. Care Med., 2018, 197(1), 104-116.
[http://dx.doi.org/10.1164/rccm.201705-0925OC] [PMID: 28853608]
[26]
Ding, J.; Wang, X.; Chen, B.; Zhang, J.; Xu, J. Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis. BioMed Res. Int., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/9742765] [PMID: 31192260]
[27]
Wu, X.; Showiheen, S.A.A.; Sun, A.R.; Crawford, R.; Xiao, Y.; Mao, X.; Prasadam, I. Exosomes extraction and identification. Methods Mol. Biol., 2019, 2054, 81-91.
[http://dx.doi.org/10.1007/978-1-4939-9769-5_4] [PMID: 31482448]
[28]
Dalby, B.; Cates, S.; Harris, A.; Ohki, E.C.; Tilkins, M.L.; Price, P.J.; Ciccarone, V.C. Advanced transfection with Lipofectamine 2000 reagent: Primary neurons, siRNA, and high-throughput applications. Methods, 2004, 33(2), 95-103.
[http://dx.doi.org/10.1016/j.ymeth.2003.11.023] [PMID: 15121163]
[29]
Pužar Dominkuš, P.; Stenovec, M.; Sitar, S.; Lasič, E.; Zorec, R.; Plemenitaš, A.; Žagar, E.; Kreft, M.; Lenassi, M. PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim. Biophys. Acta Biomembr., 2018, 1860(6), 1350-1361.
[http://dx.doi.org/10.1016/j.bbamem.2018.03.013] [PMID: 29551275]
[30]
Karakaş, D.; Ari, F.; Ulukaya, E. The MTT viability assay yields strikingly false-positive viabilities although the cells are killed by some plant extracts. Turk. J. Biol., 2017, 41(6), 919-925.
[http://dx.doi.org/10.3906/biy-1703-104] [PMID: 30814856]
[31]
Diermeier-Daucher, S.; Clarke, S.T.; Hill, D.; Vollmann-Zwerenz, A.; Bradford, J.A.; Brockhoff, G. Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytometry A, 2009, 75A(6), 535-546.
[http://dx.doi.org/10.1002/cyto.a.20712] [PMID: 19235202]
[32]
Grada, A.; Otero-Vinas, M.; Prieto-Castrillo, F.; Obagi, Z.; Falanga, V. Research techniques made simple: Analysis of collective cell migration using the wound healing assay. J. Invest. Dermatol., 2017, 137(2), e11-e16.
[http://dx.doi.org/10.1016/j.jid.2016.11.020] [PMID: 28110712]
[33]
Omar Zaki, S.S.; Kanesan, L.; Leong, M.Y.D.; Vidyadaran, S. The influence of serum-supplemented culture media in a transwell migration assay. Cell Biol. Int., 2019, 43(10), 1201-1204.
[http://dx.doi.org/10.1002/cbin.11122] [PMID: 30811086]
[34]
Qiu, N.; Xu, X.; He, Y. LncRNA TUG1 alleviates sepsis-induced acute lung injury by targeting miR-34b-5p/GAB1. BMC Pulm. Med., 2020, 20(1), 49.
[http://dx.doi.org/10.1186/s12890-020-1084-3] [PMID: 32087725]
[35]
Bierhoff, H. Analysis of lncRNA-Protein Interactions by RNA-Protein Pull-Down Assays and RNA Immunoprecipitation (RIP); Springer New York: New York, NY, 2017, pp. 241-250.
[36]
Rocha, D.J.P.G. Gene Expression Analysis in Bacteria by RT-qPCR; Springer New York: New York, NY, 2019, pp. 119-137.
[37]
Bass, J.J.; Wilkinson, D.J.; Rankin, D.; Phillips, B.E.; Szewczyk, N.J.; Smith, K.; Atherton, P.J. An overview of technical considerations for Western blotting applications to physiological research. Scand. J. Med. Sci. Sports, 2017, 27(1), 4-25.
[http://dx.doi.org/10.1111/sms.12702] [PMID: 27263489]
[38]
An, J.; Chen, X.; Chen, W.; Liang, R.; Reinach, P.S.; Yan, D.; Tu, L. MicroRNA expression profile and the role of mir-204 in corneal wound healing. Invest. Ophthalmol. Vis. Sci., 2015, 56(6), 3673-3683.
[http://dx.doi.org/10.1167/iovs.15-16467] [PMID: 26047168]
[39]
Kosaric, N.; Kiwanuka, H.; Gurtner, G.C. Stem cell therapies for wound healing. Expert Opin. Biol. Ther., 2019, 19(6), 575-585.
[http://dx.doi.org/10.1080/14712598.2019.1596257] [PMID: 30900481]
[40]
Yang, J.; Chen, Z.; Pan, D.; Li, H.; Shen, J. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int. J. Nanomedicine, 2020, 15, 5911-5926.
[http://dx.doi.org/10.2147/IJN.S249129] [PMID: 32848396]
[41]
Guo, J.; Hu, H.; Gorecka, J.; Bai, H.; He, H.; Assi, R.; Isaji, T.; Wang, T.; Setia, O.; Lopes, L.; Gu, Y.; Dardik, A. Adipose-derived mesenchymal stem cells accelerate diabetic wound healing in a similar fashion as bone marrow-derived cells. Am. J. Physiol. Cell Physiol., 2018, 315(6), C885-C896.
[http://dx.doi.org/10.1152/ajpcell.00120.2018] [PMID: 30404559]
[42]
Jiang, W.; Zhang, J.; Zhang, X.; Fan, C.; Huang, J. VAP-PLGA microspheres (VAP-PLGA) promote adipose-derived stem cells (ADSCs)-induced wound healing in chronic skin ulcers in mice via PI3K/Akt/HIF-1α pathway. Bioengineered, 2021, 12(2), 10264-10284.
[http://dx.doi.org/10.1080/21655979.2021.1990193] [PMID: 34720043]
[43]
Pittenger Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells, 2017.
[44]
Li, M.; Wang, T.; Tian, H.; Wei, G.; Zhao, L.; Shi, Y. Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3793-3803.
[http://dx.doi.org/10.1080/21691401.2019.1669617] [PMID: 31556314]
[45]
Lu, M.; Peng, L.; Ming, X.; Wang, X.; Cui, A.; Li, Y.; Wang, X.; Meng, D.; Sun, N.; Xiang, M.; Chen, S. Enhanced wound healing promotion by immune response-free monkey autologous iPSCs and exosomes vs. their allogeneic counterparts. EBioMedicine, 2019, 42, 443-457.
[http://dx.doi.org/10.1016/j.ebiom.2019.03.011] [PMID: 30926422]
[46]
Shi, Y.; Kang, X.; Wang, Y.; Bian, X.; He, G.; Zhou, M.; Tang, K. Exosomes derived from bone marrow stromal cells (BMSCs) enhance tendon-bone healing by regulating macrophage polarization. Med. Sci. Monit., 2020, 26, e923328-e923328.
[http://dx.doi.org/10.12659/MSM.923328] [PMID: 32369458]
[47]
Wang, Z.; Zhao, Z.; Yang, Y.; Luo, M.; Zhang, M.; Wang, X.; Liu, L.; Hou, N.; Guo, Q.; Song, T.; Guo, B.; Huang, C. MiR-99b-5p and miR-203a-3p function as tumor suppressors by targeting IGF-1R in gastric cancer. Sci. Rep., 2018, 8(1), 10119-12.
[http://dx.doi.org/10.1038/s41598-018-27583-y] [PMID: 29973668]
[48]
Liu, R.; Chen, Y.; Shou, T.; Hu, J.; Qing, C. miRNA-99b-5p targets FZD8 to inhibit non-small cell lung cancer proliferation, migration and invasion. OncoTargets Ther., 2019, 12, 2615-2621.
[http://dx.doi.org/10.2147/OTT.S199196] [PMID: 31040702]
[49]
Jiang, S.; Chen, H.; He, K.; Wang, J. Human bone marrow mesenchymal stem cells-derived exosomes attenuated prostate cancer progression via the miR-99b-5p/IGF1R axis. Bioengineered, 2022, 13(2), 2004-2016.
[http://dx.doi.org/10.1080/21655979.2021.2009416] [PMID: 35030978]
[50]
Kane, N.M.; Howard, L.; Descamps, B.; Meloni, M.; McClure, J.; Lu, R.; McCahill, A.; Breen, C.; Mackenzie, R.M.; Delles, C.; Mountford, J.C.; Milligan, G.; Emanueli, C.; Baker, A.H. Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells, 2012, 30(4), 643-654.
[http://dx.doi.org/10.1002/stem.1026] [PMID: 22232059]
[51]
Macfarlan, T.; Kutney, S.; Altman, B.; Montross, R.; Yu, J.; Chakravarti, D. Human THAP7 is a chromatin-associated, histone tail-binding protein that represses transcription via recruitment of HDAC3 and nuclear hormone receptor corepressor. J. Biol. Chem., 2005, 280(8), 7346-7358.
[http://dx.doi.org/10.1074/jbc.M411675200] [PMID: 15561719]
[52]
Dejosez, M.; Krumenacker, J.S.; Zitur, L.J.; Passeri, M.; Chu, L.F.; Songyang, Z.; Thomson, J.A.; Zwaka, T.P. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell, 2008, 133(7), 1162-1174.
[http://dx.doi.org/10.1016/j.cell.2008.05.047] [PMID: 18585351]
[53]
Lin, Y.; Khokhlatchev, A.; Figeys, D.; Avruch, J. Death-associated protein 4 binds MST1 and augments MST1-induced apoptosis. J. Biol. Chem., 2002, 277(50), 47991-48001.
[http://dx.doi.org/10.1074/jbc.M202630200] [PMID: 12384512]
[54]
Cayrol, C.; Lacroix, C.; Mathe, C.; Ecochard, V.; Ceribelli, M.; Loreau, E.; Lazar, V.; Dessen, P.; Mantovani, R.; Aguilar, L.; Girard, J.P. The THAP–zinc finger protein THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell-cycle target genes. Blood, 2007, 109(2), 584-594.
[http://dx.doi.org/10.1182/blood-2006-03-012013] [PMID: 17003378]
[55]
Balakrishnan, M.P.; Cilenti, L.; Mashak, Z.; Popat, P.; Alnemri, E.S.; Zervos, A.S. THAP5 is a human cardiac-specific inhibitor of cell cycle that is cleaved by the proapoptotic Omi/HtrA2 protease during cell death. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(2), H643-H653.
[http://dx.doi.org/10.1152/ajpheart.00234.2009] [PMID: 19502560]
[56]
Majumdar, S.; Singh, A.; Rio, D.C. The human THAP9 gene encodes an active P-element DNA transposase. Science, 2013, 339(6118), 446-448.
[http://dx.doi.org/10.1126/science.1231789] [PMID: 23349291]
[57]
Gervais, V.; Campagne, S.; Durand, J.; Muller, I.; Milon, A. NMR studies of a new family of DNA binding proteins: The THAP proteins. J. Biomol. NMR, 2013, 56(1), 3-15.
[http://dx.doi.org/10.1007/s10858-012-9699-1] [PMID: 23306615]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy