Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Carbon Nanotubes for Targeted Therapy: Safety, Efficacy, Feasibility and Regulatory Aspects

Author(s): Babita Gupta, Pramod Kumar Sharma and Rishabha Malviya*

Volume 30, Issue 2, 2024

Published on: 05 January, 2024

Page: [81 - 99] Pages: 19

DOI: 10.2174/0113816128282085231226065407

Price: $65

conference banner
Abstract

It is crucial that novel and efficient drug delivery techniques be created in order to improve the pharmacological profiles of a wide variety of classes of medicinal compounds. Carbon nanotubes (CNTs) have recently come to the forefront as an innovative and very effective technique for transporting and translocating medicinal compounds. CNTs were suggested and aggressively researched as multifunctional novel transporters designed for targeted pharmaceutical distribution and used in diagnosis. CNTs can act as vectors for direct administration of pharmaceuticals, particularly chemotherapeutic medications. Multi-walled CNTs make up the great majority of CNT transporters, and these CNTs were used in techniques to target cancerous cells. It is possible to employ Carbon nanotubes (CNTs) to transport bioactive peptides, proteins, nucleic acids, and medicines by functionalizing them with these substances. Due to their low toxicity and absence of immunogenicity, carbon nanotubes are not immunogenic. Ammonium-functionalized carbon nanotubes are also attractive vectors for gene-encoding nucleic acids. CNTs that have been coupled with antigenic peptides have the potential to be developed into a novel and efficient approach for the use of synthetic vaccines. CNTs bring up an enormous number of new avenues for future medicine development depending on targets within cells, which have until now been difficult to access. This review focuses on the numerous applications of various CNT types used as medicine transport systems and on the utilization of CNTs for therapeutical purposes.

Keywords: Carbon nanotube, targeted delivery, drug delivery, patient care, toxicity, chemotherapeutic medications.

« Previous
[1]
Bacon R. Growth, structure, and properties of graphite whiskers. J Appl Phys 1960; 31(2): 283-90.
[http://dx.doi.org/10.1063/1.1735559]
[2]
Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition. J Cryst Growth 1976; 32(3): 335-49.
[http://dx.doi.org/10.1016/0022-0248(76)90115-9]
[3]
Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354(6348): 56-8.
[http://dx.doi.org/10.1038/354056a0]
[4]
Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes-the route toward applications. Science 2002; 297(5582): 787-92.
[http://dx.doi.org/10.1126/science.1060928] [PMID: 12161643]
[5]
Ericson LM, Fan H, Peng H, et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004; 305(5689): 1447-50.
[http://dx.doi.org/10.1126/science.1101398] [PMID: 15353797]
[6]
Milne WI, Teo KBK, Amaratunga GAJ, et al. Carbon nanotubes as field emission sources. J Mater Chem 2004; 14(6): 933-43.
[http://dx.doi.org/10.1039/b314155c]
[7]
Martin CR, Kohli P. The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2003; 2(1): 29-37.
[http://dx.doi.org/10.1038/nrd988] [PMID: 12509757]
[8]
Bianco A, Prato M. Can carbon nanotubes be considered useful tools for biological applications. Adv Mater 2003; 15(20): 1765-8.
[http://dx.doi.org/10.1002/adma.200301646]
[9]
Kam NWS, Dai H. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J Am Chem Soc 2005; 127(16): 6021-6.
[http://dx.doi.org/10.1021/ja050062v] [PMID: 15839702]
[10]
Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K. Advancement in carbon nanotubes: Basics, biomedical applications and toxicity. J Pharm Pharmacol 2011; 63(2): 141-63.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01167.x] [PMID: 21235578]
[11]
Lu F, Gu L, Meziani MJ, et al. Advances in bioapplications of carbon nanotubes. Adv Mater 2009; 21(2): 139-52.
[http://dx.doi.org/10.1002/adma.200801491]
[12]
Hilder TA, Hill JM. Modeling the loading and unloading of drugs into nanotubes. Small 2009; 5(3): 300-8.
[http://dx.doi.org/10.1002/smll.200800321] [PMID: 19058282]
[13]
Thordarson P, Le Droumaguet B, Velonia K. Well-defined protein–polymer conjugates-synthesis and potential applications. Appl Microbiol Biotechnol 2006; 73(2): 243-54.
[http://dx.doi.org/10.1007/s00253-006-0574-4] [PMID: 17061132]
[14]
Chen X, Lee GS, Zettl A, Bertozzi CR. Biomimetic engineering of carbon nanotubes by using cell surface mucin mimics. Angew Chem Int Ed 2004; 43(45): 6111-6.
[http://dx.doi.org/10.1002/anie.200460620] [PMID: 15549753]
[15]
Pastorin G. Crucial functionalizations of carbon nanotubes for improved drug delivery: A valuable option? Pharm Res 2009; 26(4): 746-69.
[http://dx.doi.org/10.1007/s11095-008-9811-0] [PMID: 19142717]
[16]
Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 2008; 41(1): 60-8.
[http://dx.doi.org/10.1021/ar700089b] [PMID: 17867649]
[17]
Bahr JL, Tour JM. Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 2002; 12(7): 1952-8.
[http://dx.doi.org/10.1039/b201013p]
[18]
Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000; 287(5453): 637-40.
[http://dx.doi.org/10.1126/science.287.5453.637] [PMID: 10649994]
[19]
Pantarotto D. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Comm 2004; 7(1): 16.
[20]
Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M. Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun 2002; (24): 3050-1.
[http://dx.doi.org/10.1039/b209843a] [PMID: 12536811]
[21]
Kim JS, Song KS, Lee JK, et al. Toxicogenomic comparison of multi-wall carbon nanotubes (MWCNTs) and asbestos. Arch Toxicol 2012; 86(4): 553-62.
[http://dx.doi.org/10.1007/s00204-011-0770-6] [PMID: 22076105]
[22]
Jha R, Singh A, Sharma PK, Fuloria NK. Smart carbon nanotubes for drug delivery system: A comprehensive study. J Drug Deliv Sci Technol 2020; 58: 101811.
[http://dx.doi.org/10.1016/j.jddst.2020.101811]
[23]
Saliev T. The advances in biomedical applications of carbon nanotubes. C 2019; 5(2): 29.
[http://dx.doi.org/10.3390/c5020029]
[24]
Hilder TA, Hill JM. Theoretical comparison of nanotube materials for drug delivery. Micro Nano Lett 2008; 3(1): 18-24.
[http://dx.doi.org/10.1049/mnl:20070070]
[25]
Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv Drug Deliv Rev 2006; 58(14): 1460-70.
[http://dx.doi.org/10.1016/j.addr.2006.09.015] [PMID: 17113677]
[26]
Saito N, Usui Y, Aoki K, et al. Carbon nanotubes for biomaterials in contact with bone. Curr Med Chem 2008; 15(5): 523-7.
[http://dx.doi.org/10.2174/092986708783503140] [PMID: 18289008]
[27]
Neves LFF, Krais JJ, Van Rite BD, Ramesh R, Resasco DE, Harrison RG. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy. Nanotechnology 2013; 24(37): 375104.
[http://dx.doi.org/10.1088/0957-4484/24/37/375104] [PMID: 23975064]
[28]
Flahaut E, Bacsa R, Peigney A, Laurent C. Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chem Commun 2003; 12(12): 1442-3.
[http://dx.doi.org/10.1039/b301514a] [PMID: 12841282]
[29]
Liu L, Guo GY, Jayanthi CS, Wu SY. Colossal paramagnetic moments in metallic carbon nanotori. Phys Rev Lett 2002; 88(21): 217206.
[http://dx.doi.org/10.1103/PhysRevLett.88.217206] [PMID: 12059501]
[30]
Nasibulin AG, Pikhitsa PV, Jiang H, et al. A novel hybrid carbon material. Nat Nanotechnol 2007; 2(3): 156-61.
[http://dx.doi.org/10.1038/nnano.2007.37] [PMID: 18654245]
[31]
Awasthi K, Srivastava A, Srivastava ON. Synthesis of carbon nanotubes. J Nanosci Nanotechnol 2005; 5(10): 1616-36.
[http://dx.doi.org/10.1166/jnn.2005.407] [PMID: 16245519]
[32]
Wang Y, Zhang Z, Liu H, et al. The effect of catalyst concentration on the synthesis of single-wall carbon nanotubes. Spectrochim Acta A Mol Biomol Spectrosc 2002; 58(10): 2089-95.
[http://dx.doi.org/10.1016/S1386-1425(01)00691-6] [PMID: 12212733]
[33]
Ajayan PM, Terrones M, de la Guardia A, et al. Nanotubes in a flash-ignition and reconstruction. Science 2002; 296(5568): 705.
[http://dx.doi.org/10.1126/science.296.5568.705] [PMID: 11976446]
[34]
Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature 1992; 358(6383): 220-2.
[http://dx.doi.org/10.1038/358220a0]
[35]
Seraphin S, Zhou D, Jiao J, Withers JC, Loutfy R. Effect of processing conditions on the morphology and yield of carbon nanotubes. Carbon 1993; 31(5): 685-9.
[http://dx.doi.org/10.1016/0008-6223(93)90004-T]
[36]
Gamaly EG, Ebbesen TW. Mechanism of carbon nanotube formation in the arc discharge. Phys Rev B Condens Matter 1995; 52(3): 2083-9.
[http://dx.doi.org/10.1103/PhysRevB.52.2083] [PMID: 9981282]
[37]
Byszewski P, Lange H, Huczko A, Behnke JF. Fullerene and nanotube synthesis. plasma spectroscopy studies. J Phys Chem Solids 1997; 58(11): 1679-83.
[http://dx.doi.org/10.1016/S0022-3697(97)00051-6]
[38]
Liu C, Cheng HM, Cong HT, et al. Synthesis of macroscopically long ropes of well-aligned single-walled carbon nanotubes. Adv Mater 2000; 12(16): 1190-2.
[http://dx.doi.org/10.1002/1521-4095(200008)12:16<1190::AID-ADMA1190>3.0.CO;2-C]
[39]
Ando Y, Zhao XL, Hirahara K. Mass production of single-wall carbon nanotubes by the arc plasma jet method. Chem Phys Lett 2000; 323: 580.
[http://dx.doi.org/10.1016/S0009-2614(00)00556-X]
[40]
Takizawa M, Bandow S, Torii T, Iijima S. Effect of environment temperature for synthesizing single-wall carbon nanotubes by arc vaporization method. Chem Phys Lett 1999; 302(1-2): 146-50.
[http://dx.doi.org/10.1016/S0009-2614(99)00124-4]
[41]
Arepalli S. Laser ablation process for single-walled carbon nanotube production. J Nanosci Nanotechnol 2004; 4(4): 317-25.
[http://dx.doi.org/10.1166/jnn.2004.072] [PMID: 15296222]
[42]
Nagy JB, Bister G, Fonseca A, et al. On the growth mechanism of single-walled carbon nanotubes by catalytic carbon vapor deposition on supported metal catalysts. J Nanosci Nanotechnol 2004; 4(4): 326-45.
[http://dx.doi.org/10.1166/jnn.2004.069] [PMID: 15296223]
[43]
Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes. Science 1996; 273(5274): 483-7.
[http://dx.doi.org/10.1126/science.273.5274.483] [PMID: 8662534]
[44]
Conceicao J, Laaksonen RT, Wang LS, Guo T, Nordlander P, Smalley RE. Photoelectron spectroscopy of transition-metal clusters: Correlation of valence electronic structure to reactivity. Phys Rev B Condens Matter 1995; 51(7): 4668-71.
[http://dx.doi.org/10.1103/PhysRevB.51.4668] [PMID: 9979322]
[45]
Dillon AC, Parilla PA, Alleman JL, Perkins JD, Heben MJ. Controlling single-wall nanotube diameters with variation in laser pulse power. Chem Phys Lett 2000; 316(1-2): 13-8.
[http://dx.doi.org/10.1016/S0009-2614(99)01259-2]
[46]
Eklund PC, Pradhan BK, Kim UJ, et al. Large-scale production of single-walled carbon nanotubes using ultrafast pulses from a free electron laser. Nano Lett 2002; 2(6): 561-6.
[http://dx.doi.org/10.1021/nl025515y]
[47]
Kumar M, Ando Y. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J Nanosci Nanotechnol 2010; 10(6): 3739-58.
[http://dx.doi.org/10.1166/jnn.2010.2939] [PMID: 20355365]
[48]
Jose-Yacaman M. Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett 1993; 273: 483-7.
[49]
Abdulkareem AS, Afolabi AS, Iyuke SE, Vz Pienaar HC. Synthesis of carbon nanotubes by swirled floating catalyst chemical vapour deposition method. J Nanosci Nanotechnol 2007; 7(9): 3233-8.
[http://dx.doi.org/10.1166/jnn.2007.685] [PMID: 18019155]
[50]
Inami N, Mohamed MA, Shikoh E, Fujiwara A. Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method. Sci Technol Adv Mater 2007; 8(4): 292-5.
[http://dx.doi.org/10.1016/j.stam.2007.02.009]
[51]
Shah KA, Tali BA. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 2016; 41: 67-82.
[http://dx.doi.org/10.1016/j.mssp.2015.08.013]
[52]
Kong J, Cassell AM, Dai H. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 1998; 292(4-6): 567-74.
[http://dx.doi.org/10.1016/S0009-2614(98)00745-3]
[53]
Hafner JH, Bronikowski MJ, Azamian BR, et al. Catalytic growth of single-wall carbon nanotubes from metal particles. Chem Phys Lett 1998; 296(1-2): 195-202.
[http://dx.doi.org/10.1016/S0009-2614(98)01024-0]
[54]
Endo M. Grow carbon fibers in the vapor phase. Chemtech 1988; 18: 568.
[55]
Tennent HG, Barber JJ, Hoch R. Hyperion Catalysis. Cambridge, MA 1996.
[56]
Tjong SC. Carbon nanotube reinforced composites: Metal and ceramic matrices. John Wiley & Sons 2009.
[http://dx.doi.org/10.1002/9783527626991]
[57]
Jamwal A, Hasan MZ, Agrawal R, Sharma M, Thakur S, Gupta P. Advancement in carbon nanotubes: Processing techniques, purification and industrial applications. Emerging Trends in Nanotechnology. Springer 2021; pp. 309-37.
[58]
Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J Vac Sci Technol A 2001; 19(4): 1800-5.
[http://dx.doi.org/10.1116/1.1380721]
[59]
Matson ML. Ultra-short, single-walled carbon nanotube capsules for diagnostic imaging and radiotherapy. Rice University 2012.
[60]
Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: I. pharmaceutical properties. Nanomedicine 2008; 4(3): 173-82.
[http://dx.doi.org/10.1016/j.nano.2008.04.002] [PMID: 18550451]
[61]
Itkis ME, Perea DE, Jung R, Niyogi S, Haddon RC. Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. J Am Chem Soc 2005; 127(10): 3439-48.
[http://dx.doi.org/10.1021/ja043061w] [PMID: 15755163]
[62]
Li PH, Qu YL, Xu XJ, et al. Synthesis of “cactus” top-decorated aligned carbon nanotubes and their third-order nonlinear optical properties. J Nanosci Nanotechnol 2006; 6(4): 990-5.
[http://dx.doi.org/10.1166/jnn.2006.167] [PMID: 16736755]
[63]
Odom TW, Huang JL, Lieber CM. Single-walled carbon nanotubes: From fundamental studies to new device concepts. Ann N Y Acad Sci 2002; 960(1): 203-15.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb03035.x] [PMID: 11971801]
[64]
Pantarotto D, Singh R, McCarthy D, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 2004; 43(39): 5242-6.
[http://dx.doi.org/10.1002/anie.200460437] [PMID: 15455428]
[65]
Kim BM, Qian S, Bau HH. Filling carbon nanotubes with particles. Nano Lett 2005; 5(5): 873-8.
[http://dx.doi.org/10.1021/nl050278v] [PMID: 15884886]
[66]
Georgakilas V, Voulgaris D, Vázquez E, et al. Purification of HiPCO carbon nanotubes via organic functionalization. J Am Chem Soc 2002; 124(48): 14318-9.
[http://dx.doi.org/10.1021/ja0260869] [PMID: 12452701]
[67]
Pantarotto D, Partidos CD, Graff R, et al. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J Am Chem Soc 2003; 125(20): 6160-4.
[http://dx.doi.org/10.1021/ja034342r] [PMID: 12785847]
[68]
McKee GSB, Vecchio KS. Thermogravimetric analysis of synthesis variation effects on CVD generated multiwalled carbon nanotubes. J Phys Chem B 2006; 110(3): 1179-86.
[http://dx.doi.org/10.1021/jp054265h] [PMID: 16471661]
[69]
Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A. Organic functionalization of carbon nanotubes. J Am Chem Soc 2002; 124(5): 760-1.
[http://dx.doi.org/10.1021/ja016954m] [PMID: 11817945]
[70]
Karajanagi SS, Vertegel AA, Kane RS, Dordick JS. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 2004; 20(26): 11594-9.
[http://dx.doi.org/10.1021/la047994h] [PMID: 15595788]
[71]
Zheng LX, O’Connell MJ, Doorn SK, et al. Ultralong single-wall carbon nanotubes. Nat Mater 2004; 3(10): 673-6.
[http://dx.doi.org/10.1038/nmat1216] [PMID: 15359345]
[72]
Sánchez S, Pumera M, Fàbregas E. Carbon nanotube/polysulfone screen-printed electrochemical immunosensor. Biosens Bioelectron 2007; 23(3): 332-40.
[http://dx.doi.org/10.1016/j.bios.2007.04.021] [PMID: 17560102]
[73]
Heller DA, Barone PW, Swanson JP, Mayrhofer RM, Strano MS. Using Raman spectroscopy to elucidate the aggregation state of single-walled carbon nanotubes. J Phys Chem B 2004; 108(22): 6905-9.
[http://dx.doi.org/10.1021/jp037690o]
[74]
Eklund P. Vibrational modes of carbon nanotubes; Spectroscopy & theory. Carbon 2004; 33: 6905-9.
[75]
De La Zerda A, Zavaleta C, Keren S, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 2008; 3(9): 557-62.
[http://dx.doi.org/10.1038/nnano.2008.231] [PMID: 18772918]
[76]
Tosun Z, McFetridge PS. A composite SWNT-collagen matrix: Characterization and preliminary assessment as a conductive peripheral nerve regeneration matrix. J Neural Eng 2010; 7(6): 066002.
[http://dx.doi.org/10.1088/1741-2560/7/6/066002] [PMID: 20966538]
[77]
Kostarelos K. Rational design and engineering of delivery systems for therapeutics: Biomedical exercises in colloid and surface science. Adv Colloid Interface Sci 2003; 106(1-3): 147-68.
[http://dx.doi.org/10.1016/S0001-8686(03)00109-X] [PMID: 14672846]
[78]
Hasnain MS, Ahmad SA, Hoda MN, Rishishwar S, Rishishwar P, Nayak AK. Stimuli-responsive carbon nanotubes for targeted drug delivery. Stimuli responsive polymeric nanocarriers for drug delivery applications. Woodhead Publishing 2019; pp. 321-44.
[http://dx.doi.org/10.1016/B978-0-08-101995-5.00015-5]
[79]
Shi Kam NW, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into Mammalian cells. J Am Chem Soc 2004; 126(22): 6850-1.
[http://dx.doi.org/10.1021/ja0486059] [PMID: 15174838]
[80]
Thakare VS, Das M, Jain AK, Patil S, Jain S. Carbon nanotubes in cancer theragnosis. Nanomedicine 2010; 5(8): 1277-301.
[http://dx.doi.org/10.2217/nnm.10.95] [PMID: 21039202]
[81]
Ferrari M. Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer 2005; 5(3): 161-71.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[82]
Kam NWS, O’Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci 2005; 102(33): 11600-5.
[http://dx.doi.org/10.1073/pnas.0502680102] [PMID: 16087878]
[83]
Prakash S, Kulamarva A. Recent advances in drug delivery: Potential and limitations of carbon nanotubes. Recent Pat Drug Deliv Formul 2007; 1(3): 214-21.
[http://dx.doi.org/10.2174/187221107782331601] [PMID: 19075888]
[84]
Quintana A, Raczka E, Piehler L, et al. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 2002; 19(9): 1310-6.
[http://dx.doi.org/10.1023/A:1020398624602] [PMID: 12403067]
[85]
Wu W, Wieckowski S, Pastorin G, et al. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed 2005; 44(39): 6358-62.
[http://dx.doi.org/10.1002/anie.200501613] [PMID: 16138384]
[86]
Krol S, Macrez R, Docagne F, et al. Therapeutic benefits from nanoparticles: The potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem Rev 2013; 113(3): 1877-903.
[http://dx.doi.org/10.1021/cr200472g] [PMID: 23157552]
[87]
Kulamarva A, Raja PMV, Bhathena J, et al. Microcapsule carbon nanotube devices for therapeutic applications. Nanotechnology 2009; 20(2): 025612.
[http://dx.doi.org/10.1088/0957-4484/20/2/025612] [PMID: 19417281]
[88]
Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: Oncogene and non-oncogene addiction. Cell 2009; 136(5): 823-37.
[http://dx.doi.org/10.1016/j.cell.2009.02.024] [PMID: 19269363]
[89]
Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006; 5(8): 1909-17.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0141] [PMID: 16928810]
[90]
Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev 2011; 63(14-15): 1340-51.
[http://dx.doi.org/10.1016/j.addr.2011.06.013] [PMID: 21756952]
[91]
Iannazzo D, Piperno A, Pistone A, Grassi G, Galvagno S. Recent advances in carbon nanotubes as delivery systems for anticancer drugs. Curr Med Chem 2013; 20(11): 1333-54.
[http://dx.doi.org/10.2174/0929867311320110001] [PMID: 23432581]
[92]
Maeda H. SMANCS and polymer-conjugated macromolecular drugs: Advantages in cancer chemotherapy. Adv Drug Deliv Rev 2001; 46(1-3): 169-85.
[http://dx.doi.org/10.1016/S0169-409X(00)00134-4] [PMID: 11259839]
[93]
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92.
[PMID: 2946403]
[94]
Hillebrenner H, Buyukserin F, Kang M, Mota MO, Stewart JD, Martin CR. Corking nano test tubes by chemical self-assembly. J Am Chem Soc 2006; 128(13): 4236-7.
[http://dx.doi.org/10.1021/ja058455h] [PMID: 16568992]
[95]
Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 2011; 6(1): 555.
[http://dx.doi.org/10.1186/1556-276X-6-555] [PMID: 21995320]
[96]
Garse H, Vij M, Yamgar M, Kadam V, Hirlekar R. Formulation and evaluation of a gastroretentive dosage form of labetalol hydrochloride. Arch Pharm Res 2010; 33(3): 405-10.
[http://dx.doi.org/10.1007/s12272-010-0309-z] [PMID: 20361305]
[97]
Kostarelos K, Lacerda L, Pastorin G, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2007; 2(2): 108-13.
[http://dx.doi.org/10.1038/nnano.2006.209] [PMID: 18654229]
[98]
Brenner BM, Hostetter TH, Humes HD. Glomerular permselectivity: Barrier function based on discrimination of molecular size and charge. Am J Physiol 1978; 234(6): F455-60.
[PMID: 665772]
[99]
Yang F, Fu DL, Long J, Ni QX. Magnetic lymphatic targeting drug delivery system using carbon nanotubes. Med Hypotheses 2008; 70(4): 765-7.
[http://dx.doi.org/10.1016/j.mehy.2007.07.045] [PMID: 17910909]
[100]
Yu X, Munge B, Patel V, et al. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 2006; 128(34): 11199-205.
[http://dx.doi.org/10.1021/ja062117e] [PMID: 16925438]
[101]
Yang F, Hu J, Yang D, et al. Pilot study of targeting magnetic carbon nanotubes to lymph nodes. Nanomedicine 2009; 4(3): 317-30.
[http://dx.doi.org/10.2217/nnm.09.5] [PMID: 19331539]
[102]
Bystrzejewski M, Cudziło S, Huczko A, et al. Carbon encapsulated magnetic nanoparticles for biomedical applications: Thermal stability studies. Biomol Eng 2007; 24(5): 555-8.
[http://dx.doi.org/10.1016/j.bioeng.2007.08.006] [PMID: 17855165]
[103]
Kassab AC, Xu K, Denkbaş EB, Dou Y, Zhao S, Pişkin E. Rifampicin carrying polyhydroxybutyrate microspheres as a potential chemoembolization agent. J Biomater Sci Polym Ed 1997; 8(12): 947-61.
[http://dx.doi.org/10.1163/156856297X00119] [PMID: 9399144]
[104]
Wong BS, Yoong SL, Jagusiak A, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 2013; 65(15): 1964-2015.
[http://dx.doi.org/10.1016/j.addr.2013.08.005] [PMID: 23954402]
[105]
Pardridge WM. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2005; 2(1): 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3] [PMID: 15717053]
[106]
Pardridge WM. Blood–brain barrier delivery. Drug Discov Today 2007; 12(1-2): 54-61.
[http://dx.doi.org/10.1016/j.drudis.2006.10.013] [PMID: 17198973]
[107]
Huynh GH, Deen DF, Szoka FC Jr. Barriers to carrier mediated drug and gene delivery to brain tumors. J Control Release 2006; 110(2): 236-59.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.053] [PMID: 16318895]
[108]
Rautioa J, Chikhale P. Drug delivery systems for brain tumor therapy. Curr Pharm Des 2004; 10(12): 1341-53.
[http://dx.doi.org/10.2174/1381612043384916] [PMID: 15134485]
[109]
Yang Z, Zhang Y, Yang Y, et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine 2010; 6(3): 427-41.
[http://dx.doi.org/10.1016/j.nano.2009.11.007] [PMID: 20056170]
[110]
Costa PM, Bourgognon M, Wang JTW, Al-Jamal KT. Functionalised carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery. J Control Release 2016; 241: 200-19.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.033] [PMID: 27693751]
[111]
Tan JM, Foo JB, Fakurazi S, Hussein MZ. Release behaviour and toxicity evaluation of levodopa from carboxylated single-walled carbon nanotubes. Beilstein J Nanotechnol 2015; 6: 243-53.
[http://dx.doi.org/10.3762/bjnano.6.23] [PMID: 25671168]
[112]
Ren J, Shen S, Wang D, et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials 2012; 33(11): 3324-33.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.025] [PMID: 22281423]
[113]
Zhao D, Alizadeh D, Zhang L, et al. Carbon nanotubes enhance CpG uptake and potentiate antiglioma immunity. Clin Cancer Res 2011; 17(4): 771-82.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2444] [PMID: 21088258]
[114]
Al-Jamal KT, Gherardini L, Bardi G, et al. Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci 2011; 108(27): 10952-7.
[http://dx.doi.org/10.1073/pnas.1100930108] [PMID: 21690348]
[115]
Kafa H, Wang JTW, Rubio N, et al. Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood–brain barrier in vitro and in vivo. J Control Release 2016; 225: 217-29.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.031] [PMID: 26809004]
[116]
Yang ZR, Wang HF, Zhao J, et al. Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther 2007; 14(7): 599-615.
[http://dx.doi.org/10.1038/sj.cgt.7701054] [PMID: 17479105]
[117]
Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev 2009; 109(2): 259-302.
[http://dx.doi.org/10.1021/cr800409e] [PMID: 19053809]
[118]
Gao K, Huang L. Nonviral methods for siRNA delivery. Mol Pharm 2009; 6(3): 651-8.
[http://dx.doi.org/10.1021/mp800134q] [PMID: 19115957]
[119]
Seow Y, Wood MJ. Biological gene delivery vehicles: Beyond viral vectors. Mol Ther 2009; 17(5): 767-77.
[http://dx.doi.org/10.1038/mt.2009.41] [PMID: 19277019]
[120]
Zare H, Ahmadi S, Ghasemi A, et al. Carbon nanotubes: Smart drug/gene delivery carriers. Int J Nanomed 2021; 16: 1681-706.
[http://dx.doi.org/10.2147/IJN.S299448] [PMID: 33688185]
[121]
de Carvalho LEN, Diaz RS, Justo JF, Castilho PJR. Advances and perspectives in the use of carbon nanotubes in vaccine development. Int J Nanomed 2021; 16: 5411-35.
[http://dx.doi.org/10.2147/IJN.S314308] [PMID: 34408416]
[122]
Ragusa A, García I, Penadés S. Nanoparticles as nonviral gene delivery vectors. IEEE Trans Nanobiosci 2007; 6(4): 319-30.
[http://dx.doi.org/10.1109/TNB.2007.908996] [PMID: 18217625]
[123]
Kim WJ, Kim SW. Efficient siRNA delivery with non-viral polymeric vehicles. Pharm Res 2009; 26(3): 657-66.
[http://dx.doi.org/10.1007/s11095-008-9774-1] [PMID: 19015957]
[124]
Reischl D, Zimmer A. Drug delivery of siRNA therapeutics: Potentials and limits of nanosystems. Nanomedicine 2009; 5(1): 8-20.
[http://dx.doi.org/10.1016/j.nano.2008.06.001] [PMID: 18640078]
[125]
Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nano vectors for the delivery of therapeutics. Biochimica et Biophysica Acta (BBA)-Biomembranes 2006; 1758(3): 404-12.
[http://dx.doi.org/10.1016/j.bbamem.2005.10.008] [PMID: 16307724]
[126]
Ji SR, Liu C, Zhang B, et al. Carbon nanotubes in cancer diagnosis and therapy. Biochimica et Biophysica Acta (BBA) Rev Can 1806; 2010: 29-35.
[127]
Singh R, Pantarotto D, McCarthy D, et al. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 2005; 127(12): 4388-96.
[http://dx.doi.org/10.1021/ja0441561] [PMID: 15783221]
[128]
Cai D, Mataraza JM, Qin ZH, et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2005; 2(6): 449-54.
[http://dx.doi.org/10.1038/nmeth761] [PMID: 15908924]
[129]
Ren X, Lin J, Wang X, et al. Photoactivatable RNAi for cancer gene therapy triggered by near-infrared-irradiated single-walled carbon nanotubes. Int J Nanomedicine 2017; 12: 7885-96.
[http://dx.doi.org/10.2147/IJN.S141882] [PMID: 29138556]
[130]
Pan B, Cui D, Xu P, et al. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology 2009; 20(12): 125101.
[http://dx.doi.org/10.1088/0957-4484/20/12/125101] [PMID: 19420458]
[131]
Podesta JE, Al-Jamal KT, Herrero MA, et al. Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small 2009; 5(10): 1176-85.
[http://dx.doi.org/10.1002/smll.200801572] [PMID: 19306454]
[132]
Kwak SY, Lew TTS, Sweeney CJ, et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat Nanotechnol 2019; 14(5): 447-55.
[http://dx.doi.org/10.1038/s41565-019-0375-4] [PMID: 30804482]
[133]
Demirer GS, Zhang H, Goh NS, González-Grandío E, Landry MP. Carbon nanotube–mediated DNA delivery without transgene integration in intact plants. Nat Protoc 2019; 14(10): 2954-71.
[http://dx.doi.org/10.1038/s41596-019-0208-9] [PMID: 31534231]
[134]
Robertson CA, Evans DH, Abrahamse H. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 2009; 96(1): 1-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.04.001] [PMID: 19406659]
[135]
Zhu Z, Tang Z, Phillips JA, Yang R, Wang H, Tan W. Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 2008; 130(33): 10856-7.
[http://dx.doi.org/10.1021/ja802913f] [PMID: 18661988]
[136]
Hou L, Yuan Y, Ren J, et al. In vitro and in vivo comparative study of the phototherapy anticancer activity of hyaluronic acid- modified single-walled carbon nanotubes, graphene oxide, and fullerene. J Nanopart Res 2017; 19(8): 286.
[http://dx.doi.org/10.1007/s11051-017-3977-5]
[137]
Debele T, Peng S, Tsai HC. Drug carrier for photodynamic cancer therapy. Int J Mol Sci 2015; 16(9): 22094-136.
[http://dx.doi.org/10.3390/ijms160922094] [PMID: 26389879]
[138]
Li Y, Li X, Doughty A, et al. Phototherapy using immunologically modified carbon nanotubes to potentiate checkpoint blockade for metastatic breast cancer. Nanomedicine 2019; 18: 44-53.
[http://dx.doi.org/10.1016/j.nano.2019.02.009] [PMID: 30844573]
[139]
Tondro GH, Behzadpour N, Keykhaee Z, Akbari N, Sattarahmady N. Carbon@polypyrrole nanotubes as a photosensitizer in laser phototherapy of Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2019; 180: 481-6.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.020] [PMID: 31102852]
[140]
Xie L, Wang G, Zhou H, et al. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials 2016; 103: 219-28.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.058] [PMID: 27392290]
[141]
Chakravarty P, Marches R, Zimmerman NS, et al. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc Natl Acad Sci 2008; 105(25): 8697-702.
[http://dx.doi.org/10.1073/pnas.0803557105] [PMID: 18559847]
[142]
Bottini M, Rosato N, Bottini N. PEG-modified carbon nanotubes in biomedicine: Current status and challenges ahead. Biomacromolecules 2011; 12(10): 3381-93.
[http://dx.doi.org/10.1021/bm201020h] [PMID: 21916410]
[143]
Serrano-Aroca Á, Takayama K, Tuñón-Molina A, et al. Carbon-based nanomaterials: Promising antiviral agents to combat COVID-19 in the microbial-resistant era. ACS Nano 2021; 15(5): 8069-86.
[http://dx.doi.org/10.1021/acsnano.1c00629] [PMID: 33826850]
[144]
Innocenzi P, Stagi L. Carbon-based antiviral nanomaterials: Graphene, C-dots, and fullerenes. A perspective. Chem Sci 2020; 11(26): 6606-22.
[http://dx.doi.org/10.1039/D0SC02658A] [PMID: 33033592]
[145]
Iannazzo D, Pistone A, Galvagno S, et al. Synthesis and anti-HIV activity of carboxylated and drug-conjugated multi-walled carbon nanotubes. Carbon 2015; 82: 548-61.
[http://dx.doi.org/10.1016/j.carbon.2014.11.007]
[146]
Yeh YT, Gulino K, Zhang Y, et al. A rapid and label-free platform for virus capture and identification from clinical samples. Proc Natl Acad Sci 2020; 117(2): 895-901.
[http://dx.doi.org/10.1073/pnas.1910113117] [PMID: 31882450]
[147]
Wang X, Zhou Z, Chen F. Surface modification of carbon nanotubes with enhanced antifungal activity for the control of plant fungal pathogen. Materials 2017; 10(12): 1375.
[http://dx.doi.org/10.3390/ma10121375] [PMID: 29189733]
[148]
Janani SP, Arasu PT, Muzaddadi IU, et al. Photodynamic therapy with nanomaterials to combat microbial infections. Emerging nanomaterials and nano-based drug delivery approaches to combat antimicrobial resistance. Elsevier 2022; pp. 531-76.
[149]
Hao Y, Cao X, Ma C, et al. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Front Plant Sci 2017; 8: 1332.
[http://dx.doi.org/10.3389/fpls.2017.01332] [PMID: 28824670]
[150]
Zare-Zardini H, Amiri A, Shanbedi M, Memarpoor-Yazdi M, Asoodeh A. Studying of antifungal activity of functionalized multiwalled carbon nanotubes by microwave-assisted technique. Surf Interface Anal 2013; 45(3): 751-5.
[http://dx.doi.org/10.1002/sia.5152]
[151]
Sinha N, Yeow JTW. Carbon nanotubes for biomedical applications. IEEE Trans Nanobiosci 2005; 4(2): 180-95.
[http://dx.doi.org/10.1109/TNB.2005.850478] [PMID: 16117026]
[152]
Sharma S, Bhatia V. Nanoscale drug delivery systems for glaucoma: Experimental and in silico advances. Curr Top Med Chem 2021; 21(2): 115-25.
[http://dx.doi.org/10.2174/1568026620666200922114210] [PMID: 32962618]
[153]
Degim IT, Burgess DJ, Papadimitrakopoulos F. Carbon nanotubes for transdermal drug delivery. J Microencapsul 2010; 27(8): 669-81.
[http://dx.doi.org/10.3109/02652048.2010.506581] [PMID: 20690793]
[154]
Knepp VM, Szoka FC Jr, Guy RH. Controlled drug release from a novel liposomal delivery system. II. Transdermal delivery characteristics. J Control Release 1990; 12(1): 25-30.
[http://dx.doi.org/10.1016/0168-3659(90)90179-W]
[155]
Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 2001; 53(3): 321-39.
[http://dx.doi.org/10.1016/S0169-409X(01)00203-4] [PMID: 11744175]
[156]
Zhang L, Li L, An Z, Hoffman RM, Hofmann GA. In vivo transdermal delivery of large molecules by pressure-mediated electroincorporation and electroporation: A novel method for drug and gene delivery. Bioelectrochem Bioenerg 1997; 42(2): 283-92.
[http://dx.doi.org/10.1016/S0302-4598(96)05128-8]
[157]
Yun JM, Im JS, Jin DH, Lee YS, Kim HI. Controlled release behavior of temperature responsive composite hydrogel containing activated carbon. Carbon Lett 2008; 9(4): 283-8.
[http://dx.doi.org/10.5714/CL.2008.9.4.283]
[158]
Yun JM, Im J-S, Oh A-R, Lee Y-S, Kim H-I. Controlled release behavior of ph-responsive composite hydrogel containing activated carbon. Carbon letters 2009; 10(1): 33-7.
[http://dx.doi.org/10.5714/CL.2009.10.1.033]
[159]
Li W, Nadig D, Rasmussen HT, Patel K, Shah T. Sample preparation optimization for assay of active pharmaceutical ingredients in a transdermal drug delivery system using experimental designs. J Pharm Biomed Anal 2005; 37(3): 493-8.
[http://dx.doi.org/10.1016/j.jpba.2004.11.033] [PMID: 15740909]
[160]
Pliquett UF, Gusbeth CA, Weaver JC. Non-linearity of molecular transport through human skin due to electric stimulus. J Control Release 2000; 68(3): 373-86.
[http://dx.doi.org/10.1016/S0168-3659(00)00271-6] [PMID: 10974391]
[161]
Yun J, Im JS, Lee YS, Kim HI. Electro-responsive transdermal drug delivery behavior of PVA/PAA/MWCNT nanofibers. Eur Polym J 2011; 47(10): 1893-902.
[http://dx.doi.org/10.1016/j.eurpolymj.2011.07.024]
[162]
Ada GL. The traditional vaccines: An overview. In: Levine MM, Ed. New Generation Vaccines. NewYork: Marcel Dekker 1997; pp. 13-23.
[163]
Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005; 9(6): 674-9.
[http://dx.doi.org/10.1016/j.cbpa.2005.10.005] [PMID: 16233988]
[164]
Nadukkandy AS, Ganjoo E, Singh A, Dinesh Kumar L. Tracing new landscapes in the arena of nanoparticle-based cancer immunotherapy. Front Nanotechnol 2022; 4: 911063.
[http://dx.doi.org/10.3389/fnano.2022.911063]
[165]
Jawahar N, Surendra E, Krishna KR. A review on carbon nanotubes: A novel drug carrier for targeting cancer cells. J Pharm Sci Res 2015; 7: 141-54.
[166]
Ando Y. Carbon nanotube: The inside story. J Nanosci Nanotechnol 2010; 10(6): 3726-38.
[http://dx.doi.org/10.1166/jnn.2010.2017] [PMID: 20355364]
[167]
Wen J, Xu Y, Li H, Lu A, Sun S. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem Commun 2015; 51(57): 11346-58.
[http://dx.doi.org/10.1039/C5CC02887F] [PMID: 25990681]
[168]
Basu B, Mehta GK. Carbon nanotubes: A promising tool in drug delivery. Int J Pharma Bio Sci 2014; 5: 533-55.
[169]
Arruebo M, Galán M, Navascués N, et al. Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications. Chem Mater 2006; 18(7): 1911-9.
[http://dx.doi.org/10.1021/cm051646z]
[170]
Varshney K. Carbon nanotubes: A review on synthesis, properties, and applications. Int J Eng Res Gen Sci 2014; 2: 660-77.
[171]
Veetil JV, Ye K. Tailored carbon nanotubes for tissue engineering applications. Biotechnol Prog 2009; 25(3): 709-21.
[http://dx.doi.org/10.1002/btpr.165] [PMID: 19496152]
[172]
Berhanu D, Dybowska A, Misra SK, et al. Characterisation of carbon nanotubes in the context of toxicity studies. Environ Health 2009; 8(S1): S3.
[http://dx.doi.org/10.1186/1476-069X-8-S1-S3] [PMID: 20102588]
[173]
Lanone S, Boczkowski J. Biomedical applications and potential health risks of nanomaterials: Molecular mechanisms. Curr Mol Med 2006; 6(6): 651-63.
[http://dx.doi.org/10.2174/156652406778195026] [PMID: 17022735]
[174]
Soto K, Garza K, Murr L. Cytotoxic effects of aggregated nanomaterials. Acta Biomater 2007; 3(3): 351-8.
[http://dx.doi.org/10.1016/j.actbio.2006.11.004] [PMID: 17275430]
[175]
Wick P, Manser P, Limbach L, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 2007; 168(2): 121-31.
[http://dx.doi.org/10.1016/j.toxlet.2006.08.019] [PMID: 17169512]
[176]
Fraczek A, Menaszek E, Paluszkiewicz C, Blazewicz M. Comparative in vivo biocompatibility study of single- and multi-wall carbon nanotubes. Acta Biomater 2008; 4(6): 1593-602.
[http://dx.doi.org/10.1016/j.actbio.2008.05.018] [PMID: 18585111]
[177]
Takagi A, Hirose A, Nishimura T, et al. Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 2008; 33(1): 105-16.
[http://dx.doi.org/10.2131/jts.33.105] [PMID: 18303189]
[178]
Yacobi NR, Phuleria HC, Demaio L, et al. Nanoparticle effects on rat alveolar epithelial cell monolayer barrier properties. Toxicol In Vitro 2007; 21(8): 1373-81.
[http://dx.doi.org/10.1016/j.tiv.2007.04.003] [PMID: 17555923]
[179]
Sargent LM, Reynolds SH, Castranova V. Potential pulmonary effects of engineered carbon nanotubes: In vitro genotoxic effects. Nanotoxicology 2010; 4(4): 396-408.
[http://dx.doi.org/10.3109/17435390.2010.500444] [PMID: 20925447]
[180]
Coccini T, Roda E, Sarigiannis DA, et al. Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology 2010; 269(1): 41-53.
[http://dx.doi.org/10.1016/j.tox.2010.01.005] [PMID: 20079395]
[181]
Belyanskaya L, Weigel S, Hirsch C, Tobler U, Krug HF, Wick P. Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology 2009; 30(4): 702-11.
[http://dx.doi.org/10.1016/j.neuro.2009.05.005] [PMID: 19465056]
[182]
Alarifi S, Ali D, Verma A, Almajhdi FN, Al-Qahtani AA. Single-walled carbon nanotubes induce cytotoxicity and DNA damage via reactive oxygen species in human hepatocarcinoma cells. In Vitro Cell Dev Biol Anim 2014; 50(8): 714-22.
[http://dx.doi.org/10.1007/s11626-014-9760-3] [PMID: 24789727]
[183]
Bottini M, Bruckner S, Nika K, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 2006; 160(2): 121-6.
[http://dx.doi.org/10.1016/j.toxlet.2005.06.020] [PMID: 16125885]
[184]
Davoren M, Herzog E, Casey A, et al. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 2007; 21(3): 438-48.
[http://dx.doi.org/10.1016/j.tiv.2006.10.007] [PMID: 17125965]
[185]
Chiaretti M, Mazzanti G, Bosco S, et al. Carbon nanotubes toxicology and effects on metabolism and immunological modification in vitro and in vivo. J Phys Condens Matter 2008; 20(47): 474203.
[http://dx.doi.org/10.1088/0953-8984/20/47/474203]
[186]
Shvedova A, Castranova V, Kisin E, et al. Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 2003; 66(20): 1909-26.
[http://dx.doi.org/10.1080/713853956] [PMID: 14514433]
[187]
Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 2006; 20(7): 1202-12.
[http://dx.doi.org/10.1016/j.tiv.2006.03.008] [PMID: 16697548]
[188]
Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2003; 77(1): 126-34.
[http://dx.doi.org/10.1093/toxsci/kfg243] [PMID: 14514958]
[189]
Wang R, Mikoryak C, Li S, et al. Cytotoxicity screening of single-walled carbon nanotubes: Detection and removal of cytotoxic contaminants from carboxylated carbon nanotubes. Mol Pharm 2011; 8(4): 1351-61.
[http://dx.doi.org/10.1021/mp2001439] [PMID: 21688794]
[190]
Brown DM, Kinloch IA, Bangert U, et al. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 2007; 45(9): 1743-56.
[http://dx.doi.org/10.1016/j.carbon.2007.05.011]
[191]
Donaldson K, Aitken R, Tran L, et al. Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 2006; 92(1): 5-22.
[http://dx.doi.org/10.1093/toxsci/kfj130] [PMID: 16484287]
[192]
Pelley J, Saner M. International approaches to the regulatory governance of nanotechnology. Regulatory Governance Initiatives, Carleton University, 2009.
[193]
Slate RC. Environmental Protection Agency Regulation of Asbestos and Carbon Nanotubes Under the Toxic Substances Control Act: Investigating the Role of Politics, Science, and Policy in Administrative Rulemaking and Implementation. Doctoral dissertation, George Mason University, 2014.
[194]
Liu Y, Zhao Y, Sun B, Chen C. Understanding the toxicity of carbon nanotubes. Acc Chem Res 2013; 46(3): 702-13.
[http://dx.doi.org/10.1021/ar300028m] [PMID: 22999420]
[195]
Ezzati NDJ, Omidi Y, Losic D. Carbon nanotubes as an advanced drug and gene delivery nanosystem. Curr Nanosci 2011; 7(3): 297-314.
[http://dx.doi.org/10.2174/157341311795542444]
[196]
Lewinski N. Nanotechnology policy and environmental regulatory issues. J Eng Public Pol 2005; 9: 1-37.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy