Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Recent Advancements in Bioelectronic Medicine: A Review

Author(s): Sudipta Das, Baishali Ghosh, Rudra Narayan Sahoo and Amit Kumar Nayak*

Volume 21, Issue 11, 2024

Published on: 03 January, 2024

Page: [1445 - 1459] Pages: 15

DOI: 10.2174/0115672018286832231218112557

Price: $65

conference banner
Abstract

Bioelectronic medicine is a multidisciplinary field that combines molecular medicine, neurology, engineering, and computer science to design devices for diagnosing and treating diseases. The advancements in bioelectronic medicine can improve the precision and personalization of illness treatment. Bioelectronic medicine can produce, suppress, and measure electrical activity in excitable tissue. Bioelectronic devices modify specific neural circuits using electrons rather than pharmaceuticals and uses of bioelectronic processes to regulate the biological processes underlining various diseases. This promotes the potential to address the underlying causes of illnesses, reduce adverse effects, and lower costs compared to conventional medication. The current review presents different important aspects of bioelectronic medicines with recent advancements. The area of bioelectronic medicine has a lot of potential for treating diseases, enabling non-invasive therapeutic intervention by regulating brain impulses. Bioelectronic medicine uses electricity to control biological processes, treat illnesses, or regain lost capability. These new classes of medicines are designed by the technological developments in the detection and regulation of electrical signaling methods in the nervous system. Peripheral nervous system regulates a wide range of processes in chronic diseases; it involves implanting small devices onto specific peripheral nerves, which read and regulate the brain signaling patterns to achieve therapeutic effects specific to the signal capacity of a particular organ. The potential for bioelectronic medicine field is vast, as it investigates for treatment of various diseases, including rheumatoid arthritis, diabetes, hypertension, paralysis, chronic illnesses, blindness, etc.

Keywords: Molecular medicine, neurology, bioelectric, electrical signaling, brain signaling, bioelectric therapy.

Graphical Abstract
[1]
Zhou, J.; Yu, G.; Huang, F. Supramolecular chemotherapy based on host–guest molecular recognition: A novel strategy in the battle against cancer with a bright future. Chem. Soc. Rev., 2017, 46(22), 7021-7053.
[http://dx.doi.org/10.1039/C6CS00898D] [PMID: 28980674]
[2]
Zhou, J.; Rao, L.; Yu, G.; Cook, T.R.; Chen, X.; Huang, F. Supramolecular cancer nanotheranostics. Chem. Soc. Rev., 2021, 50(4), 2839-2891.
[http://dx.doi.org/10.1039/D0CS00011F] [PMID: 33524093]
[3]
Liu, J.; Chen, C.; Wei, T.; Gayet, O.; Loncle, C.; Borge, L.; Dusetti, N.; Ma, X.; Marson, D.; Laurini, E.; Pricl, S.; Gu, Z.; Iovanna, J.; Peng, L.; Liang, X.J. Dendrimeric nanosystem consistently circumvents heterogeneous drug response and resistance in pancreatic cancer. Exploration, 2021, 1(1), 21-34.
[http://dx.doi.org/10.1002/EXP.20210003] [PMID: 37366462]
[4]
Yao, X.; Yang, B.; Xu, J.; He, Q.; Yang, W. Novel gas‐based nanomedicines for cancer therapy. VIEW, 2022, 3(1), 20200185.
[http://dx.doi.org/10.1002/VIW.20200185]
[5]
Wu, N.; Tu, Y.; Fan, G.; Ding, J.; Luo, J.; Wang, W.; Zhang, C.; Yuan, C.; Zhang, H.; Chen, P.; Tan, S.; Xiao, H. Enhanced photodynamic therapy/photothermo therapy for nasopharyngeal carcinoma via a tumour microenvironment-responsive self-oxygenated drug delivery system. Asian J. Pharm. Sci., 2022, 17(2), 253-267.
[http://dx.doi.org/10.1016/j.ajps.2022.01.002] [PMID: 35582639]
[6]
Ding, Y.; Tong, Z.; Jin, L.; Ye, B.; Zhou, J.; Sun, Z.; Yang, H.; Hong, L.; Huang, F.; Wang, W.; Mao, Z. An NIR discrete metallacycle constructed from perylene bisimide and tetraphenylethylene fluorophores for imaging-guided cancer radio-chemotherapy. Adv. Mater., 2022, 34(7), 2106388.
[http://dx.doi.org/10.1002/adma.202106388] [PMID: 34821416]
[7]
Yan, M.; Zhou, J. Pillararene-based supramolecular polymers for cancer therapy. Molecules, 2023, 28(3), 1470.
[http://dx.doi.org/10.3390/molecules28031470] [PMID: 36771136]
[8]
Yan, M.; Zhou, J. Suprasomes: An emerging platform for cancer theranostics. Sci. China Chem., 2022, 66, 613-614.
[http://dx.doi.org/10.1007/s11426-022-1477-x]
[9]
Yan, M.; Wu, S.; Wang, Y.; Liang, M.; Wang, M.; Hu, W.; Yu, G.; Mao, Z.; Huang, F.; Zhou, J. Recent progress of supramolecular chemotherapy based on host-guest interactions. Adv. Mater., 2023, 2023, 2304249.
[http://dx.doi.org/10.1002/adma.202304249] [PMID: 37478832]
[10]
Singh, A.K.; Awasthi, R.; Malviya, R. Bioelectronic medicines: Therapeutic potential and advancements in next-generation cancer therapy. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(6), 188808.
[http://dx.doi.org/10.1016/j.bbcan.2022.188808] [PMID: 36208649]
[11]
Pavlov, V.A.; Chavan, S.S.; Tracey, K.J. Bioelectronic medicine: From preclinical studies on the inflammatory reflex to new approaches in disease diagnosis and treatment. Cold Spring Harb. Perspect. Med., 2020, 10(3), a034140.
[http://dx.doi.org/10.1101/cshperspect.a034140] [PMID: 31138538]
[12]
Yu, M.; Sun, P.; Sun, C.; Jin, W.L. Bioelectronic medicine potentiates endogenous NSCs for neurodegenerative diseases. Trends Mol. Med., 2023, 29(11), 886-896.
[http://dx.doi.org/10.1016/j.molmed.2023.08.005] [PMID: 37735022]
[13]
Giagka, V.; Serdijn, W.A. Realizing flexible bioelectronic medicines for accessing the peripheral nerves – technology considerations. Bioelectron. Med., 2018, 4(1), 8.
[http://dx.doi.org/10.1186/s42234-018-0010-y] [PMID: 32232084]
[14]
Radousky, H.B.; Liang, H. Energy harvesting: An integrated view of materials, devices and applications. Nanotechnology, 2012, 23(50), 502001.
[http://dx.doi.org/10.1088/0957-4484/23/50/502001] [PMID: 23186865]
[15]
Garay, E.F.; Bashirullah, R. Biofluid activated micro battery for disposable microsystems. J. Microelectromech. Syst., 2015, 24(1), 70-79.
[http://dx.doi.org/10.1109/JMEMS.2014.2317177]
[16]
Olofsson, P.S.; Tracey, K.J. Bioelectronic medicine: Technology targeting molecular mechanisms for therapy. J. Intern. Med., 2017, 282(1), 3-4.
[http://dx.doi.org/10.1111/joim.12624] [PMID: 28621493]
[17]
Vallone, F.; Ottaviani, M.M.; Dedola, F.; Cutrone, A.; Romeni, S.; Panarese, A.M.; Bernini, F.; Cracchiolo, M.; Strauss, I.; Gabisonia, K.; Gorgodze, N. Simultaneous decoding of cardiovascular and respiratory functional changes from pig intraneural vagus nerve signals. J. Neural Eng., 2021, 18(4), 0460a2..
[http://dx.doi.org/10.1088/1741-2552/ac0d42]
[18]
Caravaca, A.S.; Tsaava, T.; Goldman, L.; Silverman, H.; Riggott, G.; Chavan, S.S.; Bouton, C.; Tracey, K.J.; Desimone, R.; Boyden, E.S.; Sohal, H.S.; Olofsson, P.S. A novel flexible cuff-like microelectrode for dual purpose, acute and chronic electrical interfacing with the mouse cervical vagus nerve. J. Neural Eng., 2017, 14(6), 066005.
[http://dx.doi.org/10.1088/1741-2552/aa7a42] [PMID: 28628030]
[19]
Pinho-Ribeiro, F.A.; Baddal, B.; Haarsma, R.; O’Seaghdha, M.; Yang, N.J.; Blake, K.J.; Portley, M.; Verri, W.A.; Dale, J.B.; Wessels, M.R.; Chiu, I.M. Blocking neuronal signaling to immune cells treats the streptococcal invasive infection. Cell, 2018, 173(5), 1083-1097.e22.
[http://dx.doi.org/10.1016/j.cell.2018.04.006] [PMID: 29754819]
[20]
Lai, N.Y.; Mills, K.; Chiu, I.M. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence. J. Intern. Med., 2017, 282(1), 5-23.
[http://dx.doi.org/10.1111/joim.12591] [PMID: 28155242]
[21]
Fattahi, P.; Yang, G.; Kim, G.; Abidian, M.R. A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater., 2014, 26(12), 1846-1885.
[http://dx.doi.org/10.1002/adma.201304496] [PMID: 24677434]
[22]
Park, S.; Guo, Y.; Jia, X.; Choe, H.K.; Grena, B.; Kang, J.; Park, J.; Lu, C.; Canales, A.; Chen, R.; Yim, Y.S.; Choi, G.B.; Fink, Y.; Anikeeva, P. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci., 2017, 20(4), 612-619.
[http://dx.doi.org/10.1038/nn.4510] [PMID: 28218915]
[23]
Hageman, K.N.; Kalayjian, Z.K.; Tejada, F.; Chiang, B.; Rahman, M.A.; Fridman, G.Y.; Dai, C.; Pouliquen, P.O.; Georgiou, J.; Della Santina, C.C.; Andreou, A.G. A CMOS neural interface for a multichannel vestibular prosthesis. IEEE Trans. Biomed. Circuits Syst., 2016, 10(2), 269-279.
[http://dx.doi.org/10.1109/TBCAS.2015.2409797] [PMID: 25974945]
[24]
Yue, L.; Weiland, J.D.; Roska, B.; Humayun, M.S. Retinal stimulation strategies to restore vision: Fundamentals and systems. Prog. Retin. Eye Res., 2016, 53, 21-47.
[http://dx.doi.org/10.1016/j.preteyeres.2016.05.002] [PMID: 27238218]
[25]
Löffler, S.; Melican, K.; Nilsson, K.P.R.; Richter-Dahlfors, A. Organic bioelectronics in medicine. J. Intern. Med., 2017, 282(1), 24-36.
[http://dx.doi.org/10.1111/joim.12595] [PMID: 28181720]
[26]
Koopman, F.A.; Chavan, S.S.; Miljko, S.; Grazio, S.; Sokolovic, S.; Schuurman, P.R.; Mehta, A.D.; Levine, Y.A.; Faltys, M.; Zitnik, R.; Tracey, K.J.; Tak, P.P. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl. Acad. Sci., 2016, 113(29), 8284-8289.
[http://dx.doi.org/10.1073/pnas.1605635113] [PMID: 27382171]
[27]
Bouton, C. Cracking the neural code, treating paralysis and the future of bioelectronic medicine. J. Intern. Med., 2017, 282(1), 37-45.
[http://dx.doi.org/10.1111/joim.12610] [PMID: 28419590]
[28]
Sevcencu, C.; Nielsen, T.N.; Kjærgaard, B.; Struijk, J.J. A respiratory marker derived from the left vagus nerve signal was recorded with implantable cuff electrodes. Neuromodulation, 2018, 21(3), 269-275.
[http://dx.doi.org/10.1111/ner.12630] [PMID: 28699322]
[29]
Bonaz, B.; Sinniger, V.; Pellissier, S. Vagus nerve stimulation: A new promising therapeutic tool in inflammatory bowel disease. J. Intern. Med., 2017, 282(1), 46-63.
[http://dx.doi.org/10.1111/joim.12611] [PMID: 28421634]
[30]
Breit, S.; Kupferberg, A.; Rogler, G.; Hasler, G. Vagus nerve modulates of the brain–gut axis in psychiatric and inflammatory disorders. Front. Psychol., 2018, 9, 44.
[31]
Christensen, M.B.; Wark, H.A.C.; Hutchinson, D.T. A histological analysis of human median and ulnar nerves following implantation of Utah slanted electrode arrays. Biomaterials, 2016, 77, 235-242.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.012] [PMID: 26606449]
[32]
Thonte, S.S.; Bhusnure, O.G.; Makanikar, V.G.; Pravin, O.; Sagar, D. Smart bioelectronics: The future of medicine is electric. Imagine, 2016, 3, 43-53.
[33]
Kuo, J.T.W.; Kim, B.J.; Hara, S.A.; Lee, C.D.; Gutierrez, C.A.; Hoang, T.Q.; Meng, E. Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration. Lab Chip, 2013, 13(4), 554-561.
[http://dx.doi.org/10.1039/C2LC40935F] [PMID: 23160191]
[34]
Cao, J.; Lu, K.H.; Powley, T.L.; Liu, Z. Vagal nerve stimulation triggers widespread responses and alters large-scale functional connectivity in the rat brain. PLoS One, 2017, 12(12), e0189518.
[http://dx.doi.org/10.1371/journal.pone.0189518] [PMID: 29240833]
[35]
Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature, 2000, 405(6785), 458-462.
[http://dx.doi.org/10.1038/35013070] [PMID: 10839541]
[36]
Ding, Q.; Hu, W.; Wang, R.; Yang, Q.; Zhu, M.; Li, M.; Cai, J.; Rose, P.; Mao, J.; Zhu, Y.Z. Signaling pathways in rheumatoid arthritis: Implications for targeted therapy. Signal Transduct. Target. Ther., 2023, 8(1), 68.
[http://dx.doi.org/10.1038/s41392-023-01331-9] [PMID: 36797236]
[37]
Wang, C.; Wang, P.; Qi, G. A new use of transcutaneous electrical nerve stimulation: Role of bioelectric technology in resistant hypertension (Review). Biomed. Rep., 2023, 18(6), 38.
[http://dx.doi.org/10.3892/br.2023.1621] [PMID: 37168651]
[38]
Johnson, M.I.; Bjordal, J.M. Transcutaneous electrical nerve stimulation for the management of painful conditions: Focus on neuropathic pain. Expert Rev. Neurother., 2011, 11(5), 735-753.
[http://dx.doi.org/10.1586/ern.11.48] [PMID: 21539490]
[39]
Altuna, A.; Menendez de la Prida, L.; Bellistri, E.; Gabriel, G.; Guimerá, A.; Berganzo, J.; Villa, R.; Fernández, L.J. SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording. Biosens. Bioelectron., 2012, 37(1), 1-5.
[http://dx.doi.org/10.1016/j.bios.2012.03.039] [PMID: 22633740]
[40]
Nenasheva, E.V.; Larina, A.O.; Achmad, H.; Timokhina, T.; Markov, A. Bioelectronic implants and their role in modern medicine. J. Pharm. Res. Int., 2020, 32(33), 23-31.
[http://dx.doi.org/10.9734/jpri/2020/v32i3330945]
[41]
van Maanen, M.A.; Papke, R.L.; Koopman, F.A.; Koepke, J.; Bevaart, L.; Clark, R.; Lamppu, D.; Elbaum, D.; LaRosa, G.J.; Tak, P.P.; Vervoordeldonk, M.J. Two novel α7 nicotinic acetylcholine receptor ligands: In vitro properties and their efficacy in collagen-induced arthritis in mice. PLoS One, 2015, 10(1), e0116227.
[http://dx.doi.org/10.1371/journal.pone.0116227] [PMID: 25617631]
[42]
Ethier, S.; Sawan, M. Exponential current pulse generation for efficient very high-impedance multisite stimulation. IEEE Trans. Biomed. Circuits Syst., 2011, 5(1), 30-38.
[http://dx.doi.org/10.1109/TBCAS.2010.2073707] [PMID: 23850976]
[43]
Limousin, P.; Foltynie, T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat. Rev. Neurol., 2019, 15(4), 234-242.
[http://dx.doi.org/10.1038/s41582-019-0145-9] [PMID: 30778210]
[44]
Schwalb, J.M.; Hamani, C. The history and future of deep brain stimulation. Neurotherapeutics, 2008, 5(1), 3-13.
[http://dx.doi.org/10.1016/j.nurt.2007.11.003] [PMID: 18164479]
[45]
Mishra, S. Electroceuticals in medicine – The brave new future. Indian Heart J., 2017, 69(5), 685-686.
[http://dx.doi.org/10.1016/j.ihj.2017.10.001] [PMID: 29054204]
[46]
Ye, H.; Fussenegger, M. Optogenetic medicine: Synthetic therapeutic solutions precision-guided by light. Cold Spring Harb. Perspect. Med., 2019, 9(9), a034371.
[http://dx.doi.org/10.1101/cshperspect.a034371] [PMID: 30291146]
[47]
Montgomery, K.L.; Iyer, S.M.; Christensen, A.J.; Deisseroth, K.; Delp, S.L. Beyond the brain: Optogenetic control in the spinal cord and peripheral nervous system. Sci. Transl. Med., 2016, 8(337), 337rv5.
[http://dx.doi.org/10.1126/scitranslmed.aad7577] [PMID: 27147590]
[48]
Bouton, C.E.; Shaikhouni, A.; Annetta, N.V.; Bockbrader, M.A.; Friedenberg, D.A.; Nielson, D.M.; Sharma, G.; Sederberg, P.B.; Glenn, B.C.; Mysiw, W.J.; Morgan, A.G.; Deogaonkar, M.; Rezai, A.R. Restoring cortical control of functional movement in a human with quadriplegia. Nature, 2016, 533(7602), 247-250.
[http://dx.doi.org/10.1038/nature17435] [PMID: 27074513]
[49]
Oldani, L.; Dell’Osso, B.; Altamura, A.C. Long-term effects of vagus nerve stimulation in treatment-resistant depression: A 5-year follow up case series. Brain Stimul., 2015, 8(6), 1229-1230.
[http://dx.doi.org/10.1016/j.brs.2015.08.007] [PMID: 26371990]
[50]
Gierthmuehlen, M.; Plachta, D.T.T. Effect of selective vagal nerve stimulation on blood pressure, heart rate and respiratory rate in rats under metoprolol medication. Hypertens. Res., 2016, 39(2), 79-87.
[http://dx.doi.org/10.1038/hr.2015.122] [PMID: 26581776]
[51]
Badia, J.; Boretius, T.; Andreu, D.; Azevedo-Coste, C.; Stieglitz, T.; Navarro, X. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. J. Neural Eng., 2011, 8(3), 036023.
[http://dx.doi.org/10.1088/1741-2560/8/3/036023] [PMID: 21558601]
[52]
Huang, S.H.; Lin, S.P.; Chen, J.J.J. In vitro and in vivo characterization of SU-8 flexible neuroprobe: From mechanical properties to electrophysiological recording. Sens. Actuators A Phys., 2014, 216, 257-265.
[http://dx.doi.org/10.1016/j.sna.2014.06.005]
[53]
Roger, Y.; Schäck, L.M.; Koroleva, A.; Noack, S.; Kurselis, K.; Krettek, C.; Chichkov, B.; Lenarz, T.; Warnecke, A.; Hoffmann, A. Grid-like surface structures in thermoplastic polyurethane induce anti-inflammatory and anti-fibrotic processes in bone marrow-derived mesenchymal stem cells. Colloids Surf. B Biointerfaces, 2016, 148, 104-115.
[http://dx.doi.org/10.1016/j.colsurfb.2016.06.024] [PMID: 27591942]
[54]
Jun, J.J.; Steinmetz, N.A.; Siegle, J.H.; Denman, D.J.; Bauza, M.; Barbarits, B.; Lee, A.K.; Anastassiou, C.A.; Andrei, A.; Aydın, Ç.; Barbic, M.; Blanche, T.J.; Bonin, V.; Couto, J.; Dutta, B.; Gratiy, S.L.; Gutnisky, D.A.; Häusser, M.; Karsh, B.; Ledochowitsch, P.; Lopez, C.M.; Mitelut, C.; Musa, S.; Okun, M.; Pachitariu, M.; Putzeys, J.; Rich, P.D.; Rossant, C.; Sun, W.; Svoboda, K.; Carandini, M.; Harris, K.D.; Koch, C.; O’Keefe, J.; Harris, T.D. Fully integrated silicon probes for high-density recording of neural activity. Nature, 2017, 551(7679), 232-236.
[http://dx.doi.org/10.1038/nature24636] [PMID: 29120427]
[55]
Jang, H.S.; Cho, K.H.; Hieda, K.; Kim, J.H.; Murakami, G.; Abe, S.; Matsubara, A. Composite nerve fibers in the hypogastric and pelvic splanchnic nerves: An immunohistochemical study using elderly cadavers. Anat. Cell Biol., 2015, 48(2), 114-123.
[http://dx.doi.org/10.5115/acb.2015.48.2.114] [PMID: 26140222]
[56]
Cutrone, A.; Valle, J.D.; Santos, D.; Badia, J.; Filippeschi, C.; Micera, S.; Navarro, X.; Bossi, S. A three-dimensional self-opening intraneural peripheral interface (SELINE). J. Neural Eng., 2015, 12(1), 016016.
[http://dx.doi.org/10.1088/1741-2560/12/1/016016] [PMID: 25605565]
[57]
Minev, I.R.; Musienko, P.; Hirsch, A.; Barraud, Q.; Wenger, N.; Moraud, E.M.; Gandar, J.; Capogrosso, M.; Milekovic, T.; Asboth, L.; Torres, R.F.; Vachicouras, N.; Liu, Q.; Pavlova, N.; Duis, S.; Larmagnac, A.; Vörös, J.; Micera, S.; Suo, Z.; Courtine, G.; Lacour, S.P. Electronic dura mater for long-term multimodal neural interfaces. Science, 2015, 347(6218), 159-163.
[http://dx.doi.org/10.1126/science.1260318] [PMID: 25574019]
[58]
Charkhkar, H.; Knaack, G.L.; McHail, D.G.; Mandal, H.S.; Peixoto, N.; Rubinson, J.F.; Dumas, T.C.; Pancrazio, J.J. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT–TFB. Acta Biomater., 2016, 32, 57-67.
[http://dx.doi.org/10.1016/j.actbio.2015.12.022] [PMID: 26689462]
[59]
Liang Guo, ; Guvanasen, G.S.; Xi Liu; Tuthill, C.; Nichols, T.R.; DeWeerth, S.P. A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing. IEEE Trans. Biomed. Circuits Syst., 2013, 7(1), 1-10.
[http://dx.doi.org/10.1109/TBCAS.2012.2192932] [PMID: 23853274]
[60]
Chen, N.; Tian, L.; Patil, A.C.; Peng, S.; Yang, I.H.; Thakor, N.V.; Ramakrishna, S. Neural interfaces engineered via micro- and nanostructured coatings. Nano Today, 2017, 14, 59-83.
[http://dx.doi.org/10.1016/j.nantod.2017.04.007]
[61]
Sohal, H.S.; Jackson, A.; Jackson, R.; Clowry, G.J.; Vassilevski, K.; O’Neill, A.; Baker, S.N. The sinusoidal probe: A new approach to improve electrode longevity. Front. Neuroeng., 2014, 7, 10.
[http://dx.doi.org/10.3389/fneng.2014.00010] [PMID: 24808859]
[62]
Gwon, T.M.; Kim, C.; Shin, S.; Park, J.H.; Kim, J.H.; Kim, S.J. Liquid crystal polymer (LCP)-based neural prosthetic devices. Biomed. Eng. Lett., 2016, 6(3), 148-163.
[http://dx.doi.org/10.1007/s13534-016-0229-z]
[63]
Kim, J.; Imani, S.; de Araujo, W.R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T.R.L.C.; Mercier, P.P.; Wang, J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron., 2015, 74, 1061-1068.
[http://dx.doi.org/10.1016/j.bios.2015.07.039] [PMID: 26276541]
[64]
McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med., 2011, 365(23), 2205-2219.
[http://dx.doi.org/10.1056/NEJMra1004965] [PMID: 22150039]
[65]
Gerlag, D.M.; Norris, J.M.; Tak, P.P. Towards prevention of autoantibody-positive rheumatoid arthritis: From lifestyle modification to preventive treatment. Rheumatology, 2016, 55(4), 607-614.
[http://dx.doi.org/10.1093/rheumatology/kev347] [PMID: 26374913]
[66]
Sugiyama, D.; Nishimura, K.; Tamaki, K.; Tsuji, G.; Nakazawa, T.; Morinobu, A.; Kumagai, S. Impact of smoking as a risk factor for developing rheumatoid arthritis: A meta-analysis of observational studies. Ann. Rheum. Dis., 2010, 69(1), 70-81.
[http://dx.doi.org/10.1136/ard.2008.096487] [PMID: 19174392]
[67]
Wilde, B.; Thewissen, M.; Damoiseaux, J.; Knippenberg, S.; Hilhorst, M.; van Paassen, P.; Witzke, O.; Cohen Tervaert, J.W. Regulatory B cells in ANCA-associated vasculitis. Ann. Rheum. Dis., 2013, 72(8), 1416-1419.
[http://dx.doi.org/10.1136/annrheumdis-2012-202986] [PMID: 23666929]
[68]
van Steenbergen, H.W.; Aletaha, D.; Beaart-van de Voorde, L.J.J.; Brouwer, E.; Codreanu, C.; Combe, B.; Fonseca, J.E.; Hetland, M.L.; Humby, F.; Kvien, T.K.; Niedermann, K.; Nuño, L.; Oliver, S.; Rantapää-Dahlqvist, S.; Raza, K.; van Schaardenburg, D.; Schett, G.; De Smet, L.; Szücs, G.; Vencovský, J.; Wiland, P.; de Wit, M.; Landewé, R.L.; van der Helm-van Mil, A.H.M. EULAR definition of arthralgia suspicious for progression to rheumatoid arthritis. Ann. Rheum. Dis., 2017, 76(3), 491-496.
[http://dx.doi.org/10.1136/annrheumdis-2016-209846] [PMID: 27991858]
[69]
Payne, S.C.; Romas, E.; Hyakumura, T.; Muntz, F.; Fallon, J.B. Abdominal vagus nerve stimulation alleviates collagen-induced arthritis in rats. Front. Neurosci., 2022, 16, 1012133.
[http://dx.doi.org/10.3389/fnins.2022.1012133] [PMID: 36478876]
[70]
Tak, P.P.; Kalden, J.R. Advances in rheumatology: New targeted therapeutics. Arthritis Res. Ther., 2011, 13(S1), S5.
[http://dx.doi.org/10.1186/1478-6354-13-S1-S5] [PMID: 21624184]
[71]
Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet, 2016, 388(10055), 2023-2038.
[http://dx.doi.org/10.1016/S0140-6736(16)30173-8] [PMID: 27156434]
[72]
Sakai, R.; Tanaka, M.; Nanki, T.; Watanabe, K.; Yamazaki, H.; Koike, R.; Nagasawa, H.; Amano, K.; Saito, K.; Tanaka, Y.; Ito, S.; Sumida, T.; Ihata, A.; Ishigatsubo, Y.; Atsumi, T.; Koike, T.; Nakajima, A.; Tamura, N.; Fujii, T.; Dobashi, H.; Tohma, S.; Sugihara, T.; Ueki, Y.; Hashiramoto, A.; Kawakami, A.; Hagino, N.; Miyasaka, N.; Harigai, M. Drug retention rates and relevant risk factors for drug discontinuation due to adverse events in rheumatoid arthritis patients receiving anticytokine therapy with different target molecules. Ann. Rheum. Dis., 2012, 71(11), 1820-1826.
[http://dx.doi.org/10.1136/annrheumdis-2011-200838] [PMID: 22504558]
[73]
Aydemir, M.; Yazisiz, V.; Basarici, I.; Avci, A.B.; Erbasan, F.; Belgi, A.; Terzioglu, E. Cardiac autonomic profile in rheumatoid arthritis and systemic lupus erythematosus. Lupus, 2010, 19(3), 255-261.
[http://dx.doi.org/10.1177/0961203309351540] [PMID: 20015916]
[74]
Capilupi, M.J.; Kerath, S.M.; Becker, L.B. Vagus nerve stimulation and the cardiovascular system. Cold Spring Harb. Perspect. Med., 2020, 10(2), a034173.
[http://dx.doi.org/10.1101/cshperspect.a034173] [PMID: 31109966]
[75]
Lazzerini, P.E.; Acampa, M.; Capecchi, P.L.; Hammoud, M.; Maffei, S.; Bisogno, S.; Barreca, C.; Galeazzi, M.; Laghi-Pasini, F. Association between high sensitivity Creactive protein, heart rate variability and corrected QT interval in patients with chronic inflammatory arthritis. Eur. J. Intern. Med., 2013, 24(4), 368-374.
[http://dx.doi.org/10.1016/j.ejim.2013.02.009] [PMID: 23517852]
[76]
McFarland, D.J.; Sarnacki, W.A.; Wolpaw, J.R. Electroencephalographic (EEG) control of three-dimensional movement. J. Neural Eng., 2010, 7(3), 036007.
[http://dx.doi.org/10.1088/1741-2560/7/3/036007] [PMID: 20460690]
[77]
Egan, B.M.; Zhao, Y.; Axon, R.N.; Brzezinski, W.A.; Ferdinand, K.C. Uncontrolled and apparent treatment resistant hypertension in the United States, 1988 to 2008. Circulation, 2011, 124(9), 1046-1058.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.030189] [PMID: 21824920]
[78]
Bisognano, J.D.; Bakris, G.; Nadim, M.K.; Sanchez, L.; Kroon, A.A.; Schafer, J.; de Leeuw, P.W.; Sica, D.A. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: Results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J. Am. Coll. Cardiol., 2011, 58(7), 765-773.
[http://dx.doi.org/10.1016/j.jacc.2011.06.008] [PMID: 21816315]
[79]
Hara, S.A.; Kim, B.J.; Kuo, J.T.W.; Lee, C.D.; Meng, E.; Pikov, V. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes. J. Neural Eng., 2016, 13(6), 066020.
[http://dx.doi.org/10.1088/1741-2560/13/6/066020] [PMID: 27819256]
[80]
Scheffers, I.J.M.; Kroon, A.A.; Schmidli, J.; Jordan, J.; Tordoir, J.J.M.; Mohaupt, M.G.; Luft, F.C.; Haller, H.; Menne, J.; Engeli, S.; Ceral, J.; Eckert, S.; Erglis, A.; Narkiewicz, K.; Philipp, T.; de Leeuw, P.W. Novel baroreflex activation therapy in resistant hypertension: Results of a European multi-center feasibility study. J. Am. Coll. Cardiol., 2010, 56(15), 1254-1258.
[http://dx.doi.org/10.1016/j.jacc.2010.03.089] [PMID: 20883933]
[81]
Bakris, G.L.; Nadim, M.K.; Haller, H.; Lovett, E.G.; Schafer, J.E.; Bisognano, J.D. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: Results of long-term follow-up in the Rheos Pivotal Trial. J. Am. Soc. Hypertens., 2012, 6(2), 152-158.
[http://dx.doi.org/10.1016/j.jash.2012.01.003] [PMID: 22341199]
[82]
Hoppe, U.C.; Brandt, M.C.; Wachter, R.; Beige, J.; Rump, L.C.; Kroon, A.A.; Cates, A.W.; Lovett, E.G.; Haller, H. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: Results from the Barostim neo trial. J. Am. Soc. Hypertens., 2012, 6(4), 270-276.
[http://dx.doi.org/10.1016/j.jash.2012.04.004] [PMID: 22694986]
[83]
Sica, D.; Bisognano, J.; Nadim, M.; Sanchez, L.; Bakris, G. Individualized programming demonstrates the feasibility of the unilateral approach to the delivery of baroreflex activation therapy. J. Clin. Hypertens., 2011, 13(1)
[84]
Zannad, F.; De Ferrari, G.M.; Tuinenburg, A.E.; Wright, D.; Brugada, J.; Butter, C.; Klein, H.; Stolen, C.; Meyer, S.; Stein, K.M.; Ramuzat, A.; Schubert, B.; Daum, D.; Neuzil, P.; Botman, C.; Castel, M.A.; D’Onofrio, A.; Solomon, S.D.; Wold, N.; Ruble, S.B. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: Results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur. Heart J., 2015, 36(7), 425-433.
[http://dx.doi.org/10.1093/eurheartj/ehu345] [PMID: 25176942]
[85]
Gold, M.R.; Van Veldhuisen, D.J.; Hauptman, P.J.; Borggrefe, M.; Kubo, S.H.; Lieberman, R.A.; Milasinovic, G.; Berman, B.J.; Djordjevic, S.; Neelagaru, S.; Schwartz, P.J.; Starling, R.C.; Mann, D.L. Vagus nerve stimulation for the treatment of heart failure: The INOVATE-HF trial. J. Am. Coll. Cardiol., 2016, 68(2), 149-158.
[http://dx.doi.org/10.1016/j.jacc.2016.03.525] [PMID: 27058909]
[86]
van Kleef, M.E.A.M.; Bates, M.C.; Spiering, W. Endovascular baroreflex amplification for resistant hypertension. Curr. Hypertens. Rep., 2018, 20(5), 46.
[http://dx.doi.org/10.1007/s11906-018-0840-8] [PMID: 29744599]
[87]
Joseph, S.; Costanzo, M.R. A novel therapeutic approach for central sleep apnea: Phrenic nerve stimulation by the remedē® System. Int. J. Cardiol., 2016, 206, S28-S34.
[http://dx.doi.org/10.1016/j.ijcard.2016.02.121] [PMID: 26964705]
[88]
Stack, R.J.; Sahni, M.; Mallen, C.D.; Raza, K. Symptom complexes at the earliest phases of rheumatoid arthritis: A synthesis of the qualitative literature. Arthritis Care Res., 2013, 65(12), 1916-1926.
[http://dx.doi.org/10.1002/acr.22097] [PMID: 23926091]
[89]
Plachta, D.T.T.; Gierthmuehlen, M.; Cota, O.; Espinosa, N.; Boeser, F.; Herrera, T.C.; Stieglitz, T.; Zentner, J. Blood pressure control with selective vagal nerve stimulation and minimal side effects. J. Neural Eng., 2014, 11(3), 036011.
[http://dx.doi.org/10.1088/1741-2560/11/3/036011] [PMID: 24809832]
[90]
Crozier, I.; O’Donnell, D.; Boersma, L.; Murgatroyd, F.; Manlucu, J.; Knight, B.P.; Birgersdotter-Green, U.M.; Leclercq, C.; Thompson, A.; Sawchuk, R.; Willey, S.; Wiggenhorn, C.; Friedman, P. The extravascular implantable cardioverter‐defibrillator: The pivotal study plan. J. Cardiovasc. Electrophysiol., 2021, 32(9), 2371-2378.
[http://dx.doi.org/10.1111/jce.15190] [PMID: 34322918]
[91]
Dragas, J.; Viswam, V.; Shadmani, A.; Chen, Y.; Bounik, R.; Stettler, A.; Radivojevic, M.; Geissler, S.; Obien, M.E.J.; Müller, J.; Hierlemann, A. In vitro multi-functional microelectrode array featuring 59 760 electrodes, 2048 electrophysiology channels, stimulation, impedance measurement, and neurotransmitter detection channels. IEEE J. Solid-State Circuits, 2017, 52(6), 1576-1590.
[http://dx.doi.org/10.1109/JSSC.2017.2686580] [PMID: 28579632]
[92]
Yu, H.; Yang, Y.H.; Rajaiah, R.; Moudgil, K.D. Nicotine‐induced differential modulation of autoimmune arthritis in the Lewis rat involves changes in interleukin‐17 and anti–cyclic citrullinated peptide antibodies. Arthritis Rheum., 2011, 63(4), 981-991.
[http://dx.doi.org/10.1002/art.30219] [PMID: 21305506]
[93]
Koopman, F.A.; Stoof, S.P.; Straub, R.H.; van Maanen, M.A.; Vervoordeldonk, M.J.; Tak, P.P. Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol. Med., 2011, 17(9-10), 937-948.
[http://dx.doi.org/10.2119/molmed.2011.00065] [PMID: 21607292]
[94]
Tang, R.; Pei, W.; Chen, S.; Zhao, H.; Chen, Y.; Han, Y.; Wang, C.; Chen, H. Fabrication of strongly adherent platinum black coatings on microelectrodes array. Sci. China Inf. Sci., 2014, 57(4), 1-10.
[http://dx.doi.org/10.1007/s11432-013-4825-6]
[95]
Lu, Y.; Lyu, H.; Richardson, A.G.; Lucas, T.H.; Kuzum, D. Flexible neural electrode array based on porous graphene for cortical microstimulation and sensing. Sci. Rep., 2016, 6(1), 33526.
[http://dx.doi.org/10.1038/srep33526] [PMID: 27642117]
[96]
Bai, A.; Guo, Y.; Lu, N. The effect of the cholinergic anti-inflammatory pathway on experimental colitis. Scand. J. Immunol., 2007, 66(5), 538-545.
[http://dx.doi.org/10.1111/j.1365-3083.2007.02011.x] [PMID: 17953529]
[97]
Mabley, J.; Gordon, S.; Pacher, P. Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury. Inflammation, 2011, 34(4), 231-237.
[http://dx.doi.org/10.1007/s10753-010-9228-x] [PMID: 20625922]
[98]
The, F.O.; Cailotto, C.; van der Vliet, J.; de Jonge, W.J.; Bennink, R.J.; Buijs, R.M.; Boeckxstaens, G.E. Central activation of the cholinergic anti‐inflammatory pathway reduces surgical inflammation in experimental post‐operative ileus. Br. J. Pharmacol., 2011, 163(5), 1007-1016.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01296.x] [PMID: 21371006]
[99]
Marinov, V.; Swenson, O.; Miller, R.; Sarwar, F.; Atanasov, Y.; Semler, M.; Datta, S. Laser-enabled advanced packaging of ultrathin bare dice in flexible substrates. IEEE Trans. Compon. Packaging Manuf. Technol., 2012, 2(4), 569-577.
[http://dx.doi.org/10.1109/TCPMT.2011.2176941]
[100]
Li, T.; Zuo, X.; Zhou, Y.; Wang, Y.; Zhuang, H.; Zhang, L.; Zhang, H.; Xiao, X. The vagus nerve and nicotinic receptors involve inhibition of HMGB1 release and early pro-inflammatory cytokines function in collagen-induced arthritis. J. Clin. Immunol., 2010, 30(2), 213-220.
[http://dx.doi.org/10.1007/s10875-009-9346-0] [PMID: 19890701]
[101]
Hu, Y.; Liu, R.; Li, J.; Yue, Y.; Cheng, W.; Zhang, P. Attenuation of collagen-induced arthritis in rat by nicotinic alpha7 receptor partial agonist GTS-21. BioMed Res. Int., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/325875] [PMID: 24719855]
[102]
van Maanen, M.A.; Stoof, S.P.; LaRosa, G.J.; Vervoordeldonk, M.J.; Tak, P.P. Role of the cholinergic nervous system in rheumatoid arthritis: Aggravation of arthritis in nicotinic acetylcholine receptor 7 subunit gene knockout mice. Ann. Rheum. Dis., 2010, 69(9), 1717-1723.
[http://dx.doi.org/10.1136/ard.2009.118554] [PMID: 20511609]
[103]
Jiang, X.; Alfredsson, L.; Klareskog, L.; Bengtsson, C. Smokeless tobacco (moist snuff) use and the risk of developing rheumatoid arthritis: Results from a case-control study. Arthritis Care Res., 2014, 66(10), 1582-1586.
[http://dx.doi.org/10.1002/acr.22325] [PMID: 24719251]
[104]
van Dongen, M.N.; Serdijn, W.A. Does a coupling capacitor enhance the charge balance during neural stimulation? An empirical study. Med. Biol. Eng. Comput., 2016, 54(1), 93-101.
[http://dx.doi.org/10.1007/s11517-015-1312-9] [PMID: 26018756]
[105]
Vanhoestenberghe, A.; Donaldson, N. Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices. J. Neural Eng., 2013, 10(3), 031002.
[http://dx.doi.org/10.1088/1741-2560/10/3/031002] [PMID: 23685410]
[106]
Wilson, J.R.; Forgione, N.; Fehlings, M.G. Emerging therapies for acute traumatic spinal cord injury. CMAJ, 2013, 185(6), 485-492.
[http://dx.doi.org/10.1503/cmaj.121206] [PMID: 23228995]
[107]
Wurth, S.; Capogrosso, M.; Raspopovic, S.; Gandar, J.; Federici, G.; Kinany, N.; Cutrone, A.; Piersigilli, A.; Pavlova, N.; Guiet, R.; Taverni, G.; Rigosa, J.; Shkorbatova, P.; Navarro, X.; Barraud, Q.; Courtine, G.; Micera, S. Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes. Biomaterials, 2017, 122, 114-129.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.014] [PMID: 28110171]
[108]
Rochon, P.A.; Gurwitz, J.H. The prescribing cascade revisited. Lancet, 2017, 389(10081), 1778-1780.
[http://dx.doi.org/10.1016/S0140-6736(17)31188-1] [PMID: 28495154]
[109]
Pothof, F.; Bonini, L.; Lanzilotto, M.; Livi, A.; Fogassi, L.; Orban, G.A.; Paul, O.; Ruther, P. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites. J. Neural Eng., 2016, 13(4), 046006.
[http://dx.doi.org/10.1088/1741-2560/13/4/046006] [PMID: 27247248]
[110]
Schouenborg, J. Biocompatible multichannel electrodes for longterm neurophysiological studies and clinical therapy—Novel concepts and design. Prog. Brain Res., 2011, 194, 61-70.
[http://dx.doi.org/10.1016/B978-0-444-53815-4.00017-0] [PMID: 21867794]
[111]
Zargham, M.; Gulak, P.G. Fully integrated on-chip coil in 0.13 μm CMOS for wireless power transfer through biological media. IEEE Trans. Biomed. Circuits Syst., 2015, 9(2), 259-271.
[http://dx.doi.org/10.1109/TBCAS.2014.2328318] [PMID: 25099630]
[112]
Onose, G.; Grozea, C.; Anghelescu, A.; Daia, C.; Sinescu, C.J.; Ciurea, A.V.; Spircu, T.; Mirea, A.; Andone, I.; Spânu, A.; Popescu, C.; Mihăescu, A-S.; Fazli, S.; Danóczy, M.; Popescu, F. On the feasibility of using motor imagery EEG-based brain–computer interface in chronic tetraplegics for assistive robotic arm control: A clinical test and long-term post-trial follow-up. Spinal Cord, 2012, 50(8), 599-608.
[http://dx.doi.org/10.1038/sc.2012.14] [PMID: 22410845]
[113]
Scholvin, J.; Kinney, J.P.; Bernstein, J.G.; Moore-Kochlacs, C.; Kopell, N.; Fonstad, C.G.; Boyden, E.S. Close-packed silicon microelectrodes for scalable spatially oversampled neural recording. IEEE Trans. Biomed. Eng., 2016, 63(1), 120-130.
[http://dx.doi.org/10.1109/TBME.2015.2406113] [PMID: 26699649]
[114]
Shobe, J.L.; Claar, L.D.; Parhami, S.; Bakhurin, K.I.; Masmanidis, S.C. Brain activity mapping at multiple scales with silicon microprobes containing 1,024 electrodes. J. Neurophysiol., 2015, 114(3), 2043-2052.
[http://dx.doi.org/10.1152/jn.00464.2015] [PMID: 26133801]
[115]
Moran, D. Evolution of brain–computer interface: Action potentials, local field potentials and electrocorticograms. Curr. Opin. Neurobiol., 2010, 20(6), 741-745.
[http://dx.doi.org/10.1016/j.conb.2010.09.010] [PMID: 20952183]
[116]
Chao, Z.C.; Nagasaka, Y.; Fujii, N. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkey. Front. Neuroeng., 2010, 3, 3.
[http://dx.doi.org/10.3389/fneng.2010.00003] [PMID: 20407639]
[117]
Suminski, A.J.; Tkach, D.C.; Fagg, A.H.; Hatsopoulos, N.G. Incorporating feedback from multiple sensory modalities enhances brain-machine interface control. J. Neurosci., 2010, 30(50), 16777-16787.
[http://dx.doi.org/10.1523/JNEUROSCI.3967-10.2010] [PMID: 21159949]
[118]
Cajigas, I.; Davis, K.C.; Meschede-Krasa, B.; Prins, N.W.; Gallo, S.; Naeem, J.A.; Palermo, A.; Wilson, A.; Guerra, S.; Parks, B.A.; Zimmerman, L.; Gant, K.; Levi, A.D.; Dietrich, W.D.; Fisher, L.; Vanni, S.; Tauber, J.M.; Garwood, I.C.; Abel, J.H.; Brown, E.N.; Ivan, M.E.; Prasad, A.; Jagid, J. Implantable brain–computer interface for neuroprosthetic-enabled volitional hand grasp restoration in spinal cord injury. Brain Commun., 2021, 3(4), fcab248.
[http://dx.doi.org/10.1093/braincomms/fcab248] [PMID: 34870202]
[119]
Sanjuan-Alberte, P.; Alexander, M.R.; Hague, R.J.M.; Rawson, F.J. Electrochemically stimulating developments in bioelectronic medicine. Bioelectron. Med., 2018, 4(1), 1.
[http://dx.doi.org/10.1186/s42234-018-0001-z] [PMID: 32232077]
[120]
Venkatraman, S.; Carmena, J.M. Active sensing of target location encoded by cortical microstimulation. IEEE Trans. Neural Syst. Rehabil. Eng., 2011, 19(3), 317-324.
[http://dx.doi.org/10.1109/TNSRE.2011.2117441] [PMID: 21382769]
[121]
O’Doherty, J.E.; Lebedev, M.A.; Ifft, P.J.; Zhuang, K.Z.; Shokur, S.; Bleuler, H.; Nicolelis, M.A.L. Active tactile exploration using a brain–machine–brain interface. Nature, 2011, 479(7372), 228-231.
[http://dx.doi.org/10.1038/nature10489] [PMID: 21976021]
[122]
Green, A.M.; Kalaska, J.F. Learning to move machines with the mind. Trends Neurosci., 2011, 34(2), 61-75.
[http://dx.doi.org/10.1016/j.tins.2010.11.003] [PMID: 21176975]
[123]
Humayun, M.S.; Lee, S.Y. Advanced retina implants. Ophthalmol. Retina, 2022, 6(10), 899-905.
[http://dx.doi.org/10.1016/j.oret.2022.04.009] [PMID: 35436597]
[124]
Fernandez, E. Development of visual Neuroprostheses: Trends and challenges. Bioelectron. Med., 2018, 4(1), 12.
[http://dx.doi.org/10.1186/s42234-018-0013-8] [PMID: 32232088]
[125]
Madane, V.B.; Mali, S.N. Bioelectric medicine: Magical tools for treatment of many diseases. AJPTech, 2021, 11(4), 304-308.
[http://dx.doi.org/10.52711/2231-5713.2021.00052]
[126]
Zhang, D.; Liu, Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron., 2016, 75, 273-284.
[http://dx.doi.org/10.1016/j.bios.2015.08.037] [PMID: 26319170]
[127]
Hueso, M.; Vellido, A.; Montero, N.; Barbieri, C.; Ramos, R.; Angoso, M.; Cruzado, J.M.; Jonsson, A. Artificial intelligence for the artificial kidney: Pointers to the future of personalized hemodialysis therapy. Kidney Dis., 2018, 4(1), 1-9.
[http://dx.doi.org/10.1159/000486394] [PMID: 29594137]
[128]
Metz, C.N.; Pavlov, V.A. Vagus nerve cholinergic circuitry to the liver and the gastrointestinal tract in the neuroimmune communicatome. Am. J. Physiol. Gastrointest. Liver Physiol., 2018, 315(5), G651-G658.
[http://dx.doi.org/10.1152/ajpgi.00195.2018] [PMID: 30001146]
[129]
Pupim, L.B.; Kent, P.; Ikizler, T.A. Bioelectrical impedance analysis in dialysis patients. Miner. Electrolyte Metab., 1999, 25(4-6), 400-406.
[http://dx.doi.org/10.1159/000057482] [PMID: 10681674]
[130]
Park, K.H.; Shin, J.; Hwang, J.H.; Kim, S.H. Utility of volume assessment using bioelectrical impedance analysis in critically ill patients receiving continuous renal replacement therapy: A prospective observational study. Korean J. Crit. Care Med., 2017, 32(3), 256-264.
[http://dx.doi.org/10.4266/kjccm.2017.00136] [PMID: 31723644]
[131]
Magisetty, R.; Park, S.M. New era of electroceuticals: Clinically driven smart implantable electronic devices moving towards precision therapy. Micromachines, 2022, 13(2), 161.
[http://dx.doi.org/10.3390/mi13020161] [PMID: 35208286]
[132]
Afanasenkau, D.; Kalinina, D.; Lyakhovetskii, V.; Tondera, C.; Gorsky, O.; Moosavi, S.; Pavlova, N.; Merkulyeva, N.; Kalueff, A.V.; Minev, I.R.; Musienko, P. Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Nat. Biomed. Eng., 2020, 4(10), 1010-1022.
[http://dx.doi.org/10.1038/s41551-020-00615-7] [PMID: 32958898]
[133]
Steadman, C.J.; Abd-El Barr, M.M.; Lad, S.P.; Gad, P.; Gorgey, A.S.; Hoenig, H. Bioelectric medicine: Electrotherapy and transcutaneous electromagnetic stimulation–clinical and research challenges. Arch. Phys. Med. Rehabil., 2022, 103(11), 2268-2271.
[http://dx.doi.org/10.1016/j.apmr.2022.08.001] [PMID: 35970243]
[134]
Datta-Chaudhuri, T.; Zanos, T.; Chang, E.H.; Olofsson, P.S.; Bickel, S.; Bouton, C.; Grande, D.; Rieth, L.; Aranow, C.; Bloom, O.; Mehta, A.D.; Civillico, G.; Stevens, M.M.; Głowacki, E.; Bettinger, C.; Schüettler, M.; Puleo, C.; Rennaker, R.; Mohanta, S.; Carnevale, D.; Conde, S.V.; Bonaz, B.; Chernoff, D.; Kapa, S.; Berggren, M.; Ludwig, K.; Zanos, S.; Miller, L.; Weber, D.; Yoshor, D.; Steinman, L.; Chavan, S.S.; Pavlov, V.A.; Al-Abed, Y.; Tracey, K.J. The fourth bioelectronic medicine summit “technology targeting molecular mechanisms”: Current progress, challenges, and charting the future. Bioelectron. Med., 2021, 7(1), 7.
[http://dx.doi.org/10.1186/s42234-021-00068-6] [PMID: 34024277]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy