Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Research Article

The Counteracting Effects of Ang II and Ang-(1-7) on the Function and Growth of Insulin-secreting NIT-1 Cells

Author(s): Xiuhong Lin, Xiaoyun Wang, Weilian Feng, Yan Wan, Jiani Chai, Feng Li and Mingtong Xu*

Volume 20, Issue 10, 2024

Published on: 01 January, 2024

Article ID: e010124225112 Pages: 13

DOI: 10.2174/0115733998276291231204115314

Price: $65

Abstract

Introduction: China now has the highest number of diabetes in the world. Angiotensin II (Ang II) causes insulin resistance by acting on the insulin signaling pathway of peripheral target tissues. However, its effect on islet β-cells remains unclear. The possible role of Angiotensin-( 1-7) [Ang-(1-7)] as an antagonist to the effects of Ang II and in treating diabetes needs to be elucidated.

Objectives: To assess the effects of Ang II and Ang-(1-7) on the function and growth of islet β cell line NIT-1, which is derived from the islets of non-obese diabetic/large T-antigen (NOD/LT) mice with insulinoma.

Methods: NIT-1 cells were treated with Ang II, Ang-(1-7) and their respective receptor antagonists. The impact on cell function and growth was then evaluated.

Results: Ang II significantly reduced insulin-stimulated IR-β-Tyr and Akt-Ser; while Ang-(1-7), saralasin (an Ang II receptor antagonist), and diphenyleneiodonium [DPI, a nicotinamide adenine dinucleotide phosphate oxidase (NOX) antagonist] reversed the inhibiting effect. Conversely, Ang II significantly increased insulin-stimulated intracellular H2O2 and P47 phox, while saralasin and DPI reverted the effect. Furthermore, Ang-(1-7) reduced the elevated concentrations of ROS and MDA while increasing the proliferation rate that was reduced by high glucose, all of which were reversed by A-779, an antagonist of the Mas receptor (MasR).

Conclusion: Angiotensin II poses a negative regulatory effect on insulin signal transduction, increases oxidative stress, and may inhibit the transcription of insulin genes stimulated by insulin in NIT-1 cells. Meanwhile, angiotensin-(1-7) blocked these effects via MasR. These results corroborate the rising potential of the renin-angiotensin system (RAS) in treating diabetes.

Keywords: Angiotensin II, angiotensin-(1-7), islet β-cells, insulin signal transduction, oxidative stress, proliferation.

[1]
Pandey A, Chawla S, Guchhait P. Type‐2 diabetes: Current understanding and future perspectives. IUBMB Life 2015; 67(7): 506-13.
[http://dx.doi.org/10.1002/iub.1396] [PMID: 26177573]
[2]
Ye L, Robertson MA, Mastracci TL, Anderson RM. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration. Dev Biol 2016; 409(2): 354-69.
[http://dx.doi.org/10.1016/j.ydbio.2015.12.003] [PMID: 26658317]
[3]
Ma X, Chen Z, Wang L, et al. The pathogenesis of diabetes mellitus by oxidative stress and inflammation: Its inhibition by berberine. Front Pharmacol 2018; 9: 782.
[http://dx.doi.org/10.3389/fphar.2018.00782] [PMID: 30100874]
[4]
Costes S, Langen R, Gurlo T, Matveyenko AV, Butler PC. β-Cell failure in type 2 diabetes: A case of asking too much of too few? Diabetes 2013; 62(2): 327-35.
[http://dx.doi.org/10.2337/db12-1326] [PMID: 23349537]
[5]
Ribeiro-Oliveira A Jr, Nogueira AI, Pereira RM, Boas WW, Dos Santos RA, Simões e Silva AC. The renin-angiotensin system and diabetes: An update. Vasc Health Risk Manag 2008; 4(4): 787-803.
[PMID: 19065996]
[6]
Gao M, Du Y, Xie JW, et al. Redox signal-mediated TRPM2 promotes Ang II-induced adipocyte insulin resistance via Ca2+-dependent CaMKII/JNK cascade. Metabolism 2018; 85: 313-24.
[http://dx.doi.org/10.1016/j.metabol.2018.05.005] [PMID: 29775644]
[7]
Mehta PK, Griendling KK. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007; 292(1): C82-97.
[http://dx.doi.org/10.1152/ajpcell.00287.2006] [PMID: 16870827]
[8]
Gutierrez-Rodelo C, Arellano-Plancarte A, Hernandez-Aranda J, et al. Angiotensin II inhibits insulin receptor signaling in adipose cells. Int J Mol Sci 2022; 23(11): 6048.
[http://dx.doi.org/10.3390/ijms23116048] [PMID: 35682723]
[9]
Ikushima M, Ishii M, Ohishi M, et al. ANG II inhibits insulin-mediated production of PI 3,4,5-trisphosphates via a Ca2+ -dependent but PKC-independent pathway in the cardiomyocytes. Am J Physiol Heart Circ Physiol 2010; 299(3): H680-9.
[http://dx.doi.org/10.1152/ajpheart.00220.2009] [PMID: 20601457]
[10]
Kamide K. Role of renin-angiotensin-aldosterone system in metabolic syndrome and obesity-related hypertension. Curr Hypertens Rev 2014; 9(4): 238-45.
[http://dx.doi.org/10.2174/1573402110666140812122349] [PMID: 25115697]
[11]
Horiuchi M, Mogi M, Iwai M. Signaling crosstalk angiotensin II receptor subtypes and insulin. Endocr J 2006; 53(1): 1-5.
[http://dx.doi.org/10.1507/endocrj.53.1] [PMID: 16543666]
[12]
Cabello-Verrugio C, Córdova G, Diego Salas J. Angiotensin II: Role in skeletal muscle atrophy. Curr Protein Pept Sci 2012; 13(6): 560-9.
[http://dx.doi.org/10.2174/138920312803582933] [PMID: 22974090]
[13]
Mai H, Huang Z, Zhang X, et al. Protective effects of endothelial progenitor cell microvesicles carrying miR-98-5p on angiotensin II-induced rat kidney cell injury. Exp Ther Med 2022; 24(5): 702.
[http://dx.doi.org/10.3892/etm.2022.11638] [PMID: 36277153]
[14]
Yuan L, Li X, Xu GL, Qi CJ. Effects of renin-angiotensin system blockade on islet function in diabetic rats. J Endocrinol Invest 2010; 33(1): 13-9.
[http://dx.doi.org/10.1007/BF03346544] [PMID: 20203537]
[15]
Cheng Q, Leung PS. An update on the islet renin-angiotensin system. Peptides 2011; 32(5): 1087-95.
[http://dx.doi.org/10.1016/j.peptides.2011.03.003] [PMID: 21396973]
[16]
McMurray JJ, Holman RR, Haffner SM, et al. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med 2010; 362(16): 1477-90.
[http://dx.doi.org/10.1056/NEJMoa1001121] [PMID: 20228403]
[17]
Padda RS, Shi Y, Lo CS, Zhang SL, Chan JS. Angiotensin-(1-7): A novel peptide to treat hypertension and nephropathy in diabetes? J Diabetes Metab 2015; 6(10)
[PMID: 26793405]
[18]
Leung PS. The physiology of a local renin-angiotensin system in the pancreas. J Physiol 2007; 580(1): 31-7.
[http://dx.doi.org/10.1113/jphysiol.2006.126193] [PMID: 17218353]
[19]
Ciftciler R, Haznedaroglu IC. Pathobiological interactions of local bone marrow renin-angiotensin system and central nervous system in systemic arterial hypertension. Front Endocrinol 2020; 11: 425.
[http://dx.doi.org/10.3389/fendo.2020.00425] [PMID: 32903745]
[20]
Marrero M, Fulton D, Stepp D, Stern D. Angiotensin II-induced signaling pathways in diabetes. Curr Diabetes Rev 2005; 1(2): 197-202.
[http://dx.doi.org/10.2174/1573399054022802] [PMID: 18220595]
[21]
Machado-Silva A, Passos-Silva D, Santos RA, Sinisterra RD. Therapeutic uses for Angiotensin-(1-7). Expert Opin Ther Pat 2016; 26(6): 669-78.
[http://dx.doi.org/10.1080/13543776.2016.1179283] [PMID: 27121991]
[22]
He J, Yang Z, Yang H, et al. Regulation of insulin sensitivity, insulin production, and pancreatic β cell survival by angiotensin-(1-7) in a rat model of streptozotocin-induced diabetes mellitus. Peptides 2015; 64: 49-54.
[http://dx.doi.org/10.1016/j.peptides.2014.12.012] [PMID: 25576844]
[23]
Loloi J, Miller AJ, Bingaman SS, Silberman Y, Arnold AC. Angiotensin-(1–7) contributes to insulin-sensitizing effects of angiotensin-converting enzyme inhibition in obese mice. Am J Physiol Endocrinol Metab 2018; 315(6): E1204-11.
[http://dx.doi.org/10.1152/ajpendo.00281.2018] [PMID: 30300010]
[24]
Surapongchai J, Prasannarong M, Bupha-Intr T, Saengsirisuwan V. Angiotensin II induces differential insulin action in rat skeletal muscle. J Endocrinol 2017; 232(3): 547-60.
[http://dx.doi.org/10.1530/JOE-16-0579] [PMID: 28096436]
[25]
Ohki K, Wakui H, Kishio N, et al. Angiotensin II Type 1 receptor-associated protein inhibits angiotensin II-induced insulin resistance with suppression of oxidative stress in skeletal muscle tissue. Sci Rep 2018; 8(1): 2846.
[http://dx.doi.org/10.1038/s41598-018-21270-8] [PMID: 29434287]
[26]
Graus-Nunes F, Souza-Mello V. The renin-angiotensin system as a target to solve the riddle of endocrine pancreas homeostasis. Biomed Pharmacother 2019; 109: 639-45.
[http://dx.doi.org/10.1016/j.biopha.2018.10.191] [PMID: 30404071]
[27]
Leibiger IB, Leibiger B, Berggren PO. Insulin signaling in the pancreatic beta-cell. Annu Rev Nutr 2008; 28(1): 233-51.
[http://dx.doi.org/10.1146/annurev.nutr.28.061807.155530] [PMID: 18481923]
[28]
Sahr A, Wolke C, Maczewsky J, et al. The Angiotensin-(1–7)/Mas axis improves pancreatic β-Cell Function in vitro and in vivo. Endocrinology 2016; 157(12): 4677-90.
[http://dx.doi.org/10.1210/en.2016-1247] [PMID: 27715254]
[29]
Youl E, Bardy G, Magous R, et al. Quercetin potentiates insulin secretion and protects INS‐1 pancreatic β‐cells against oxidative damage via the ERK1/2 pathway. Br J Pharmacol 2010; 161(4): 799-814.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00910.x] [PMID: 20860660]
[30]
Chattopadhyay M, Khemka VK, Chatterjee G, Ganguly A, Mukhopadhyay S, Chakrabarti S. Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol Cell Biochem 2015; 399(1-2): 95-103.
[http://dx.doi.org/10.1007/s11010-014-2236-7] [PMID: 25312902]
[31]
Thorwald M, Rodriguez R, Lee A, et al. Angiotensin receptor blockade improves cardiac mitochondrial activity in response to an acute glucose load in obese insulin resistant rats. Redox Biol 2018; 14: 371-8.
[http://dx.doi.org/10.1016/j.redox.2017.10.005] [PMID: 29049981]
[32]
Nakayama M, Inoguchi T, Sonta T, et al. Increased expression of NAD(P)H oxidase in islets of animal models of type 2 diabetes and its improvement by an AT1 receptor antagonist. Biochem Biophys Res Commun 2005; 332(4): 927-33.
[http://dx.doi.org/10.1016/j.bbrc.2005.05.065] [PMID: 15922295]
[33]
Wang J, Feng Y, Huo H, et al. NLRP3 inflammasome mediates angiotensin II-induced islet β cell apoptosis. Acta Biochim Biophys Sin 2019; 51(5): 501-8.
[http://dx.doi.org/10.1093/abbs/gmz032] [PMID: 30939192]
[34]
Chen H, Zhou W, Ruan Y, et al. Reversal of angiotensin ll-induced β-cell dedifferentiation via inhibition of NF-κb signaling. Mol Med 2018; 24(1): 43.
[http://dx.doi.org/10.1186/s10020-018-0044-3] [PMID: 30134927]
[35]
Campbell KN, Raij L, Mundel P. Role of angiotensin II in the development of nephropathy and podocytopathy of diabetes. Curr Diabetes Rev 2011; 7(1): 3-7.
[http://dx.doi.org/10.2174/157339911794273973] [PMID: 21067505]
[36]
Wang J, Li D, Zhang Z, et al. Autoantibody against angiotensin II type I receptor induces pancreatic β-cell apoptosis via enhancing autophagy. Acta Biochim Biophys Sin 2021; 53(6): 784-95.
[http://dx.doi.org/10.1093/abbs/gmab049] [PMID: 33928341]
[37]
Hamaguchi K, Gaskins HR, Leiter EH. NIT-1, a pancreatic beta-cell line established from a transgenic NOD/Lt mouse. Diabetes 1991; 40(7): 842-9.
[http://dx.doi.org/10.2337/diab.40.7.842] [PMID: 1647994]
[38]
Wu YJ, Wu YB, Fang ZH, et al. Danzhi jiangtang capsule mediates nit-1 insulinoma cell proliferation and apoptosis by GLP-1/Akt signaling pathway. Evid Based Complement Alternat Med 2019; 2019: 1-7.
[http://dx.doi.org/10.1155/2019/5356825] [PMID: 31467576]
[39]
Pan X, Shao Y, Wu F, et al. FGF21 prevents angiotensin II-induced hypertension and vascular dysfunction by activation of ACE2/angiotensin-(1–7) axis in mice. Cell Metab 2018; 27(6): 1323-1337.e5.
[http://dx.doi.org/10.1016/j.cmet.2018.04.002] [PMID: 29706566]
[40]
Xu Q, Chen SY, Deng LD, Feng LP, Huang LZ, Yu RR. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells. Braz J Med Biol Res 2013; 46(11): 949-55.
[http://dx.doi.org/10.1590/1414-431X20133163] [PMID: 24270904]
[41]
Cao Z, Zheng Q, Li G, et al. STAT1-mediated down-regulation of Bcl-2 expression is involved in IFN-γ/TNF-α-induced apoptosis in NIT-1 cells. PLoS One 2015; 10(3): e0120921.
[http://dx.doi.org/10.1371/journal.pone.0120921] [PMID: 25811609]
[42]
Vargas Vargas RA, Varela Millán JM, Fajardo Bonilla E. Renin–angiotensin system: Basic and clinical aspects-A general perspective. Endocrinol Diabetes Nutr 2022; 69(1): 52-62.
[http://dx.doi.org/10.1016/j.endinu.2021.05.012] [PMID: 34723133]
[43]
Yang T, Xu C. Physiology and pathophysiology of the intrarenal renin-angiotensin system: An update. J Am Soc Nephrol 2017; 28(4): 1040-9.
[http://dx.doi.org/10.1681/ASN.2016070734] [PMID: 28255001]
[44]
Skov J, Persson F, Frøkiær J, Christiansen JS. Tissue Renin-Angiotensin systems: A unifying hypothesis of metabolic disease. Front Endocrinol 2014; 5: 23.
[http://dx.doi.org/10.3389/fendo.2014.00023] [PMID: 24592256]
[45]
Bruce EB, de Kloet AD. The intricacies of the renin-angiotensin-system in metabolic regulation. Physiol Behav 2017; 178: 157-65.
[http://dx.doi.org/10.1016/j.physbeh.2016.11.020] [PMID: 27887998]
[46]
Paz Ocaranza M, Riquelme JA, García L, et al. Counter-regulatory renin–angiotensin system in cardiovascular disease. Nat Rev Cardiol 2020; 17(2): 116-29.
[http://dx.doi.org/10.1038/s41569-019-0244-8] [PMID: 31427727]
[47]
Ribeiro VT, de Souza LC, Simões e Silva AC. Renin-angiotensin system and alzheimer’s disease pathophysiology: From the potential interactions to therapeutic perspectives. Protein Pept Lett 2020; 27(6): 484-511.
[http://dx.doi.org/10.2174/0929866527666191230103739] [PMID: 31886744]
[48]
Khoshghamat N, Jafari N, Toloue-pouya V, et al. The therapeutic potential of renin-angiotensin system inhibitors in the treatment of pancreatic cancer. Life Sci 2021; 270: 119118.
[http://dx.doi.org/10.1016/j.lfs.2021.119118] [PMID: 33548284]
[49]
Gong X, Hu H, Qiao Y, et al. The involvement of renin-angiotensin system in lipopolysaccharide-induced behavioral changes, neuroinflammation, and disturbed insulin signaling. Front Pharmacol 2019; 10: 318.
[http://dx.doi.org/10.3389/fphar.2019.00318] [PMID: 31001119]
[50]
Teixeira LB, Parreiras-e-Silva LT, Bruder-Nascimento T, et al. Ang-(1-7) is an endogenous β-arrestin-biased agonist of the AT1 receptor with protective action in cardiac hypertrophy. Sci Rep 2017; 7(1): 11903.
[http://dx.doi.org/10.1038/s41598-017-12074-3] [PMID: 28928410]
[51]
Figueiredo VP, Barbosa MA, de Castro UGM, et al. Antioxidant effects of oral ang-(1-7) restore insulin pathway and ras components ameliorating cardiometabolic disturbances in rats. Oxid Med Cell Longev 2019; 2019: 1-10.
[http://dx.doi.org/10.1155/2019/5868935] [PMID: 31396301]
[52]
Giani JF, Gironacci MM, Muñoz MC, Peña C, Turyn D, Dominici FP. Angiotensin-(1–7) stimulates the phosphorylation of JAK2, IRS-1 and Akt in rat heart in vivo: Role of the AT 1 and Mas receptors. Am J Physiol Heart Circ Physiol 2007; 293(2): H1154-63.
[http://dx.doi.org/10.1152/ajpheart.01395.2006] [PMID: 17496209]
[53]
Passos-Silva DG, Verano-Braga T, Santos RAS. Angiotensin-(1–7): Beyond the cardio-renal actions. Clin Sci 2013; 124(7): 443-56.
[http://dx.doi.org/10.1042/CS20120461] [PMID: 23249272]
[54]
Khalid M, Alkaabi J, Khan MAB, Adem A. Insulin signal transduction perturbations in insulin resistance. Int J Mol Sci 2021; 22(16): 8590.
[http://dx.doi.org/10.3390/ijms22168590] [PMID: 34445300]
[55]
Andreozzi F, Laratta E, Sciacqua A, Perticone F, Sesti G. Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells. Circ Res 2004; 94(9): 1211-8.
[http://dx.doi.org/10.1161/01.RES.0000126501.34994.96] [PMID: 15044323]
[56]
Marrero MB, Fulton D, Stepp D, Stern DM. Angiotensin II-induced insulin resistance and protein tyrosine phosphatases. Arterioscler Thromb Vasc Biol 2004; 24(11): 2009-13.
[http://dx.doi.org/10.1161/01.ATV.0000140059.04717.f3] [PMID: 15271787]
[57]
Wei Y, Sowers JR, Nistala R, et al. Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem 2006; 281(46): 35137-46.
[http://dx.doi.org/10.1074/jbc.M601320200] [PMID: 16982630]
[58]
Shi Y, Lo CS, Padda R, et al. Angiotensin-(1–7) prevents systemic hypertension, attenuates oxidative stress and tubulointerstitial fibrosis, and normalizes renal angiotensin-converting enzyme 2 and Mas receptor expression in diabetic mice. Clin Sci 2015; 128(10): 649-63.
[http://dx.doi.org/10.1042/CS20140329] [PMID: 25495544]
[59]
Liu C, Lv XH, Li HX, et al. Angiotensin-(1-7) suppresses oxidative stress and improves glucose uptake via Mas receptor in adipocytes. Acta Diabetol 2012; 49(4): 291-9.
[http://dx.doi.org/10.1007/s00592-011-0348-z] [PMID: 22042130]
[60]
Raffai G, Durand MJ, Lombard JH. Acute and chronic angiotensin-(1–7) restores vasodilation and reduces oxidative stress in mesenteric arteries of salt-fed rats. Am J Physiol Heart Circ Physiol 2011; 301(4): H1341-52.
[http://dx.doi.org/10.1152/ajpheart.00202.2011] [PMID: 21803946]
[61]
Song LN, Liu JY, Shi TT, et al. Angiotensin‐(1‐7), the product of ACE2 ameliorates NAFLD by acting through its receptor Mas to regulate hepatic mitochondrial function and glycolipid metabolism. FASEB J 2020; 34(12): 16291-306.
[http://dx.doi.org/10.1096/fj.202001639R] [PMID: 33078906]
[62]
Peiró C, Vallejo S, Gembardt F, et al. Complete blockade of the vasorelaxant effects of angiotensin-(1-7) and bradykinin in murine microvessels by antagonists of the receptor Mas. J Physiol 2013; 591(9): 2275-85.
[http://dx.doi.org/10.1113/jphysiol.2013.251413] [PMID: 23459756]
[63]
Roca-Ho H, Palau V, Gimeno J, Pascual J, Soler MJ, Riera M. Angiotensin-converting enzyme 2 influences pancreatic and renal function in diabetic mice. Lab Invest 2020; 100(9): 1169-83.
[http://dx.doi.org/10.1038/s41374-020-0440-5] [PMID: 32472097]
[64]
Burgos-Morón E, Abad-Jiménez Z, Marañón AM, et al. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The battle continues. J Clin Med 2019; 8(9): 1385.
[http://dx.doi.org/10.3390/jcm8091385] [PMID: 31487953]
[65]
Ding X, Jian T, Wu Y, et al. Ellagic acid ameliorates oxidative stress and insulin resistance in high glucose-treated HepG2 cells via miR-223/keap1-Nrf2 pathway. Biomed Pharmacother 2019; 110: 85-94.
[http://dx.doi.org/10.1016/j.biopha.2018.11.018] [PMID: 30466006]
[66]
Lee SH, Park MH, Kang SM, et al. Dieckol isolated from Ecklonia cava protects against high-glucose induced damage to rat insulinoma cells by reducing oxidative stress and apoptosis. Biosci Biotechnol Biochem 2012; 76(8): 1445-51.
[http://dx.doi.org/10.1271/bbb.120096] [PMID: 22878185]
[67]
Gaffney K, Weinberg M, Soto M, Louie S, Rodgers K. Development of angiotensin II (1-7) analog as an oral therapeutic for the treatment of chemotherapy-induced myelosuppression. Haematologica 2018; 103(12): e567-70.
[http://dx.doi.org/10.3324/haematol.2018.193771] [PMID: 29976741]
[68]
Bindom SM, Hans CP, Xia H, Boulares AH, Lazartigues E. Angiotensin I-converting enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice. Diabetes 2010; 59(10): 2540-8.
[http://dx.doi.org/10.2337/db09-0782] [PMID: 20660625]
[69]
Lu J, Chen G, Shen G, Ouyang W. Ang-(1-7) attenuates podocyte injury induced by high glucose in vitro. Arch Endocrinol Metab 2023; 67(6): e000643.
[http://dx.doi.org/10.20945/2359-3997000000643] [PMID: 37364145]
[70]
Marins FR, Oliveira AC, Qadri F, et al. Alamandine but not angiotensin-(1–7) produces cardiovascular effects at the rostral insular cortex. Am J Physiol Regul Integr Comp Physiol 2021; 321(3): R513-21.
[http://dx.doi.org/10.1152/ajpregu.00308.2020] [PMID: 34346721]
[71]
Tetzner A, Gebolys K, Meinert C, et al. G-Protein–Coupled Receptor MrgD Is a Receptor for Angiotensin-(1–7) Involving Adenylyl Cyclase, cAMP, and Phosphokinase A. Hypertension 2016; 68(1): 185-94.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07572] [PMID: 27217404]
[72]
Jesus ICG, Scalzo S, Alves F, et al. Alamandine acts via MrgD to induce AMPK/NO activation against ANG II hypertrophy in cardiomyocytes. Am J Physiol Cell Physiol 2018; 314(6): C702-11.
[http://dx.doi.org/10.1152/ajpcell.00153.2017] [PMID: 29443552]
[73]
Li J, Zhu R, Liu Y, et al. Angiotensin-(1-7) improves islet function in a rat model of streptozotocin- induced diabetes mellitus by up-regulating the expression of Pdx1/Glut2. Endocr Metab Immune Disord Drug Targets 2021; 21(1): 156-62.
[http://dx.doi.org/10.2174/1871530320666200717161538] [PMID: 32679026]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy