Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Biochemical and Preclinical Evaluation with Synthesis and Docking Study of Pyridopyrimidines and Selenium Nanoparticle Drugs for Cancer Targeting

Author(s): Zafer S. Alshehri, Faez F. Alshehri, Sherien F. Belasy, Eman A. El-Hefny, Magdy S. Aly, Ahmed A. El-Sayed* and Nasser A. Hassan*

Volume 21, Issue 3, 2025

Published on: 29 December, 2023

Page: [498 - 510] Pages: 13

DOI: 10.2174/0115734137276989231205102152

Price: $65

Abstract

Background: Ultrasonic irradiation has the remarkable potential to amplify reactivity by a factor of approximately one million. The effects of ultrasound on chemical processes can be categorized as either homogeneous sonochemistry, which takes place in liquids, or heterogeneous sonochemistry, which occurs in liquid-liquid or liquid-solid systems.

Objectives: Pyrimidines are a vital group of compounds known for their anticancer activities. This study delves into investigating the application of ultrasonic irradiation for the synthesis of pyridopyrimidine derivatives.

Methods: In our study, we utilized pyrimidine derivatives 1, 2a, and 2b as reducing agents during the creation of selenium nanoparticles (Het-SeNPs). The characterization of these nanoparticles was executed through a range of analytical approaches, including ultraviolet-visible spectrometry, dynamic light scattering (DLS, Zeta), and transmission electron microscopy (TEM). Additionally, FTIR and NMR spectroscopic examinations provided proof of the formation of these nanoparticles within the synthesized molecules 1, 2a, and 2b.

Results: The impact of the produced heterocyclic derivatives and Het-SeNPs was assessed on various cancer cell lines, including breast cancer (MCF-7), liver cancer (HepG2), and prostate cancer (PC-3) cell lines. All tested substances demonstrated a reasonable level of safety in the HFB4 cell line, which represents normal human skin melanocytes. Noteworthy is the substantial cytotoxicity exhibited by compound 2b against MCF-7 cell lines.

Conclusion: Moreover, compound 2b-SeNPs demonstrated even higher cytotoxicity against the MCF-7 cell line compared to compound 2b, where 5-fluorouracil was used as a reference standard. Detailed cell division analysis disclosed significant antiproliferative properties in compounds 2b and 2b-SeNPs, leading to the arrest of the cell cycle at the pre-G1 and G2/M phases.

Keywords: Selenium nanoparticles (SeNPs), one-pot synthesis, anti-proliferative activity, MCF-7 (Breast Tumour), PC-3 (prostate cancer cell), HepG2 liver cancer cell line.

Graphical Abstract
[1]
Miao, J.H.; Jun, X.W.; Sci, B.J.; Zi, C Ting; Yang, L.; Hua Jiang, Z; Miao Hu, J.; Jun Wang, X; Sheng, J Triazole rings as novel potential antitumor agents citation. 2019.
[http://dx.doi.org/10.26717/BJSTR.2019.16.002915]
[2]
El-Saidi, M.M.T.; El-Sayed, A.A.; Pedersen, E.B.; Tantawy, M.A.; Mohamed, N.R.; Gad, W.A. Synthesis, characterization and docking study of novel pyrimidine derivatives as anticancer agents. Indones. J. Chem., 2020, 20(5), 1163-117.
[http://dx.doi.org/10.22146/ijc.50582]
[3]
El-Sayed, A.A.; Abu-Bakr, S.M.; Swelam, S.A.; Khaireldin, N.Y.; Shoueir, K.R.; Khalil, A.M. Applying nanotechnology in the synthesis of benzimidazole derivatives: A pharmacological approach. Biointerface Res. Appl. Chem., 2021, 12(1), 992-1005.
[http://dx.doi.org/10.33263/BRIAC121.9921005]
[4]
Huang, Y.; He, L.; Liu, W.; Fan, C.; Zheng, W.; Wong, Y.S.; Chen, T. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials, 2013, 34(29), 7106-7116.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.067] [PMID: 23800743]
[5]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[6]
Khazir, J.; Mir, B.A.; Pandita, M.; Pilcher, L.; Riley, D.; Chashoo, G. Design and synthesis of sulphonyl acetamide analogues of quinazoline as anticancer agents. Med. Chem. Res., 2020, 29(5), 916-925.
[http://dx.doi.org/10.1007/s00044-020-02533-4]
[7]
Brahmachari, G.; Banerjee, B. Catalyst-free organic synthesis at room temperature in aqueous and non-aqueous media: An emerging field of green chemistry practice and sustainability. Curr. Green Chem., 2015, 2(3), 274-305.
[http://dx.doi.org/10.2174/2213346102666150218195142]
[8]
Sankar, M.; Dimitratos, N.; Miedziak, P.J.; Wells, P.P.; Kiely, C.J.; Hutchings, G.J. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev., 2012, 41(24), 8099-8139.
[http://dx.doi.org/10.1039/c2cs35296f] [PMID: 23093051]
[9]
Himaja, M.; Poppy, D.; Asif, K. Green technique-solvent free synthesis and its advantages. Int. J. Res. Ayurveda Pharm., 2011, 2, 1079.
[10]
Gu, Y.; Jérôme, F. Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev., 2013, 42(24), 9550-9570.
[http://dx.doi.org/10.1039/c3cs60241a] [PMID: 24056753]
[11]
Bisht, N.; Phalswal, P.; Khanna, P.K. Selenium nanoparticles: A review on synthesis and biomedical applications. Mater. Adv., 2022, 3(3), 1415-1431.
[http://dx.doi.org/10.1039/D1MA00639H]
[12]
Sun, L.; Chen, Y.; Zhou, Y.; Guo, D.; Fan, Y.; Guo, F.; Zheng, Y.; Chen, W. Preparation of 5-fluorouracil-loaded chitosan nanoparticles and study of the sustained release in vitro and in vivo. Asian J. Pharm. Sci., 2017, 12(5), 418-423.
[http://dx.doi.org/10.1016/j.ajps.2017.04.002] [PMID: 32104354]
[13]
Yazdi, M.; Mahdavi, M.; Kheradmand, E.; Shahverdi, A. The preventive oral supplementation of a selenium nanoparticle-enriched probiotic increases the immune response and lifespan of 4T1 breast cancer bearing mice. Arzneimittelforschung, 2012, 62(11), 525-531.
[http://dx.doi.org/10.1055/s-0032-1323700] [PMID: 22945771]
[14]
Gao, F.; Yuan, Q.; Gao, L.; Cai, P.; Zhu, H.; Liu, R.; Wang, Y.; Wei, Y.; Huang, G.; Liang, J.; Gao, X. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials, 2014, 35(31), 8854-8866.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.004] [PMID: 25064805]
[15]
Skalickova, S.; Milosavljevic, V.; Cihalova, K.; Horky, P.; Richtera, L.; Adam, V. Selenium nanoparticles as a nutritional supplement. Nutrition, 2017, 33, 83-90.
[http://dx.doi.org/10.1016/j.nut.2016.05.001] [PMID: 27356860]
[16]
Chaudhary, S.; Umar, A.; Mehta, S.K. Surface functionalized selenium nanoparticles for biomedical applications. J. Biomed. Nanotechnol., 2014, 10(10), 3004-3042.
[http://dx.doi.org/10.1166/jbn.2014.1985] [PMID: 25992427]
[17]
Khattab, R. swelm, ; Khalil, A.; Elsayed Abdelhamid, A.; Soliman, A.; El-Sayed, A. Novel sono-synthesized triazole derivatives conjugated with selenium nanoparticles for cancer treatment. Egypt. J. Chem., 2021.
[http://dx.doi.org/10.21608/ejchem.2021.81154.4018]
[18]
Abdelhamid, A.E.; El-Sayed, A.A.; Swelam, S.A.; Soliman, A.M.; Khalil, A.M. Encapsulation of triazolederivatives conjugated with selenium nanoparticles onto nano-chitosan for overcoming drug resistant cancer cells. Egypt. J. Chem., 2022, 65.
[http://dx.doi.org/10.21608/ejchem.2022.147872.6401]
[19]
Kaur, P.J.; Kaushik, G.; Siddiqui, R.A.; Goyal, P.K. Biomedical applications of some green synthesized metal nanomaterials Green Nanomater. Ind. Appl, 2021, 71-91.
[http://dx.doi.org/10.1016/B978-0-12-823296-5.00008-3]
[20]
Dumore, N.S.; Mukhopadhyay, M. Sensitivity enhanced SeNPs-FTO electrochemical sensor for hydrogen peroxide detection. J. Electroanal. Chem., 2020, 878114544
[http://dx.doi.org/10.1016/j.jelechem.2020.114544]
[21]
Varlamova, E.G.; Goltyaev, M.V.; Mal’tseva, V.N.; Turovsky, E.A.; Sarimov, R.M.; Simakin, A.V.; Gudkov, S.V. Mechanisms of the cytotoxic effect of selenium nanoparticles in different human cancer cell lines. Int. J. Mol. Sci., 2021, 22(15), 7798.
[http://dx.doi.org/10.3390/ijms22157798] [PMID: 34360564]
[22]
Krapf, M.K.; Gallus, J.; Vahdati, S.; Wiese, M. New inhibitors of breast cancer resistance protein (ABCG2) containing a 2,4-disubstituted pyridopyrimidine scaffold. J. Med. Chem., 2018, 61(8), 3389-3408.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01012] [PMID: 29547272]
[23]
Wadhwani, S.A.; Shedbalkar, U.U.; Singh, R.; Chopade, B.A. Biogenic selenium nanoparticles: Current status and future prospects. Appl. Microbiol. Biotechnol., 2016, 100(6), 2555-2566.
[http://dx.doi.org/10.1007/s00253-016-7300-7] [PMID: 26801915]
[24]
Zeng, H.; Cheng, W.H.; Johnson, L.K. Methylselenol, a selenium metabolite, modulates p53 pathway and inhibits the growth of colon cancer xenografts in Balb/c mice. J. Nutr. Biochem., 2013, 24(5), 776-780.
[http://dx.doi.org/10.1016/j.jnutbio.2012.04.008] [PMID: 22841391]
[25]
El-Kalyoubi, S.; El-Sebaey, S.A.; El-Sayed, A.A.; Abdelhamid, M.S.; Agili, F.; Elfeky, S.M. Novel containing nanoparticles as dual inhibitors of CDK1 and tubulin polymerase: Design, synthesis, anti-proliferative evaluation,and pyrimidine Schiff bases and their selenium molecular modeling. J. Enzyme Inhib. Med. Chem., 2023, 3(1)2232125
[http://dx.doi.org/10.1080/14756366.2023.2232125] [PMID: 37403517]
[26]
Abu-Zeid, E.H.; Abdel Fattah, D.M.; Arisha, A.H.; Ismail, T.A.; Alsadek, D.M.; Metwally, M.M.M.; El-Sayed, A.A.; Khalil, A.T. Protective prospects of eco-friendly synthesized selenium nanoparticles using Moringa oleifera or Moringa oleifera leaf extract against melamine induced nephrotoxicity in male rats. Ecotoxicol. Environ. Saf., 2021, 221112424
[http://dx.doi.org/10.1016/j.ecoenv.2021.112424] [PMID: 34174736]
[27]
Ramamurthy, C.; Sampath, K.S.; Arunkumar, P.; Kumar, M.S.; Sujatha, V.; Premkumar, K.; Thirunavukkarasu, C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst. Eng., 2013, 36(8), 1131-1139.
[http://dx.doi.org/10.1007/s00449-012-0867-1] [PMID: 23446776]
[28]
Fernandes, A.P.; Gandin, V. Selenium compounds as therapeutic agents in cancer. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(8), 1642-1660.
[http://dx.doi.org/10.1016/j.bbagen.2014.10.008] [PMID: 25459512]
[29]
Mittal, A.K.; Kumar, S.; Banerjee, U.C. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J. Colloid Interface Sci., 2014, 431, 194-199.
[http://dx.doi.org/10.1016/j.jcis.2014.06.030] [PMID: 25000181]
[30]
Shaheen, A.; Taj, A.; Liberzeit, P.A.; Mujahid, A.; Hameed, S.; Yu, H.; Mahmood, A.; Webster, T.J.; Rashid, M.H.; Khan, W.S.; Bajwa, S.Z. Design of heterostructured hybrids comprising ultrathin 2D bismuth tungstate nanosheets reinforced by chloramphenicol imprinted polymers used as biomimetic interfaces for mass-sensitive detection. Colloids Surf. B Biointerfaces, 2020, 188110775
[http://dx.doi.org/10.1016/j.colsurfb.2020.110775] [PMID: 31958619]
[31]
Kong, L.; Yuan, Q.; Zhu, H.; Li, Y.; Guo, Q.; Wang, Q.; Bi, X.; Gao, X. The suppression of prostate LNCaP cancer cells growth by Selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis. Biomaterials, 2011, 32(27), 6515-6522.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.032] [PMID: 21640377]
[32]
Hull, L.C.; Farrell, D.; Grodzinski, P. Highlights of recent developments and trends in cancer nanotechnology research—View from NCI Alliance for Nanotechnology in Cancer. Biotechnol. Adv., 2014, 32(4), 666-678.
[http://dx.doi.org/10.1016/j.biotechadv.2013.08.003] [PMID: 23948249]
[33]
Spyratou, E.; Makropoulou, M.; Mourelatou, E.A.; Demetzos, C. Biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy. Cancer Lett., 2012, 327(1-2), 111-122.
[http://dx.doi.org/10.1016/j.canlet.2011.12.039] [PMID: 22265863]
[34]
Whanger, P.D. Selenium and its relationship to cancer: An update. Br. J. Nutr., 2004, 91(1), 11-28.
[http://dx.doi.org/10.1079/BJN20031015] [PMID: 14748935]
[35]
Yu, B.; Liu, T.; Du, Y.; Luo, Z.; Zheng, W.; Chen, T. X-ray-responsive selenium nanoparticles for enhanced cancer chemo-radiotherapy. Colloids Surf. B Biointerfaces, 2016, 139, 180-189.
[http://dx.doi.org/10.1016/j.colsurfb.2015.11.063] [PMID: 26709976]
[36]
El-Bayoumy, K.; Sinha, R. Mechanisms of mammary cancer chemoprevention by organoselenium compounds. Mutat. Res., 2004, 551(1-2), 181-197.
[http://dx.doi.org/10.1016/j.mrfmmm.2004.02.023] [PMID: 15225592]
[37]
Molanouri Shamsi, M.; Chekachak, S.; Soudi, S.; Quinn, L.S.; Ranjbar, K.; Chenari, J.; Yazdi, M.H.; Mahdavi, M. Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia. Cytokine, 2017, 90, 100-108.
[http://dx.doi.org/10.1016/j.cyto.2016.11.005] [PMID: 27863332]
[38]
Cepoi, L.; Zinicovscaia, I.; Chiriac, T.; Rudi, L.; Yushin, N.; Grozdov, D.; Tasca, I.; Kravchenko, E.; Tarasov, K. Modification of some structural and functional parameters of living culture of arthrospira platensis as the result of selenium nanoparticle biosynthesis. Materials, 2023, 16(2), 852.
[http://dx.doi.org/10.3390/ma16020852] [PMID: 36676589]
[39]
Avon, G.; Bucolo, M.; Buscarino, A.; Fortuna, L. Sensing frequency drifts: A lookup table approach. IEEE Access, 2022, 10, 96249-96259.
[http://dx.doi.org/10.1109/ACCESS.2022.3203187]
[40]
El-Kalyoubi, Samar; Khalifa, Mohamed M.; Abo-Elfadl, Mahmoud T.; El-Sayed, Ahmed A.; Elkamhawy, Ahmed; Lee, Kyeong ; Al-Karmalawy, Ahmed A. Design and synthesis of new spirooxindole candidates and their selenium nanoparticles as potential dual Topo I/II inhibitors, DNA intercalators, and apoptotic inducers. J. Enzyme Inhib. Med. Chem., 2023, 38(1)2242714
[http://dx.doi.org/10.1080/14756366.2023.2242714]
[41]
Abdel-Monem, R.A.; El-Sayed, A.A.; Abdelhamid, A.E.; Rabie, S.T. Adenine functionalized antibacterial PVC with both photo and thermal stability. J. Vinyl Additive Technol., 2021, 27(3), 555-566.
[http://dx.doi.org/10.1002/vnl.21827]
[42]
Zhang, N.; Yin, Y.; Xu, S.J.; Chen, W.S. 5-Fluorouracil: Mechanisms of resistance and reversal strategies. Molecules, 2008, 13(8), 1551-1569.
[http://dx.doi.org/10.3390/molecules13081551] [PMID: 18794772]
[43]
Mohamed, N.R.; Khaireldin, N.Y.; Fahmy, A.F.; El-Sayed, A.A. Facile synthesis of fused nitrogen containing heterocycles as anticancer agents. Der Pharma Chem., 2010, 2, 400-417.
[44]
de Graaff, C.; Ruijter, E.; Orru, R.V.A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev., 2012, 41(10), 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840]
[45]
Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[http://dx.doi.org/10.1021/ar800214s] [PMID: 19175315]
[46]
Zarganes-Tzitzikas, T.; Chandgude, A.L.; Dömling, A. Multicomponent reactions, union of MCRS and beyond. Chem. Rec., 2015, 15(5), 981-996.
[http://dx.doi.org/10.1002/tcr.201500201] [PMID: 26455350]
[47]
Rabie, S.T.; Abdel-Monem, R.A.; Mohamed, N.R.; Hashem, A.I.; Nada, A.A. Utility of 6-Amino-2-thiouracils as a core of biologically potent polynitrogen-sulfur fused heterocycles. J. Heterocycl. Chem., 2014, 51(S1), E189-E196.
[http://dx.doi.org/10.1002/jhet.1936]
[48]
Barghi-Lish, A.; Farzaneh, S.; Mamaghani, M. One-pot, three-component, catalyst-free synthesis of novel derivatives of pyrido-[2,3- d]pyrimidines under ultrasonic irradiations. Synth. Commun., 2016, 46(14), 1209-1214.
[http://dx.doi.org/10.1080/00397911.2016.1193756]
[49]
Mohamed, N.R.; Khaireldin, N.Y.; Fahmy, A.F.; El-Sayed, A.A. The utility of carbon disulphide and lawesson’s reagent for synthesis of different fused heterocycles for antimicrobial evaluation. J. Heterocycl. Chem., 2013, 50(6), 1264-1271.
[http://dx.doi.org/10.1002/jhet.884]
[50]
Mohamed, N.R.; El-Saidi, M.M.T.; Ali, Y.M.; Elnagdi, M.H. Utility of 6-amino-2-thiouracil as a precursor for the synthesis of bioactive pyrimidine derivatives. Bioorg. Med. Chem., 2007, 15(18), 6227-6235.
[http://dx.doi.org/10.1016/j.bmc.2007.06.023] [PMID: 17600721]
[51]
Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis—a review. Tetrahedron, 2001, 57(45), 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
[52]
Nofal, Z.M.; Amin, K.M.; Mohamed, H.S.; El-Kerdawy, A.M.; Aly, M.S.; Habib, B.S.; Sarhan, A.E. Design, synthesis, biological evaluation, and molecular docking of novel quinazolinone EGFR inhibitors as targeted anticancer agents. Synth. Commun., 2022, 52(18), 1805-1824.
[http://dx.doi.org/10.1080/00397911.2022.2114373]
[53]
Kostakis, I.K.; Elomri, A.; Seguin, E.; Iannelli, M.; Besson, T. Rapid synthesis of 2,3-disubstituted-quinazolin-4-ones enhanced by microwave-assisted decomposition of formamide. Tetrahedron Lett., 2007, 48(38), 6609-6613.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.114]
[54]
van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol., 2011, 731, 237-245.
[http://dx.doi.org/10.1007/978-1-61779-080-5_20]
[55]
Kim, K.H.; Sederstrom, J.M. Assaying cell cycle status using flow cytometry. Curr. Protoc. Mol. Biol., 2015, 111 28.6.1-28.6.11.
[http://dx.doi.org/10.1002/0471142727.mb2806s111]
[56]
Bhalgat, C.M.; Irfan Ali, M.; Ramesh, B.; Ramu, G. Novel pyrimidine and its triazole fused derivatives: Synthesis and investigation of antioxidant and anti-inflammatory activity. Arab. J. Chem., 2014, 7(6), 986-993.
[http://dx.doi.org/10.1016/j.arabjc.2010.12.021]
[57]
Kapur, M.; Soni, K.; Kohli, K. Green synthesis of selenium nanoparticles from broccoli, characterization, application and toxicity. Adv. Techn. Biol. Med., 2017, 5(1), 2379-1764.
[http://dx.doi.org/10.4172/2379-1764.1000198]
[58]
Wadhwani, S.; Gorain, M.; Banerjee, P.; Shedbalkar, U.; Singh, R.; Kundu, G.; Chopade, B.A. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: Optimization, characterization and its anticancer activity in breast cancer cells. Int. J. Nanomedicine, 2017, 12, 6841-6855.
[http://dx.doi.org/10.2147/IJN.S139212] [PMID: 28979122]
[59]
Ranjitha, V.R.; Ravishankar, V.R. Extracellular synthesis of selenium nanoparticles from an actinomycetes streptomyces griseoruber and evaluation of its cytotoxicity on HT-29 cell line. Pharm. Nanotechnol., 2018, 6(1), 61-68.
[http://dx.doi.org/10.2174/2211738505666171113141010] [PMID: 29141577]
[60]
Khalil, A.M.; Hassan, M.L.; Ward, A.A. Novel nanofibrillated cellulose/polyvinylpyrrolidone/silver nanoparticles films with electrical conductivity properties. Carbohydr. Polym., 2017, 157, 503-511.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.008] [PMID: 27987955]
[61]
Zahra, Sani-e-; M.S., Iqbal; K., Abbas; Qadir, M.I. Synthesis, characterization and evaluation of biological properties of selenium nanoparticles from solanumlycopersicum. Arab. J. Chem., 2022, 15103901
[http://dx.doi.org/10.1016/j.arabjc.2022.103901]
[62]
Ashrafpour, S.; Tohidi Moghadam, T. Interaction of silver nanoparticles with Lysozyme: Functional and structural investigations. Surf. Interfaces, 2018, 10, 216-221.
[http://dx.doi.org/10.1016/j.surfin.2017.09.010]
[63]
Park, J.H.; Liu, Y.; Lemmon, M.A.; Radhakrishnan, R. Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochem. J., 2012, 448(3), 417-423.
[http://dx.doi.org/10.1042/BJ20121513] [PMID: 23101586]
[64]
Tang, S.; Chen, R.; Lin, M. Tang, QingdeLin; Zhu, Yanxiang; Ding, Ji.; Hu, Haifeng.; Ling, Ming.; Wu, Jiansheng. Accelerating autodockvina with GPUs. Molecules, 2022, 27(9), 3041.
[http://dx.doi.org/10.3390/molecules27093041] [PMID: 35566391]
[65]
Nasser, A.A.; Eissa, I.H.; Oun, M.R.; El-Zahabi, M.A.; Taghour, M.S.; Belal, A.; Saleh, A.M.; Mehany, A.B.M.; Luesch, H.; Mostafa, A.E.; Afifi, W.M.; Rocca, J.R.; Mahdy, H.A. Discovery of new pyrimidine-5-carbonitrile derivatives as anticancer agents targeting EGFR WT and EGFR T790M. Org. Biomol. Chem., 2020, 18(38), 7608-7634.
[http://dx.doi.org/10.1039/D0OB01557A] [PMID: 32959865]
[66]
El Azab, E.F.; Abdulrahman, M. Saleh; Yousif, Sara Osman; BiZainabMazhari, Bi; Alrub, Heba Abu; Elfaki, Elyasa Mustafa; Hamza, Alneil; Abdulmalek, Shaymaa.; El Azab, E.F.; Abdulrahman, M. New insights into geraniol’santihemolytic, anti-inflammatory, antioxidant, and anticoagulant potentials using a combined biological and in silico screening strategy. Inflammopharmacology, 2022, 30(5), 1811-1833.
[http://dx.doi.org/10.1007/s10787-022-01039-2] [PMID: 35932440]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy